
Processor-Programmable Memory BIST for Bus-Connected Embedded Memories

Ching-Hong Tsai and Cheng-Wen Wu
Department of Electrical Engineering

National Tsing Hua University
Hsinchu, Taiwan 30013

ROC

Abstract—We present a processor-programmable built-in self-
test (BIST) scheme suitable for embedded memory testing in the
system-on-a-chip (SOC) environment. The proposed BIST circuit
can be programmed via an on-chip microprocessor. Upon receiv-
ing the commands from the microprocessor, the BIST circuit gen-
erates pre-defined test patterns and compares the memory out-
puts with the expected outputs. Most popular memory test algo-
rithms can be realized by properly programming the BIST circuit
using the processor instructions. Compared with processor-based
memory BIST schemes that use an assembly-language program
to generate test patterns and compare the memory outputs, the
test time of the proposed memory BIST scheme is greatly reduced.

I. I NTRODUCTION

With the advent of deep-submicron VLSI technology, core-
based system-on-chip (SOC) design is attracting an increasing
attention. On an SOC, popular reusable cores include memo-
ries (such as ROM, SRAM, DRAM, and flash memory), pro-
cessors (such as CPU, DSP, and microcontroller), input/output
circuits, etc. Memory cores are obviously among the most uni-
versal ones—almost all system chips contain some type of em-
bedded memory. However, to provide a low-cost test solution
for the on-chip memory cores is not a trivial task [1,2].

One possible solution that is also the most widely used
for testing embedded memories is built-in self-test (BIST).
The integration of BIST with the embedded memory under
test greatly minimizes the need for using expensive memory
testers. It also reduces the test time [2]. The research in mem-
ory BIST has a long history (see, e.g., [2–8]). However, most
of the BIST approaches proposed so far assume that the BIST
circuit is to be integrated with the RAM circuit, whether the
BIST circuit is processor based or finite-state machine (FSM)
based. The advantage of such a scheme is that the test time is
short and the area overhead is relatively small, especially for
the FSM-based approach [2]. There also are good reasons for
such one-BIST-per-RAM approach, e.g., intellectual property
(IP) protection, test wrapping for IP [9, 10], performance re-
quirement, etc. However, sometimes it is not feasible to have
one BIST circuit for each memory core. For example, a typical
ASIC or SOC has tens of SRAM cores with different sizes and
configurations. If each memory core on chip requires a BIST
circuit, then the area and test pin overhead will be untolera-

ble. Serial interface has been proposed that reduces hardware
overhead [4], but the test time is long and diagnosis cannot be
supported. Therefore, in [11] a BIST scheme which utilizes
an on-chip microprocessor to test the memory cores was pro-
posed. The memory BIST is done by executing an assembly-
language program in the on-chip microprocessor to generate
test patterns (including the address sequence, data patterns, and
control signals) and compare the memory outputs with the ex-
pected correct data. The advantage of such a scheme is that it
is highly flexible because various test algorithms can be real-
ized by simply modifying the assembly programs run on the
microprocessor. It also is easy to support testing of multiple
memory cores. However, the test time is much longer than us-
ing an integrated memory BIST circuit. We will discuss this
point and show some of our experimental results in the next
section.

In Sec. 3, we will propose a memory BIST scheme which
utilizes a processor-programmable BIST circuit to realize a test
algorithm using pre-defined test elements. The BIST circuit
also compares the memory outputs with the expected correct
data to generate a go/no-go signal. The approach is a com-
bination of the on-chip processor-based BIST of [11] and the
FSM-based BIST proposed in [2].

Since the BIST circuit is an independent one (i.e., not inte-
grated with any memory core), it can be considered as a core
(or IP) in itself. The proposed BIST scheme has at least the
following advantages: 1) the test time is short due to dedi-
cated BIST core design, 2) the flexibility of processor-based
BIST is maintained, and 3) multiple memory cores can be sup-
ported without multiple BIST cores, multiple sets of external
test pins, or complicated routing. We have used an on-chip
6502 microprocessor to perform experiments on our idea. The
proposed BIST scheme takes about 10N clock cycles to per-
form the March C– test algorithm, while the on-chip processor-
based BIST scheme [11] takes about 114N clock cycles for the
same algorithm, whereN is the address space of the memory
core. Moreover, the memory access frequency (for continuous
read/write sequences) in [11] is much lower than the proposed
approach due to overheads in the assembly-language program.

II. ON-CHIP PROCESSOR-BASED MEMORY BIST

Almost any SOC (or even ASIC) design has on-chip proces-
sor and memory cores. In addition to normal operation, the
on-chip processor core also can be used to test other cores on
the same chip. In [11], the processor was used to test embed-
ded logic and memory cores using instructions of the proces-
sor core. An assembly-language program was used to realize
memory test algorithms and compare the memory outputs with
the expected correct data. We also have used the 6502 proces-
sor in a similar experimental on-chip processor-based mem-
ory BIST set-up. Though a 6502 assembly program was used
to implement such a BIST scheme (see Appendix A), our ap-
proach is applicable to other on-chip processors. The memory
test algorithm used in our experiment is the March C– algo-
rithm [12], as shown in Table I.

TABLE I
THE MARCH C– TEST ALGORITHM.

M0 M1 M2 M3 M4 M5
m (w0) * (r0w1) * (r1w0) + (r0w1) + (r1w0) m (r0)

A memory test algorithm consists of a finite sequence of
test elements. Each test element specifies a certain address
(sequence) and a combination of read/write operations (and
maybe other memory operations) to be applied to the specified
address (sequence). Each test element in a March algorithm
is called aMarch element. In Table I, there are six March
elements, i.e.,M0; M1; : : : ; M5. In each March element, the
address sequence is specified first:* stands for the ascending
addressing order,+ stands for the descending addressing or-
der, andm means that the addressing order can be either* or
+. For each memory cell addressed in the specified order, we
perform the read/write operations given inside the parentheses
before advancing to the next specified address. The algorithm
is sometimes called the March 10N algorithm since it requires
10N read/write operations, whereN is the number of memory
cells.

TABLE II
CLOCK CYCLES FOR MAJOR6502INSTRUCTIONS.

Instruction Addressing Mode Clock Cycles
LDA Immediate 2
LDA Absolute Index X 4
LDX Immediate 2
STA Absolute Index X 4
INX Imply 2
CPX Imply 2
BNE Relative 2� 4
CMP Imply 2

Table II shows the clock cycles for some major 6502 in-
structions used in the MARCH C– test algorithm. From the
table, we can calculate the total execution time of the assem-
bly program in Appendix A in terms of number of clock cy-
cles, assuming that each memory read/write operation takes
one clock cycle. The March elementM0 takes 12N clock cy-
cles,M1 �M4 take 22N clock cycles, andM5 takes 14N clock
cycles. Therefore, the total number of clock cycles for March
C– is 114N. The execution time of the above assembly pro-
gram is about 9.6 seconds for a 4-Mbit memory core (assum-
ing a 50-MHz clock). In contrast, the test time for the same
memory core using the integrated BIST core proposed in [2] is
only about 0.4 seconds. The test time of the on-chip processor-
based BIST approach apparently is much longer than the inte-
grated BIST approach. In the next section, we will propose a
memory BIST core with short test time while maintaining the
flexibility of the processor-based approach.

III. PROCESSOR-PROGRAMMABLE BIST CORE DESIGN

AND TEST FLOW

A. BIST Architecture

Figure 1 shows the architecture of the proposed BIST
scheme. The BIST core is inserted between the CPU core and
the on-chip bus, which also connects the memory cores. In nor-
mal operation mode, the CPU transparently access the system
bus with slight time overhead introduced by the multiplexers.
The overhead can be minimized by careful design of the multi-
plexers which can be integrated with the bus drivers. In mem-
ory BIST mode, the BIST circuitry takes over the control of the
on-chip bus. It executes certain test algorithm programmed by
the CPU and generates the addresses, input data, and control
signals for the memory core. It also compares the memory out-
put response with the expected correct data. Since the memory
core can be considered as a pure channel, the data received
from the memory should be equivalent to those written to the
memory previously. The comparison thus can be done without
complicated manipulation of the data. To be able to allow these
two different modes, we use several multiplexers to multiplex
the address bus (ADDR), data input bus (DATAI), data output
bus (DATAO), and control bus between the CPU core and the
BIST circuitry.

BIST core embedded
memory

I/O circuitry

BIST circuitry

embedded
CPU

1

0

1

0

0

1

0

1

mux_sel

mux_sel = 0 in normal mode
mux_sel = 1 in BIST mode

on-chip bus

ADDR

DATAO

control

DATAI

A

DI

DO

control

ADDR_cpu

DATAO_cpu

clock_cpu

ctrl_cpu

DATAI_cpu

ADDR_bist

DATAO_bist

ctrl_bist

DATAI_sysDATAI_bist

Fig. 1. BIST Architecture.

The BIST circuit is synchronized with CPU core by using
the clock signal from the clock input portclock cpu of the
CPU. The signals on the address input portADDR cpu, data
input portDATAO cpu, and control input signalsctrl cpucome
directly from the embedded CPU’s address outputs, data out-
puts, and control signal outputs, respectively. In the next sec-
tion we will show that the BIST functions (i.e., the test algo-
rithm) can be programmed by the CPU via the above three
BIST input ports. The address output portADDR bist, data
output portDATAO bist, and control output portctrl bist of
the BIST core are connected to the output multiplexers. The
outputs of these multiplexers are connected to the address bus
ADDR, data output busDATAO, and control buscontrol, re-
spectively. During the memory BIST process, the multiplexer
selection signalmuxsel is set to 1 so that the test addresses,
data patterns, and control signals can be sent to the embedded
memory via the on-chip bus, and the memory output response
can also be read via the input portDATAI systhat is directly
connected to the data input busDATAI. The data output port
DATAI bist of the BIST circuit can display the contents of the
BIST core’s internal registers when appropriate address values
appear onADDR cpu. The status of the memory BIST process
can be read by the CPU viaDATAI bistduring the BIST mode
because the multiplexer connectsDATAI bist to the CPU’s data
input port. Details about this will be discussed next.

RBG

RAL

RAH

RIR RED

REA

RFLAGRME

ADDR_cpu

DATAO_cpu

DATAO_bist

ADDR_bist

DATAI_bist

up / down

comparator
DATAI_sys

controller

address counter

lowest / highest address

data background

match / unmatch

read / write
control

address
decoder

Fig. 2. Block diagram of the proposed BIST circuit.

B. BIST Implementation

Figure 2 shows the block diagram of our BIST circuit. There
are several registers in the BIST circuit that are used to store
necessary information during the memory BIST process (e.g.,
data background, lowest and highest addresses of the embed-
ded memory, type of March element, etc.) or store the mem-
ory test result (e.g., the BIST core’s status, erroneous output
response, faulty address, etc.). Table III summarizes the reg-
ister symbols and their corresponding test functions. Regis-
ter RBG stores the background data, which is used during the
March test. RegistersRAL andRAH are used to store the low-
est and highest addresses of the memory under test, respec-
tively. RegisterRME stores the current March element instruc-
tion. The test function performed by the BIST circuit depends
on the content ofRME. RegisterRIR stores the instruction of
the BIST circuit. For example, if the CPU writes aSTARTin-
struction intoRIR, the BIST circuit will start to run memory
BIST. Both registersRED and REA store the erroneous data.
When the BIST circuit detects a fault in the memory core, the

error response and faulty address will be saved intoRED and
REA, respectively. RegisterRFLAG is the BIST flag register that
stores the current status of the BIST circuit. For example, if
the BIST circuit detects a fault, theERRORflag will be saved
into RFLAG. All the above data registers can be enabled by the
address decoder. When proper address values appear in input
portADDRcpu, the address decoder will enable the correspond-
ing data register.

TABLE III
SYMBOLS AND FUNCTIONS OF THE DATA REGISTERS IN THEBIST CORE.

Register Function
RBG store background data
RAL store lowest address
RAH store highest address
RME store current March element
RIR instruction register of BIST circuit
RFLAG status register of BIST circuit
RED erroneous response of defective memory cell
REA address of defective memory cell

Other blocks in the BIST circuit include 1) an address
counter which generates the test address sequence; 2) a com-
parator which compares the memory output response with the
expected correct data; and 3) a BIST controller which controls
the BIST circuit. The address counter is just a simple up/down
counter whose value is betweenRAL andRAH. The comparator
compares the memory output response with the content ofRBG

or its complement, depending on which March element is used.
When a discrepancy is found by the comparator, it indicates a
fault. The controller design is very simple. When theSTART
instruction is stored intoRIR, the controller starts its function.
It first decodes the current March element instruction stored in
RME, then controls the data output multiplexerdataomuxand
address counter to generate the appropriate March element for
the embedded memory. When an error is found, the controller
saves the erroneous output response and faulty address in reg-
istersRED andREA. When the content of the address counter
reaches the lowest or highest address, the controller will write
a FINISH flag intoRFLAG to inform the processor that the cur-
rent March element is finished.

C. BIST Procedure

The test flow using the proposed BIST scheme is illustrated
in Fig. 3. Initially, the CPU core writes the lowest and highest
addresses of the memory under test intoRAL andRAH, respec-
tively. It then writes the current March element instruction
into RME, and theSTARTinstruction intoRIR to activate the
BIST circuit. When the BIST controller senses that theSTART
instruction has been written intoRIR, the memory BIST pro-
cedure begins. The address counter generates the address se-
quence, the data output multiplexer sends the data background,
and the BIST controller generates the memory read/write con-

trol signals. During the memory BIST process, the CPU test
program continues polling the registerRFLAG. If the BIST cir-
cuit detects an error, the BIST controller will write anERROR
flag into RFLAG, and the CPU core will execute an error han-
dling routine which can feedback the error response and faulty
cell address to the test engineer. If all memory cells pass the
current March element, the BIST circuit will write aFINISH
flag intoRFLAG. When the CPU core detects theFINISH flag,
the test program proceeds to the next March element, or quit
the test program by writing anEND instruction intoRIR if no
more March element is in the queue.

test program write data background to RBG
test program write lowest / highest address into RAL / RAH

test program write MARCH instruction into RME
test program write START instruction into RIR

(RaWa') (Ra'Wa)(Wa) (RaWa') (Ra'Wa) (Ra)

compare data
error?

current MARCH
element

complete?

write ERROR flag into RFLAG
write erroneous response into RED
write faulty address into RFA

write FINISH flag into RFLAG

test program take over

yes

yes

no

no

performed by
test program

performed by
BIST circuit

performed by
test program

Fig. 3. Embedded memory test flow.

IV. EXPERIMENTAL RESULT

We have used the Verilog hardware description language to
simulate the behavior of the proposed BIST scheme. As de-
scribed above, the BIST circuit is inserted between the 6502
CPU core and an embedded RAM. In our experiment, the
memory test program was stored in a 256x8 ROM. To test the
embedded RAM, the assembly program first writes necessary
instructions and data into registersRBG, RAL, RAH, andRME,
and activates the BIST circuit by writing theSTARTinstruc-
tion into RIR. Then the test program continues to monitor the
flag registerRFLAG until the current March element is finished.
In Appendix B we show the 6502 assembly program that per-
forms the March C– test algorithm under the proposed BIST
scheme. Also, in Table IV we show the March element en-
coding of RME for March C–, and in Table V we show the
addresses of the registers in the same experiment.

The total test time (in terms of clock cycles) of the proposed
BIST scheme equals the cumulated test time of all the March
elements, plus 30 clock cycles—the time to initialize the BIST
circuit. The test time of each March element is the same as
the number of memory read/write operations in each March
element (assume each memory read/write operation takes one

TABLE IV
MARCH ELEMENTS AND THE CORRESPONDINGRME INSTRUCTION

ENCODING.

March element M0 M1 M2 M3 M4 M5

Instruction 0H 1H 2H 3H 4H 5H

TABLE V
ADDRESSES OF THE REGISTERS IN THEBIST EXPERIMENT.

Register Address
RBG FFE0
RAL FFE1� FFE2
RAH FFE3� FFE4
RME FFE5
RIR FFE6
RFLAG FFE7
RED FFE8
REA FFE9� FFEA

clock cycle). Note that March elementM0 takes 1N clock cy-
cles, March elementsM1 �M4 take 2N clock cycles each, and
March elementM5 takes 1N clock cycles, whereN is the num-
ber of memory cells. Therefore, the proposed BIST scheme
takes only 10N clock cycles to perform the March C– test al-
gorithm. The test time is greatly reduced as compared with the
on-chip processor-based approach. Apparently, using a dedi-
cated BIST core for test algorithm generation and data compar-
ison makes big difference so far as performance is concerned.
Moreover, the BIST procedure is controlled by an assembly
program, so the programmability of our approach is compara-
ble to the processor-based approach.

TABLE VI
COMPARISON OF VARIOUS EMBEDDED MEMORYBIST METHODOLOGIES.

BIST scheme Test time Hardware overhead Routing overhead
Integrated BIST core Short Low High
On-chip processor Very long Zero Zero
Ours Short Very low Zero

Table VI shows the comparison of some embedded memory
BIST schemes, including the integrated memory BIST core
approach (e.g., [2]), on-chip processor-based approach (e.g.,
[11]), and our BIST approach. The area overhead of our BIST
implementation is lower than that uses an integrated memory
BIST core because the BIST controller is very simple (most
of the BIST procedure is controlled by the assembly program
executed on the CPU). In the case of multiple memory cores
in an SOC design, we can use a centralized BIST circuit to
test all memory cores, so the routing overhead will be zero be-
cause of the use of on-chip bus to access the memory cores. In

contrast to using a single dedicated BIST circuit for multiple
RAM cores, the routing overhead can be very high because of
the wires connected directly between the BIST circuit and the
memory cores. Two possible solutions for such a problem are
1) to use the bus-based connection, and 2) to group the mem-
ory cores and duplicate the BIST circuits so that routing can be
localized.

There is one restriction in our BIST scheme—the proposed
BIST scheme cannot be directly applied to those memory cores
where the CPU and the embedded memories are connected to
different system buses, or the CPU accesses the memories via
a memory controller. In such cases, we must slightly modify
our BIST scheme so that the BIST core is connected to the
same system bus with embedded memories, and the BIST core
must be able to be programmed by the CPU via the memory
controller.

V. CONCLUSION

We have proposed a flexible and cost-effective BIST scheme
for single or multiple memory cores in the SOC environment
where an on-chip processor is available. Our approach is
flexible because the memory access waveforms can be imple-
mented by the BIST hardware, and different memory test algo-
rithms can be realized by executing proper assembly programs
on the on-chip processor core. It is cost-effective because the
test time is short and the hardware overhead is low. Besides,
with the proposed BIST scheme, neither the CPU nor the mem-
ory design need not be modified, thus the BIST design cost is
reduced.

REFERENCES

[1] C.-W. Wu, “Testing embedded memories: Is BIST the
ultimate solution?”, inProc. Seventh IEEE Asian Test
Symp. (ATS), Singapore, Dec. 1998, pp. 516–517.

[2] C.-T. Huang, J.-R. Huang, C.-F. Wu, C.-W. Wu, and T.-
Y. Chang, “A programmable BIST core for embedded
DRAM”, IEEE Design & Test of Computers, vol. 16, no.
1, pp. 59–70, Jan.-Mar. 1999.

[3] R. Dekker, F. Beenker, and L. Thijssen, “A realistic
self-test machine for static random access memories”, in
Proc. Int. Test Conf. (ITC), 1988, pp. 353–361.

[4] B. Nadeau-Dostie, A. Silburt, and V. K. Agarwal, “Serial
interface for embedded-memory testing”,IEEE Design
& Test of Computers, vol. 7, no. 2, pp. 52–63, Apr. 1990.

[5] R. P. Treuer and V. K. Agarwal, “Built-in self-diagnosis
for repairable embedded RAMs”,IEEE Design & Test of
Computers, vol. 10, no. 2, pp. 24–33, June 1993.

[6] P. Camurati, P. Prinetto, M. S. Reorda, S. Barbagallo,
A. Burri, and D. Medina, “Industrial BIST of embedded
RAMs”, IEEE Design & Test of Computers, vol. 12, no.
3, pp. 86–95, Fall 1995.

[7] S. Tanoi, Y. Tokunaga, T. Tanabe, K. Takahashi,
A. Okada, M. Itoh, Y. Nagatomo, Y. Ohtsuki, and M. Ue-
sugi, “On-wafer BIST of a 200-Gb/s failed-bit search for
1-Gb DRAM”, IEEE Journal of Solid-State Circuits, vol.
32, no. 11, pp. 1735–1742, Nov. 1997.

[8] J. Dreibelbis, J. Barth, H. Kalter, and R. Kho, “Processor-
based built-in self-test for embedded DRAM”,IEEE
Journal of Solid-State Circuits, pp. 1731–1740, Nov.
1998.

[9] Y. Zorian, “Test requirements for embedded core-based
systems and IEEE P1500”, inProc. Int. Test Conf. (ITC),
Oct. 1997, pp. 191–199.

[10] S. Adham, D. Bhattacharya, D. Burek, C. J. Clark,
M. Collins, G. Giles, A. Hales, E. J. Marinissen,
T. McLaurin, J. Monzel, F. Muradali, J. Rajski, R. Ra-
jsuman, M. Ricchetti, D. Stannard, J. Udell, P. Varma,
L. Whetsel, A. Zamfirescu, and Y. Zorian, “Preliminary
outline of the IEEE P1500 scalable architecture for test-
ing embedded cores”, inProc. IEEE VLSI Test Symp.
(VTS), Apr. 1999, pp. 483–488.

[11] R. Rajsuman, “Testing a system-on-a-chip with embed-
ded microprocessor”, inProc. Int. Test Conf. (ITC), 1999,
pp. 499–508.

[12] A. J. van de Goor, “Using march tests to test SRAMs”,
IEEE Design & Test of Computers, vol. 10, no. 1, pp.
8–14, Mar. 1993.

A. 6502 ASSEMBLY PROGRAM FORMARCH-C

LDX #$$00
LDA #$$55 ; 8 bit data background 01010101

M0: STA 0000,X ; March element 0
INX
CPX #$$FF
BNE M0
LDX #$$00

M1: LDA 0000,X ; March element 1
CMP #$$55 ; compare output with 01010101
BNE ERROR
LDA #$$AA
STA 0000,X ; write 10101010 to memory
INX
CPX #$$FF
BNE M1
LDX #$$00

M2: LDA 0000,X ; March element 2
CMP #$$AA ; compare output with 10101010
BNE ERROR
LDA #$$55
STA 0000,X
INX
CPX #$$FF
BNE M2
LDX #$$FF

M3: LDA 0000,X ; March element 3

CMP #$$55 ; compare output with 01010101
BNE ERROR
LDA #$$AA
STA 0000,X
DEX
CPX #$$00
BNE M3
LDX #$$FF

M4: LDA 0000,X ; March element 4
CMP #$$AA ; compare output with 10101010
BNE ERROR
LDA #$$55
STA 0000,X
DEX
CPX #$$00
BNE M4
LDX #$$00

M5: LDA 0000,X ; March element 5
CMP #$$55 ; compare output with 01010101
BNE ERROR
INX
CPX #$$FF
BNE M5
JMP FINISH ; quit memory test program

B. 6502 ASSEMBLY PROGRAM FORPROPOSEDBIST
SCHEME

LDA #$$55 ; load data background 01010101
STA 0HFFE0 ; write toRBG

LDA #$$00 ; load lower byte of lowest address
STA 0HFFE1 ; write to lower byte ofRAL

LDA #$$00 ; load upper byte of lowest address
STA 0HFFE2 ; write to upper byte ofRAL

LDA #$$FF ; load lower byte of highest address
STA 0HFFE3 ; write to lower byte ofRAH

LDA #$$00 ; load upper byte of highest address
STA 0HFFE4 ; write to upper byte ofRAH

M0: LDA #$$00 ; loadM0 March element
STA 0HFFE5 ; write toRME

JSR BIST ; run 0th March element test

M1: LDA #$$01 ; loadM3 March element
STA 0HFFE5 ; write toRME

JSR BIST ; run 1st March element test

M2: LDA #$$02 ; loadM2 March element
STA 0HFFE5 ; write toRME

JSR BIST ; run 2nd March element test

M3: LDA #$$03 ; loadM3 March element
STA 0HFFE5 ; write toRME

JSR BIST ; run 3rd March element test

M4: LDA #$$04 ; loadM4 March element
STA 0HFFE5 ; write toRME

JSR BIST ; run 4th March element test

M5: LDA #$$05 ; loadM5 March element
STA 0HFFE5 ; write toRME

JSR BIST ; run 5th March element test

END: LDA #$$04 ; loadEND instruction
STA 0HFFE6 ; write toRIR
JMP FINISH ; exit test program

BIST: LDA #$$00 ; loadSTARTinstruction
STA 0HFFE6 ; write toRIR

LOOP: LDA 0HFFE7 ; readRFLAG

CMP #$$01 ; check ifERRORflag is set
BEQ ERROR ; jump to error handling routine
CMP #$$FF ; check ifFINISHflag is set
BNE LOOP

RTS ; else return to main program

	ASP-DAC2001
	Front Matter
	Table of Contents
	Session Index
	Author Index

