
A Higher Level System Communication Model for Object-Oriented
Specification and Design of Embedded Systems

Kjetil Svarstad∗ Nezih Ben-Fredj, Gabriela Nicolescu,
Ahmed A. Jerraya

SINTEF Telecom and Informatics TIMA Laboratory, SLS group

Signal Processing and Systems Design group 46, Avenue Félix Viallet,

N-7465 Trondheim, Norway 38031 Grenoble CEDEX, France

e-mail: Kjetil.Svarstad@informatics.sintef.no e-mail: Gabriela.Nicolescu@imag.fr

Abstract— The design starting point for current

embedded systems design is getting higher and higher

on the abstraction level scale in order to meet the

challenge of the increasing design gap. Up til now

the state-of-the-art tools and methods have used as a

highest abstraction of communication the send-receive

over a channel, e.g. as in SDL and COSSAP. We intro-

duce a novel higher level communication mechanism

for system-level specification which has features sup-

porting object-oriented descriptions and client-server

type communication modelling as in CORBA. The

communication primitives have been implemented as

extensions to System-C, and simulation experiments

have been performed.

I. Introduction

When moving higher up in abstraction for describing
embedded systems, we do this for several reasons. In
order to shorten development time, to minimize devel-
opment and production cost, and to maximize product
quality, one must: Be able to handle a higher complex-
ity of systems without being drowned in the details. Be
able to reuse parts of systems in other products and de-
scriptions on a later stage. And facilitate a description
of the system that is close to the actual specification of
the system. In terms of the domains the systems are de-
scribed with regard to, the predominant ones for lending
themselves to abstraction is time, behaviour and commu-
nication. The behaviour domain can be broken down into
several subdomains depending on typing possibilies such
as type structures and data encapsulation. The time do-
main will move from the continuum of time through dis-
crete time, higher level events and cycles, up all the way
to where time is just local ordering, and a global order
is at best partial. The conventional view on abstraction
levels can be found in e.g. [1]. We will concentrate on the
communication abstractions, though, and they are intro-
duced in the following section.

∗The author was supported by a grant from the Norwegian Re-
search Council through the Codever progam

The novel approach to communication abstractions pre-
sented herein is called named communication. It realizes a
most abstract way of thinking about the communication,
the idea of the connectionless service level. Objects have
service access points defined by names, and other objects
may call on these services by these names. In terms of
description, it closely resembles high level specifications.

In the area of communication and interface synthesis
the communication models play an important role. Ex-
amples are found in [2], [3], [4], [5], [6], [7], [8], and [9].

II. Abstraction levels in communication

In order to handle complexity of both size and func-
tionality, it is paramount to introduce higher levels of
abstractions where a known set of details are abstracted
away. Well known in the EDA community is the RTL ab-
straction being the current focus of state-of-the-art syn-
thesis tools. Synthesis methodology is moving upwards
in operational abstractions, though, but we will adresses
specifically the communication, and we argue that this
is the main problem and difference between the higher
system-level abstractions.

In normal circumstances the level of abstraction is di-
rectly coupled to the mode of design description. In this
paper, though, we are focusing on communication, and
the levels of abstraction with regard to communication
are, as we will show, slightly different. Also, we present
the abstraction layers in a direction of increasing abstrac-
tion, a top-down design methodology would of course tra-
verse the levels in the other direction. The reason for
such a presentation is moving from the well known and
basic facts, through higher abstractions of less succinct-
ness, and finally to our novel approach to specification
level abstraction for communication.

The basic properties of these abstraction levels for com-
munication is shown in Table I. Do note that what is
labeled Driver level, Message level, and Service level all
constitute what is normally denoted the system level. The
reason for differentiating them according to communica-
tion abstractions is a matter of the specification and de-

Abstraction
Level

Communication Encapsulation Description Typical primitive

Media Data type Behaviour

Service Type-
resolved
dynamic net

Universal
name spaces
+ concrete
and algebraic
datatypes

Routing Classes
(objects),
Packages

Specification
languages

request(print,device,file)

Message Active
channels with
infinite FIFO
or mailbox

Concrete
generic
datatypes

Protocol
conversion

Dynamic
process blocks

SDL, MSC Send(data,disk)

Driver Logical inter-
connections

Fixed enu-
merated
datatypes

Driver-level
protocol

Static
process blocks,
modules

Cossap, CSP,
SpecCharts,
System-C 1.1

Write(data,port)
Wait until x=y

Register
Transfer

Binary
signals

Fixed binary
data repre-
sentation

Transmission Modules,
entities

VHDL,
System-C
0.9–1.0, Verilog

Set(value,port)
Wait(clock)

TABLE I
Communication abstraction levels

sign process. A specification1 is normally described in
terms of the services supplied to the environment, and a
break-down of such a description would naturally be the
services and their constituting requests in the composi-
tion of tasks or processes. After analysing the require-
ments and their fulfillment, the next step is designing an
architecture2 for the system. Such an architecture will
consist of the tasks and processes from the specification,
but in more detail. Yet the design and analysis of the
communication will be the most untrivial task, since the
properties of this communication scheme will severely im-
pact the performance of the whole system. In order to
handle this, we have concentrated on the communication
mechanisms, primitives and abstractions. To allow reuse,
selection and integration of different modules, the com-
munication and the computation will be separated and
encapsulated. Through the presented abstraction levels,
a system will be modelled as an ensemble of communicat-
ing hierarchical modules. Each module is defined by its
interface and its content where the interface is composed
of a set of ports on which external or internal operations
can be performed. The module content may be composed
of other module instances, or in the case of the module be-
ing a leaf node, it may be composed of tasks or processes.
Each abstraction level is defined by specific concepts that
encapsulates lower abstraction level concepts, and they
are themselves also encapsulated in more abstract con-
cepts.

1We are here referencing the system specification, not a partic-
ular specification on some lower level as the term is normally used
in hw-sw codesign. It is the product of the first phase of the over-
all specification-design-implementation of an embedded system, and
forms the basis for all subsequent design specifications and descrip-
tions. In some literature it is denoted as a requirement specification.

2This is the over-all system architecture and not to be confused
with the modular architectures on the subsequent design abstraction
levels.

A. Register transfer level

The RT level deals with the loading of values into regis-
ters in modules. Combinatory logic will control the regis-
ters, and any address decoding or interrupt management
will be explicitly defined and described. Values are rep-
resented on compound signals between the modules, and
the register to be loaded may be chosen with another com-
pound structure carrying the address for the register.

The main focus for operational abstractions on this
level is the handling of the buses, i.e. the compound signal
structures, and how the different modules can share the
logical and operational space defined by these structures
(e.g. shared bus, point-to-point communication, etc.).
These abstractions are not real communication abstrac-
tions, though, since the RT level demands a fixed repre-
sentation between data type and bit-vector representation
meaning that the size of the data is well known, and the
transmission of data is explicit. In the communication
domain the abstraction is the same as for the physical
level—setting values on physical/logical wires with an im-
mediate3 reaction with respect to values and time. The
RT level communication abstractions are shown in the
lowest row in Table I.

Most commercial synthesis tools are still at this level
of abstraction. They offer a more unbounded way of de-
scribing the inner content of processes—not limited to a
specific finite-state-machine description, the communica-
tion, however, is still bounded by the same restrictions
and lack of abstractions.

3In the respect that there is no functional delay caused by any
underlying protocol, the only delay is due to the physical character
of the wires.

B. Driver level

Typical operational abstractions are master-slave bus-
handling defining how the modules’ access and privileges
regarding the buses will take place. This entails buffered
transmission of data, and specific protocols are needed
since data have size. The system is modeled as inter-
connected modules communicating through logical con-
nections exchanging fixed, enumerated data types (e.g.
integers, reals, etc.) conforming to the driver level proto-
col. The communication time is non-zero but predictable
in the sense that the size and structure of data is well-
known, and the choice of data transmission protocol is
deterministic.

The implementation of a description in this level of ab-
straction will typically entail choosing a bus topology and
a transaction protocol. Driver level communication is re-
fined in the RT level communication by a synthesis step.
Interfaces between the bus and the modules for trans-
forming the protocol transactions into well-known inter-
face commands for the individual modules is the interface
synthesis step that can be performed for both simulation
and implementation.

System-level synthesis research and a few tools use this
level of abstraction for design entry.

C. Message level

At the application modeling level it is useful to be able
to describe how processes communicate in the respect
of concurrency, synchronization, and channel behaviour.
The send/receive model attempts this, and it is built on
the semantics of the remote procedure call. The communi-
cation will be modeled through active channels capable of
interconnecting modules independent of underlying com-
munication protocols. Data are terms, and do not neces-
sarily have a predetermined size, and the communication
works solely on the level of such terms. Communication
time is thus non-zero and in addition not predictable. It
is a simple model, yet it can, by changing the underlying
semantics and channel behaviour, describe diverse com-
munication schemes, alas all at the approximately same
level of abstraction. Refining active channels into logi-
cal interconnections will normally entail some module de-
scribing the channel behaviour acting as communication
controller.

sdl, the Specification and Description Language stan-
dard of the ccitt [10], uses a process and channel mod-
eling basis with the basic send/receive semantics in ad-
dition to infinite queueing for channels. It readily mod-
els systems of concurrently running and communicating
processes without regard to whether the actual process
implementation will be in software or hardware or a com-
bination thereof.

Some projects have researched using this level for func-
tional specification and synthesis, e.g [11], but they im-
pose restrictions on the descriptions and communications

in particular.
Embedded software methodologies and descriptions

such as ROOM [12] also uses a message level abstrac-
tion for communication. In [13] it is argued for the el-
evation of communication abstractions, and in [14] they
present several primitives for building communication de-
scriptions upon. These are limited to the message level,
though.

D. Service level

The ultimate abstraction level is reached when the
communication is seen as the combination of requests
and services. A process can request a service from an-
other process, and the underlying protocols, connection
structures, and essential timing issues are completely ab-
stracted away. This communication abstraction can sup-
port several time models based on the concurrency struc-
ture and local time capabilities of the processes them-
selves. Details of this level are presented in the rest of the
paper.

corba, the Common Object Request Broker Architec-
ture [15], is a good example of the request-service model
in the software domain. Programs or libraries register
their services through descriptions in an interface defini-
tion language, idl, and one or more orbs (Object Re-
quest Broker) perform the actual communication routing
between a mutual request-service pair.

The four communication abstraction layers are shown
conceptually by their abstract architectures in Fig. 1.
The service level uses a dynamic routing network accessed
by the outgoing request ports, and connects those requests
to resolved service ports. All processes and tasks in a
module can access the request ports of its encapsulat-
ing module. The message level consists of point-to-point
channels between modules where the processes can send
messages representing data. The channel will perform
any conversion according to protocols and connections to
other modules. On the driver level, the communication
goes through logical buses, and interfaces realises the pro-
tocols and stores the data while the protocol instructions
are executed. Hence a communication controller is needed
to control access to the bus resource and alleviate the pro-
tocols. The last one shows a typical RT level architecture
where the tasks have been assigned to specific modules.
The modules are connected to the bus structures (logical)
signals through interfaces where necessary.

III. Specification level communication

When referencing client-server level descriptions, we are
using a term from the sw community with certain aspects
from large-scale business- and database-application pro-
gramming. In the context of hw-sw embedded systems,

F1

F2

F3

F4

Message level

F1

F2

F1

F2
F3 F4

Comm.
Controller

µ P

RTOS

SW:F1,F2

Interface Interface Interface

µ P

Active
Channels

Service level

F3

F4

SW HW

Driver level

SW

Logical Interconnections

IP HW
RTOS

SW:F4

Register Transfer level

Binary signals

Dynamic Network

Fig. 1. Abstract architectures of communication

we mean something qualitatively different, although it in-
herits some of the characteristics of the client-server pro-
gramming techniques. However, for the sake of recogni-
tion and comparison, we have used the same term.

A. Object-oriented specification and description

Object-oriented methods have gained a high level of
trust in the sw community when it comes to producing
sw with high quality, fewer errors, and higher reusability.
In Tab. I there is a column for the different encapsulation
abstractions. On the RT, and even on the driver level, the
main encapsulation is the module. This is a fixed struc-
ture which promotes the description of hierarchy, but it
lacks the flexibility of the closure-oriented abstraction of
classes encapsulating data and methods. On the mes-
sage level, the blocks of dynamically created processes
offer higher abstraction, and SDL in addition offers ad-
ditional object orientation. Still, the class encapsulation,
inheritance, and polymorphism of object-oriented system
specifications are only met at the service level.

Classes and their instantiations—objects—are highly
abstract compared to classic embedded system descrip-
tions as they feature associations between them that are
hard to synthesize both manually and automatically into
hw-sw descriptions. The communication model herein
described is meant to alleviate this gap through manifest-

r
s

r

r
s

r

r
s

r

r
s

r

s

Task 1

Task 2

Task 3

Task 4

Counter
Dynamic network

Task 1

Task 2

Task 3

Task 4

Counter

r

Fig. 2. Explicit versus named communication

ing a unique interpretation of associations between ob-
jects as a set of fundamental communication primitives.
These primitives are also shown to lend themselves to
embedding into simulation semantics such as those for
System-C.

B. Named communication

The main motivation for the named communication
was the abstraction and thus simplification of describ-
ing highly complex communication in embedded systems.
Take the example in Fig. 2. The lefthand side shows the
topology of a system of four tasks passing tokens between
each other, and also to some common counter module.
Even with just four tasks, this means 7 explicit connec-
tions for sending or receiving tokens to or from the three
other tasks plus sending a count signal to the counter. If
the system was extended to 10 tasks, that would mean
19 connections for each individual task. For a high level
system specification this is not acceptable. The commu-
nication in this example is much more likely to be spec-
ified and more easily understood using the topology of
the righthand side system in Fig 2. All tasks commu-
nicate with each other implicitly by naming the services
(labeled ’s’ in the figure) required using request ports (la-
beled ’r’). The dynamic network will send (route) the
requests according to its knowledge of the namespace for

all the defined services. This simplifies the number of con-
nections to three service access points per task, and this
number will not change by the number of the tasks in the
network.

In order to use such high-level communication abstrac-
tion in the specification and design descriptions of embed-
ded systems, there were several requirements to uphold for
consistency and ease of use within current methods.

• Ease of matching semantics of specification tech-
niques and descriptions.

• Powerful enough to include client-server like commu-
nication.

• Ease of description and embedding in existing execu-
tion semantics.

• Simple semantics that can be extended to cover sev-
eral abstraction levels and communication models.

Since middle-ware like corba offers procedure-call like
methods of communicating with other objects through a
behind-the-scenes object request broker, the choice was to
use a request-service like communication primitive that
offers a congruent abstraction for system-level specifi-
cations and descriptions of embedded systems. We as-
sume a description of concurrent processes where a pro-
cess may execute a request denoted by a three-tuple
R = 〈NP,N,P 〉. NP is the named port, N is the specific
named request, and P is the parameters of the request.
The reciprocate service S = 〈NP,N,P 〉 will take over the
control of the execution, executing some local procedure
in the local process, and afterwards returning the control
to the requesting process. An additional result of the re-
quest may be the service’s change of the parameters P ′

that can be evaluated by the requesting process.
Formally we will define the named communication as

such:
The communication space CSn,m is made out of n ser-

vice groups SGn and m named ports NPm. Each service
group SGi is composed of ki services,

SGi =
{
N i

1, . . . , N
i
ki

}
while the ports are just associated with one possible

(incoming) service each:

NPj =
〈
SGx, N

x
y , T

〉
where T denotes the type of the port. This means that

when the service group, SGx, has been chosen for the
port, a corresponding service from that group, Nx

y , must
be fixed for the function of the port. A port with an
empty service will be called a request port, while a port
associated with a service is a service port. Now we can
define a request as:

R =
〈
NPx, N

x
y , PT

〉

NPx is a request port, and the request will be for the
named service Nx

y of the service group associated with the
port NPx. PT is the parameter P of type T that will be
furthered onto the requested service.

Conversely, a service is defined as:

S = 〈NPz,F(P)〉

F(P) is the function of the service based on the pa-
rameter P of type T . A request-service resolution is the
pairing:

R : S =
〈
SGNPx = SGNPz , N

x
y = NNPz

〉
i.e. the signal group of the request and service ports

are equal, and the requested service is equal to the type
signature of the service port. The resolution “:” signifies
a port or process shift, in this case from port NPx to NPz,
which may be ports of different processes. The response
is the function performed on the parameters, F(P). The
type resolution behind the “:” forms the semantics of
named communication. If resolution is possible between
R and S in R : S, then control is passed to the process
S, the service procedure executed, and the control passed
back to the process R.

As an example, consider the class Arit which can per-
form some arithmetic services for other classes. First we
define the service-type:

type Arit = add | sub | mult | div

And the service class can then be defined thus
(the quasi-functional notation used should be self-
explanatory):

class m u l t i p l i e r (mult) where
s e r v i c e mult (x , y ,) =

return (x , y , z) where z = x ∗y

The class is defined with a specific service port since
it is of the mult value from the Arit service type. The
service procedure itself, mult of type (::) Arit , evaluates
the two first sub-parameters in the parameter tuple, and
then computes the multiplication. It returns the whole
tuple since the service is only supposed to change the
values in the parameter, not to change the structure of
the parameter-set itself.

In some process executing some object of known class,
a request for the mult service of the Arit type would then
be:

class comp (Arit) where
. . .
process doArit (a , b) =

let reques t (Arit , mult , (a , b , c)) in
. . .

This class has an non-specified port of type Arit , and
that means it is a request port. The doArit process eval-
uates a request for the mult service to the Arit port upon
executing. The behind-the-scenes object request broker
then looks up services for the service type Arit , finds the

specific instance for the service mult , execute the named
service (in class arit), and then passes back the execution
control to the doArit process with the altered parameter-
set (a, b, c). The new value of c can now be used in the
scope of its binding within the process.

It can be argued that the named communication scheme
resembles the π-calculus ([16] and [17]). The use of pass-
ing names are basic in both, but the π-calculus works on
a much more fundamental level of communication, while
the named communication are primitives on a more prac-
tical level. The π-calculus can only pass names, and all
data must therefore be modelled as structures of known
names.

IV. Embedding named communication in

System-C

System-C [18] is a library-based addition to the pro-
gramming language C++ where the hw-oriented concepts
of signals, processes—both threaded and non-threaded,
and modules are defined. In addition, System-C comes
with a simulator and is available as free source-code,
which makes it very easy to experiment with. This is
the reason we chose System-C as the platform for experi-
menting with named communication.

The concept of named communication is embedded in
System-C by defining two template classes, sc service and
sc request , which will handle the named communication
primitives for service and request. This means that in-
stantiation of these classes will form a service access point
of either the service or the request type as illustrated by
the labelled ellipsis in Fig 2. The skeleton class definition
for the service looks as follows:

template <class S , class P>
class s c s e r v i c e : public sc named base {
public :

s c s e r v i c e (char ∗ name , char ∗ type ,
S& s e r v i c e) ;

virtual void s e r v i c e (P& parameter)=0;
} ;

The template class sc service takes two classes for in-
stantiation where S is the service group type, and P is the
corresponding parameter type of the service port. The
constructor sc service takes a name and a type argument
of type string to identify the service port in simulations
or debuggings. A parameter service of type reference to
an actual value of type S is needed to establish the spe-
cific value of the service port in the service group type.
In addition, a virtual method service must be defined for
the instantiated class with the parameter of type P . This
service method will be the method called upon to actually
service any request.

The sc request template class is very similar. It takes
the same two classes S and P as template parameters
for instantiating the request port class with service group

type S and parameter type P . The constructor does not
take a parameter of type S as the sc service construc-
tor. This is due to the fact that a request is not exclusive
for any specific value in the service group type S , but
can take any value in S in different requests to the same
request port. In addition, the sc request class has a pre-
defined method request with parameters of type S and P .
This is the method that any instance or inherited class of
sc request will use to execute a specific request.

template <class S , class P>
class s c r e q u e s t : public sc named base {
public :

s c r e q u e s t (char ∗ name , char ∗ type) ;
bool reques t (S s e r v i c e , P parameter) {}

} ;

When an sc request or sc service class or any inherited
class thereof is instatiated, the constructor will connect
the new instance to a global behind-the-scenes object re-
quest broker of type sc orb. The orb will then create a
specific instance of class sc orb checker for every different
service group type. This instance will hold a table of all
available services of its inherent type. When a request is
made to a request port, this calls upon the orb which
will match the type of the request port with one of its
sc orb checkers. The sc orb checker finds the matching
sc service port according to the value of the S parameter,
and calls the service method in that object instance with
the P parameter.

Both the sc service and sc request template classes in-
herits the sc named base class which is responsible for the
construction-time linking with the orb, and also connects
into the proper System-C classes for being simulated.

The mode of executing the request-service resolution is
illustrated in Fig. 3. The dashed arrows are the resolution
results.

After the service method is completed, the control is
returned to the method in the first instance which ex-
ecuted the request, and the execution can succeed with
the possibly changed parameters of type P .

V. Modeling and simulation example

In order to test the capabilities and descriptional power
of the named communication, we used a small example
with simple behaviour in the processes, yet more elaborate
communication. The system is comprised of a number
of processes sending tokens to each other according to a
scheme decided by the type of token and the numerical
id of the process. Tokens come in two flavours, direct
and indirect. At last there is a common counter that all
processes should increment upon receiving a token. This
system is the one shown in Fig. 2 for 4 tasks.

We define new datatypes for the two types of services we
require: The counter service for incrementing, Count , and
the Task service for receiving a token, Task . The service
group type Count holds only one possible value, counter ,

Service nService 2Service 1

sc_orb_checker

...

Service 2Service 1

sc_orb_checker

... Service m

R1

R1

S1

S1

S2

S2

Type 1 Type k...Type 2 Type 3

sc_orb

Object 1

Object 2

Fig. 3. The request-service processing in System-C

since the counter process is unique for this service, and
all the processes will access the same one. The Task type
is modeled as an integer since the tasks will typically be
created in an iterative way where a simple counter can
configure the tasks with a unique service id for naming
the token receiver service.

The Token datatype is used for the type of the tokens,
and will be used specifically as a request and service pa-
rameter type.
typedef enum { counter } Count ;
typedef int Task ;
typedef enum { d i r e c t , i n d i r e c t } Token ;

Each process will have a service port to receive to-
kens. This is the RxToken class defined nested within the
Task below, and it inherits the basic functionality of the
sc service class. The service group type is Task , i.e. the
uniquely identifying integer id, and the parameter type is
the Token type. The constructor takes a specific value t
of type Task that will identify this port uniquely.
class Task : public sc sync {

class RxToken
: public s c s e r v i c e<Task , Token> {

public :
RxToken (Task & t) ;
: s c s e r v i c e<Task , Token>
(”RxToken” , ” RxToken” , t) { . . . }
virtual void s e r v i c e (Token & t) ;

} ∗ rxToken ;

s c r e q u e s t<Task , Token> ∗ txToken ;
s c r e q u e s t<Count , bool> ∗ t x Inc ;

private :
bool i token , dtoken ;
int id ;

public :
Task (. . .)

: sc sync . . . {
id = tasknr ;
. . . }

void entry () ; } ;

void Task : : RxToken : : s e r v i c e (Token & t) {
i f (t == d i r e c t) dtoken = true ;
else i f (t == i n d i r e c t) i token = true ; }

The service method of parameter type Token will be the
method called for the defined service, and the function is
to check the type of the received tokan t , and to set the
local token state accordingly.

Processes having tokens also need to send them out to
other processes, or possibly itself. This we facilitate with
an sc request port class with the service group type Task
and the parameter type Token. The same procedure is
used for the increment request to the common counter
resource, the service type, however, is now Count and the
parameter type bool.

The service port rxToken of type RxToken, and the
request ports txToken and txInc of types TxToken and
TxInc, respectively, are all instantiated in the class Task .
This class inherits the System-C specific sc sync class
which defines the basic underlying semantics of a syn-
chronous threaded process for the System-C simulation
engine. The constructor is passed some unique identify-
ing integer number tasknr , which is stored in the local
id in each Task object. This value is used to supply the
service name to the RxToken service port instantiation.

void Task : : entry () {
while (true) {

wait () ;
i f (i token | | dtoken) {

t x Inc . reques t (counter , true) ;
i f (. . .)

txToken . reques t (i d e s t , i n d i r e c t) ;
else i f (. . .)

txToken . reques t (ddest , d i r e c t) ;
rxToken . r e s e t () ; } } }

When simulating System-C sync processes, the simu-
lator will execute their respective entry methods. Hence
this method must contain all the required behaviour of the
process. For the Task class, the entry method will wait
until a clock event, then check if there are tokens in the
rxToken service port, and if so, will send a txInc request
for the specific counter service name. Incidentally, this is
the only name in this service group type, and it names the
service port of the central counter process. Depending on
the value of its id and the flavour of its token, the process
will send a request either to the service port named by

the id idest with token value indirect , or to the service
port named by ddest with token value direct .

Incrementing the common counter is realized as a ser-
vice port class RxInc of service group type Count and
parameter type bool . The constructor takes as demanded
by the sc service class a value cs of type Count that de-
termines the port’s service name. RxInc locally stores
the increment request in the inc signal in the surround-
ing class. This signal is set to false in the constructor.

The service method of RxInc sets the inc signal to true
so the parent Counter class can detect the increment re-
quest. An additional method download is available for
the parent process to both check the increment value, and
the local value in the service port will then be set to false
again assuming the value is directly used or stored in the
parent process.

class Counter : public sc sync {

class RxInc
: public s c s e r v i c e<Count , bool> {

private :
public :

RxInc (Count & cs)
: s c s e r v i c e (” RxInc” , ” RxInc” , cs) {
i n c s i g fa l se ; }

virtual void s e r v i c e (bool &) {
inc = true ; }

bool download () {
bool r = inc ;
inc = fa l se ;
return r ; } } ∗ rxInc ;

private :
int v a l c o u n t e r ;
s c s i g n a l<bool> inc ;

public :
Counter (. . .)

: sc sync . . . {
v a l c o u n t e r = 0 ; }

void entry () ;
} ;

The class Counter is another synchronous thread pro-
cess. It instatiates an object rxInc of type RxInc for the
increment service port with the defined name value of
counter . It also stores the local counter value in the vari-
able val counter .

The entry method of Counter realizes its functionality,
and that is simply waiting for clock events, checking if
there is an increment request in the increment service port
rxInc, and if such is the case, to increment the value of
the counter.

void Counter : : entry () {
while (true) {

wait () ;
i f (rxInc . download ())

v a l c o u n t e r ++; } }

The main procedure of the token passing system is not
shown here. It is quite simple in just instantiating the
counter, four different tasks, and a system clock. Fig 4
shows the result of one simulation. It is easily seen how

the tokens are passed from task to task. After initialisa-
tion, the upper left dotted pair of tokens are passed from
Task 1 to Task 2 and 4 as shown in the leftmost lower dot-
ted circle. Then one token is passed to Task 3, while Task
4 keeps its token (next circle to the right). Subsequently,
after storing the tokens for one cycle, the indirect token
is passed from Task 3 to Task 4 while the direct token is
stilled kept by Task 4. The token passing continues this
way, and it can easily be determined from the simulation
results whether the token passing is functionally correct
or not.

A. Comparative results

Compared to a behavioural level description of the same
system, the named communication based model is 85
source code lines, while the behavioural description is 210
source code lines. The simulation time for 50,000 cycles
is halved for the named communication model from 0.22s
to 0.11s.

Another model has shown comparative results. This
model is a distributed access control system of which the
behavioural model is around 500 lines and the named
communication based one is 260 lines. Do note that both
the named communication based models and the pure be-
haviour models are all using System-C, the decrease in
codesize by the factor 2 3 is due to the named communi-
cation abstractions alone.

VI. Conclusion and further work

The named communication abstraction and primitives
of request and service realizes a client-server like commu-
nication pattern which is independent of any explicitly de-
fined interconnections. It lends itself to powerful abstrac-
tions in system-level descriptions which are close to the
assumptions and requirements in a system-level specifica-
tion. The implementation of request-service communica-
tion upon the System-C platform shows that it is a viable
and useful communication abstraction, and the simulated
example shows that the description of a communication
intensive system can easily and compactly be described
using the named communication primitives.

Further work on named communication will focus on
request-service primitives with additional capabilities. An
indexing scheme will be added to facilitate the named
communication between aggregate objects where a con-
struction time index will be used for name resolution in
addition to the service name. Also, a guarded variant
of named communication will be researched in order to
realize non-deterministic request-service communication
using commited guard function resolution. And at last a
hierarchical service name type system will be researched
for specifically describing dispatch functionality between
requests and services. This will increase the flexibility
with regard to typing and polymorhism.

References

[1] D. D. Gajski, F. Vahid, S. Narayan, and J. Gong,
Specification and Design of Embedded Systems. Pren-
tice Hall, 1994.

[2] A. Takura and T. Ohta, “Stepwise refinement of com-
munications service specifications for conforming to
a functional-model,” IEICE Transactions on Com-
munications, vol. E77B, pp. 1322–1331, Nov 1994.

[3] B. Lin and S. Vercauteren, “Synthesis of concur-
rent system interface modules with automatic proto-
col conversion generation,” in Proceedings of the In-
ternational Conference on Computer Aided Design,
IEEE, Nov 1994.

[4] M. Nakamura, Y. Kakuda, and T. Kikuno, “On con-
structing communication protocols from component-
based service specifications,” Computer Communica-
tions, vol. 19, pp. 1200–1215, Dec 1996.

[5] S. Vercauteren and B. Lin, “Hardware/software com-
munication and system integration for embedded ar-
chitectures,” Design Automation for Embedded Sys-
tems, vol. 2, pp. 359–382, May 1997.

[6] A. Takura, T. Sera, and T. Ohta, “Protocol synthe-
sis from rule-based communications service specifi-
cations,” Electronics and Communications in Japan,
Part I—Communications, vol. 81, pp. 22–35, Mar
1998.

[7] J. D. Kleinsmith and D. D. Gajski, “Communication
synthesis for reuse,” Tech. Rep. ICS 98–06, Depart-
ment of Information and Computer Science, Univer-
sity of California, Irvine, Feb 1998.

[8] P. Coste, F. Hessel, P. Le Marrec, Z. Sugar,
M. Romdhani, R. Suescun, N. Zergainoh, and A. A.
Jerraya, “Multilanguage design of heterogeneous sys-
tems,” in Proceedings of Seventh International Work-
shop on Hardware/Software Codesign, ACM Press,
May 1999.

[9] P. Knudsen and J. Madsen, “Integrating communica-
tion protocol selectiom with hardware/software code-
sign,” IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits, vol. 18, pp. 1077–1095,
Aug 1999.

[10] International Telecommunication Union, CCITT -
Specification and Description Language (SDL), Mar
1993. Recommendation Z.100.

[11] W. Glunz, T. Kruse, T. Rossel, and D. Monjau, “In-
tegrating SDL and VHDL for system level specifica-
tion,” in Proceedings of the Conference on Hardware
Description Languages, Apr 1993.

[12] B. Selic, G. Gullekson, and P. T. Ward, Real-Time
Object-Oriented Modeling. Wiley Professional Com-
puting, Wiley, 1994.

[13] E. A. Lee, “Embedded software—an agenda for
research,” Tech. Rep. UCB ERL Memorandum
M99/63, University of California at Berkeley, Dec
1999.

[14] E. A. Lee and Y. Xiong, “System-level types for
component-based design,” Tech. Rep. UCB/ERL
M00/8, University of California at Berkeley, Feb
2000.

[15] Object Management Group, CORBAservices: Com-
mon Object Services Specification, Dec 1998. Avail-
able at http://www.omg.org/.

[16] R. Milner, J. Parrow, and D. Walker, “A calculus
of mobile processes, part I,” Tech. Rep. ECS-LCFS-
89-85, Computer Science Department, University of
Edinburgh, Jun 1989.

[17] R. Milner, J. Parrow, and D. Walker, “A calculus of
mobile processes, part II,” Tech. Rep. ECS-LCFS-
89-86, Computer Science Department, University of
Edinburgh, Jun 1989.

[18] Synopsys, CoWare, Frontier Design, System-C
Version 1.0 User Guide, 2000. Available at
http://www.systemc.org/.

Fig. 4. Simulation results for token passing example

	ASP-DAC2001
	Front Matter
	Table of Contents
	Session Index
	Author Index

