
Conditional Scheduling for Embedded Systems Using Genetic List Scheduling

Martin Grajcar
grajcar@lrs.uni-passau.de

University of Passau, Chair of Computer Architectures

Abstract
One important part of a HW/SW codesign system is the

scheduler which is needed in order to determine if a given
HW/SW partitioning is suitable for a given application. In
this paper, we employ a dataflow model for scheduling a
computation including conditional branches on a loosely
coupled heterogeneous multiprocessor system. The goal is
to minimize the worst-case makespan while satisfying con-
straints implied by data dependencies and exclusive re-
source usage.

We present a formal model which allows multiple sched-
ule optimizations and a new efficient heuristic approach
based on genetic algorithms and list scheduling.

1. Introduction

There are a lot of interesting scheduling problems in
many areas of computer science ranging from High-Level
Synthesis to Hardware-Software Codesign. The solution of
a scheduling problem (the schedule) consists of two parts:
� Assigning tasks and communications to resources
� Determining the start times of tasks and communications
This paper concentrates on one important feature: condi-
tional execution of tasks. Because of this, these assignments
and start times may depend on results of previously com-
puted tasks. Moreover, only a subset of the task set need to
be executed (see sect. 1.2).

A formal problem description will be given in sect. 2.
Because of scheduling problems being NP-complete (ex-
cept if extremely simplified [4]), the need for a good heuris-
tic is obvious. There are many different scheduling algo-
rithms (see sect. 3).

Our approach is an extension to a combination of genetic
algorithms (GA) and list scheduling (see sect. 4).

According to our experimental results (given in sect. 5),
this algorithm works for conditional scheduling nearly as
well as the basic algorithm described in [5] does for the
non-conditional scheduling problem.

1.1. Basic scheduling problem

Our scheduling problem is built on top of a simple (albeit
NP-complete) scheduling problem of mapping a task graph

onto a target architecture (taken from [5]). The limited space
does not allow discussing of other problem extensions.

The task graph is an acyclic directed graph (T;C). The
node set (T) contains tasks and the edge set (C) contains
communications (all non-preemptable).

The target architecture consists of a set of (processing)
modules M and a set of busses B. Each bus is assumed to
be connected to some of the modules (usually there is only
one bus connected to all modules). Each module consists
of a CPU (responsible for the computation), a local mem-
ory, and a communication processor for each connected bus,
so computation and communication can overlap. The CPUs
may be general purpose processors, DSPs, and/or ASICs.

We define the resource set R = M[B and the user set
U = T[C. This way it is possible to treat all users (and
all resources) uniformly, thus significantly simplifying the
problem formulation (and implementation).

We define the resource graph (R;W) where W denotes
the wiring set. The resource pair (r;r 0) belongs to W iff data
can be transported directly from r to r 0. For example if mod-
ule m can write onto bus b, then (m;b) 2 W.

Using the user graph (U;D) with the dependency set
D = f(t;(t 0; t 00)) 2 T�C : t = t 0g [f((t; t 0); t 00) 2 C�T :
t 0 = t 00g; tasks and communications are treated uniformly.

There is a function d defined on U�R returning the ex-
ecution time du;r 2 [0;∞] of user u on resource r (du;r = ∞
denotes an illegal assignment). There are four cases:

For (u;r) 2 T�M the value of du;r is simply the time it
takes to compute task u using module r. For (u;r) 2 C�B
it is the time it takes to transfer the data of u over bus r. For
(u;r)2T�B we set du;r =∞ as it is not possible to compute
a task using a bus. For (u;r) 2 C�M we set du;r = 0 as an
execution of a communication on a module does not corre-
spond to any data transfer. Such a internal execution is only
allowed if both the source and the destination of u are also
executed on r [5]. In sect. 2.3 a more general requirement
will be given obsoleting the one above.

We denote the start time, the end time and the assign-
ment assu of user u by σu, ηu, and assu, respectively (ηu =
σu + du;assu . During the whole execution interval [σu;ηu)
the resource r may not be used by any other user.

A user can start execution only after having received all
its data, i.e., after all its predecessors (i.e., all incoming
communications for a task, or the source task for a com-
munication) have finished The goal is to find the schedule
with the least makespan defined as makespan=maxu2U ηu,
which satisfies the conditions described above.

1.2. Conditional execution

In this context an ordinary user can be executed, if it re-
ceives one token on every of its input edges. Each executed
user places a token on every of its output edges.

Conditional execution are usually described using the
following two special users:
� switch-user This is a user with two incoming edges

(one control and one data). According to the value of the
boolean token on the control input, the token from the
data input is moved on one of the two output edges.

� select-user This is a user with three incoming edges (1
control and 2 data). According to the value of the boolean
token on the control input, one token is moved from one
of the data inputs to the only output (see fig. 1).

0 1
0

0 1

x

x

1
0 1

x

Fig.1 The special user select

Using the two special users, arbitrary branches can be
modeled. A switch-user is used so that users in the wrong
branch get no token and a select-user moves on the token
from the appropriate branch. In the left example in fig. 2
user u0 gets a token from ua only if uc produces a token with
value 0 (otherwise u1 gets the token). Anyway, the token
produced by either u0 or u1 will be sent to ub.

0 1

0 1

u c u a

u b

u 0 u 1

0 1

u c u a

u b

u 0 u 1

Fig.2 Two models of a branch

There are some problems with this model, e.g., it is very
easy to make it behave quite strangely (e.g., by swapping the
data inputs of the switch). Moreover, this model introduces
unnecessary data dependencies. In fact, u0 and u1 do not
depend on uc and could be computed before uc finishes.

In the context of dataflow it is assumed that users have
no side-effects, so both u0 and u1 may be executed. This is
expressed using the so-called multiplexor (see the right part
of fig. 2), which takes tokens from both of its data inputs,
moves one of them (selected by the boolean token removed
from the control input) to the output, and discards the other.

We call a user connected to a multiplexor via a control
edge a control user. Such users affect the schedule as their
results determine if a given user is to be executed.

The unnecessary execution of users producing discard-
able results can be avoided by the scheduler. For example
in fig. 2 the scheduler can decide to execute uc first and
thereafter u0 or u1 (thus saving unnecessary execution) or
to execute all these three users concurrently (if possible).

Multiplexors are also sufficient for modeling arbitrary
branches. Moreover, the behavior of the user graph is easy

to understand even in complicated cases like the one in fig.
3. Note that modeling this example using switch and select
is quite complex and counterintuitive.

0 1

u c0

u b

u 0 u 1

0 1

u c1 u 2

u m0 u m1

Fig.3 Sophisticated use of multiplexors

Things get complicated considering more users and more
non-identical resources. With multiple multiplexors it is not
even obvious how to define a schedule, so we need to intro-
duce some formalism (see sect. 2).

1.3. Previous related research

The basic problem considered in this paper has been
studied very extensively [5, 7, 1]. The conditional schedul-
ing problem is much more complex, and there is only rela-
tively few corresponding literature. The algorithm described
in [3] starts with one schedule for each possible condition
and merges them (see sect. 4.1). In [6] an algorithm is given
allowing tasks in different branches to share resources. It as-
sumes the problem to be represented in a hierarchical fash-
ion and does not consider speculative execution.

An algorithm for high-level synthesis is given in [9]
which treats scheduling of conditional branches and loops.
The algorithm performs well as it employs a global anal-
ysis of suitability of different scheduling alternatives. The
algorithm is based on the notion of control step which is
appropriate as in the high-level synthesis all tasks usually
takes one or two steps. However, tasks in our problem have
execution times being arbitrary real numbers.

The algorithm from [10] is based on Ordered Binary De-
cision Diagrams and is able to provide all optimal sched-
ules for control/data paths. Unfortunately, this algorithm
employs control steps too and therefore cannot be applied.

2. Problem description

2.1. Conditional scheduling problem

Let R̄� = [0;+∞]; B = f0;1g and let further (A ! B)
denote the set of all functions from A to B.
Definition: The conditional scheduling problem is a tuple
p = (U;D;R;W;d;C;app) satisfying the following:
� U and R are disjoint finite sets
� (R;W) is a directed graph (called the resource graph)
� (U;D) is an acyclic directed graph (called the user graph)

� d 2 ((U�R)! R̄�) is a function returning the execution
time of a user on a resource

� C � U is the set of control users

� app 2 ((D� (C ! B))! B) is a function describing the
conditional behavior (see below)
Using example from fig. 3 and the assumptions that there

are three modules m0;m1;m2 connected via a single bus b
and that m0 and m1 share memory, we state the following:

R = fm0;m1;m2;bg
W = f(r;r) : r 2 Rg[(fbg�R)[(R�fbg)[

f(m0;m1);(m1;m0)g

U = fu0;u1;u2;uc0;uc1;um0;um1;ubg

D = (fuc0;u0;u1g�fum0g)[(fu1;uc1;u2g�fum1g)

[(fum0;u2;um1g�fubg)

C = fuc0;uc1g

For an element c of (C! B) we use the term condition.
Let c = fuc0 7! x;uc1 7! yg denote a function for which
c(uc0) = x and c(uc1) = y hold. Now we can write
(C! B) =

�
fuc0 7! 0;uc1 7! 0g;fuc0 7! 0;uc1 7! 1g;

fuc0 7! 1;uc1 7! 0g;fuc0 7! 1;uc1 7! 1g
	

:

The value of app(u;u0);c determines if (u;u0) 2 D applies
under c 2 (C ! B) . One data dependency applies iff u c0
returns 0 (app(u0;um0);c = 1� c(uc0)), one applies iff uc0 re-
turns 1 (app(u0;um1);c = c(uc0)), and the others apply always.

2.2. Conditional schedule

In order to define a schedule, we have to specify for every
user a flag ϕu determining if it is to be executed. If so, we
then need to specify its start time σu and assignment assu.

Such a specification may depend on values returned by
the control tasks (so we need ϕu;c instead of ϕu, etc.). This
leads directly to the following
Definition: A conditional schedule is a tuple

s = (ϕu;c;σu;c;assu;c)(u;c)2U�(C!B) 2

((U� (C! B))! (B � R̄� �R)):

As an example consider c = fuc0 7! 0;uc1 7! 1g. Now
the equation ϕu;c = 1 means that, whenever uc0 returns 0
and uc1 returns 1, the user u is to be executed. Under the
same condition σu;c 2 R̄� and assu;c 2 R are the start time
of u and its assigned resource, respectively. These values are
meaningless in the case ϕu;c = 0 and we set σu;c = ∞.

2.3. Valid conditional schedule

One great advantage of the above definition is that the
validity requirements stated for a (unconditional) schedule
can be easily adapted for a conditional schedule. The dis-
advantage is the need for defining 3 � jUj �2 jCj variables. As
typical values for real examples are jUj � 100 and jCj � 6,
this is not as bad as it seems to be.

Let ηu;c = σu;c +du;assu;c denote the end time of a user u
under the condition c. Let further ∆c;c0 = fuc 2 C : c(uc) 6=
c0(uc)g be the set of control users on which c and c 0 differ.
Definition: A conditional schedule s for problem p is valid
iff it satisfies the following conditions:

� Data dependencies Let c be a condition and (u;u 0) be a
dependency applying under c. Then u 0 can only be exe-
cuted if u is also executed. Moreover, u 0 cannot start be-
fore the end of u and the resources assigned to the users
need to be connected in order to be able to transfer data.
8

c2(C!B)
8

(u;u0)2D

�
app(u;u0);c^ϕu0;c = 1

�
)

�
ϕu;c = 1 ^ ηu;c � σu0;c ^ (assu;c;assu0;c) 2 W

�
Note that the requirement (assu;c;assu0;c) 2 W replaces
the requirement on internal execution stated in sect. 1.1.

� Exclusive resource usage Execution intervals of two
users assigned to the same resource may not overlap.
8

c2(C!B)
8

u;u02U
u6=u0

ϕu;c = 0 _ ϕu0;c = 0 _ assu;c 6= assu0;c _

[σu;ηu)\ [σu0 ;ηu0) = /0
� Causality If a user u is executed under condition c and

not under condition c 0, then these conditions must differ
by a control user, which ends before u starts. The same
holds if u is executed under both conditions, but the cor-
responding start times or assignments differ.

8
c;c02(C!B)

8
u2U

((ϕu;c;σu;c;assu;c)6=(ϕu;c0 ;σu;c0 ;assu;c0))

9
uc2∆c;c0

ϕuc;c = 1 ^ ηuc;c � σu;c

As the result of a control user consist of only one bit, we
assume it to be instantly available on all resources.

3. Scheduling algorithms

We can here only describe algorithms important for this
work, i.e., scheduling (sect. 3.1) and GA (sect. 3.2).

3.1. List scheduling

The term list scheduling denotes a large class of schedul-
ing algorithms (see [7] for an excellent analysis). Here we
describe a scheme which most of such algorithms comply
with. This section does not consider conditional scheduling.

A list scheduler is an algorithm employing the sets:
� R� U the remaining set consisting of users yet to

be scheduled
� E � R the eligible set consisting of users which

can be scheduled in the current step
� Fr � R̄� the free set of a resource r being a union

of time intervals in which r is not in use
Initially, we set R := U, E := fu0 2 R : 69u2U (u;u0)2Dg,

and 8r2R Fr := R̄� . Thereafter the following three steps are
repeated until R is empty:
� User selection One user u 2 E is selected. Usually, the

set E is implemented as a list (this is where the term “list
scheduling” comes from) sorted in decreasing order of
user priorities πu.

� Resource selection A resource r is selected for user u
according to some criterion. It is convenient to compute
some priorities πu;r for all r 2 R, and to select the re-
source with the highest priority.
The priority πu;r can be set equal to the negative of the
earliest possible end time of user u on resource r, so the
resource minimizing ηu will be selected [5].

� Updating of the sets User r is removed from the remain-
ing set R and from the eligible set E. The eligible set is
extended by all users having no more predecessors in the
remaining set. The free set Fr of resource r is updated by
removing the execution interval of user u. Formally, the
following assignments are made:
R := Rnfug Fr := Fr n [σu;ηu)

E := fu0 2 R : 69
u2R

(u;u0) 2 Dg

Users considered later by the scheduler can be executed
earlier, if there is an appropriate interval in Fr (this fea-
ture is called “hole filling”). Of course, this way better
schedules can be obtained, because the requirements on
the user priority values are a little bit relaxed.
For efficiency, the free set should be implemented as
a tree of intervals. For simplicity, sometimes only the
last of these intervals is maintained (which can be repre-
sented solely by its starting point). This can be expressed
by the assignment Fr := Fr n [0;ηu).
Recomputing the priorities on every iteration makes the
scheduler slower but may lead to better schedules.

Existing list scheduling algorithms differ mainly by the
way the priorities πu and πu;r are defined. By computing
priorities in a sophisticated manner they try to schedule the
most critical users first and to assign them to the appropriate
resource. The algorithms work in a deterministic fashion,
and terminate after creating a schedule.

3.2. Genetic algorithms

The term genetic algorithm (GA) is used for an opti-
mizing algorithm working according to the “survival of the
fittest” principle [8]. It employs a set of individuals called
population which is usually initialized at random. An indi-
vidual somehow represents a solution to the problem. In the
context of scheduling it can be a valid schedule (as defined
in sect. 2.3) or a guidance for building a schedule (e.g., a
vector of numbers to be used as priorities by a list sched-
uler).

The better an individual, the higher its so-called fitness
(we could set �tness= �makespan). Starting with two (or
more) individuals (so-called parents) one (or more) new in-
dividual(s) (so-called child(ren)) is created using so-called
genetic operators. Better individuals are selected more of-
ten as parents while worse individuals are removed from the
population with a higher probability.

There should be a fair chance that the “good features”
of the parents combine in the child eventually producing an
individual better than all earlier individuals. For that reason
the design of a genetic operator is not easy.

The task of combining valid schedules to a new valid
schedule is quite complicated [8]. The chances that the re-
sulting schedule is better than its parents can be very low as
the following argument demonstrates.

Let R be a set consisting of n identical resources and
let s be a good valid schedule. Let further s 0 be a sched-
ule obtained from s by permuting R. Obviously, s 0 is valid
and as good as s. While combining the two parents s and
s0 common genetic operators take some assignments from
the former and the remaining ones from the latter (usually
choosing at random) [8].

The probability is very high that in the child schedule
one resource is overused. The probability is even higher that
two tasks u and u0 are assigned to the same module in both
s and s0, but to different modules in the child schedule. This
means that a communication between them can be executed
internally in the parents but not in the child, possibly dete-
riorating the schedule.

So even in the ideal case of combining two essentially
equal schedules there is little hope for producing a good
schedule. Less straightforward representations (like priority
vectors) perform much better [5, 2]. The explanation for this
phenomenon is simple: A good individual assigns a high
priority to users which have to be executed early. Combin-
ing such individuals results in a child also assigning a high
priority to critical users. The problem described above does
not emerge since the list scheduler takes care of proper as-
signing the resources to users.

Summarizing, we can say that using individuals contain-
ing an indirect representation of a problem solution (like a
priority vector) rather then the solution itself (like a sched-
ule) makes the computation of the fitness more time con-
suming (since a schedule must be built using a list sched-
uler). This disadvantage is nullified by the fact that the
chances of producing good individuals are much better. Ad-
ditionally, it is much easier (and faster) to combine priority
vectors than to combine valid schedules.

4. Genetic list scheduling

The algorithm described here is based on the algorithm
given in [5]. As we deal with a much more complicated
problem, we have to omit many details not directly related
to the conditional scheduling.

4.1. Basic ideas

We could try to create a schedule for each condition
c 2 (C ! B) and to merge such schedules in a conditional
schedule like in [3], but we do not believe it to be a good
idea for the following reasons:
� We would need to solve j(C! B)j = 2jCj scheduling

problems (NP-complete!).
� Because of the problem complexity, some heuristic has

to be used. A poor solution to any of the numerous prob-
lems could deteriorate the resulting conditional schedule.

� Distributing the time among the problems is not easy.
� While solving the problems separately, the solutions can

differ not only in the users which are executed and their
start times (given by ϕu;c and σu;c), but also in the as-
signed resources (given by assu;c).
We see no way how to reasonably merge schedules dif-
fering also in the assignments (the algorithm from [3]
does not seem to be extensible this way).

Our algorithm considers the problem as a whole and uses
the following principles:
� A population is maintained using a GA (see sect. 3.2).
� Each individual contains a priority vector (see sect. 4.2).

Individuals are combined using genetic operators de-
scribed in [5].

� Some kind of list scheduler is used for generating a con-
ditional schedule (sect. 4.3).

4.2. Priority vectors

The most straightforward approach would be to associate
a priority to each user u 2 U. Obviously, such priority vec-
tors contain only few information. As only the ordering im-
posed by the priority vector matters (rather than the exact
numbers), the list scheduler can generate at most jUj! differ-
ent schedules. This number is evidently too small compared
to the huge search space.

Another straightforward approach would be to asso-
ciate a priority to each pair (u;c) 2 U� (C ! B). This
would very often lead to schedules with (ϕ u;c;σu;c;assu;c) 6=
(ϕu;c0 ;σu;c0 ;assu;c0) for two conditions c;c0 2 (C! B).

Because of the causality requirement, this would enforce
the execution of some control user uc 2∆c;c0 before u. There
are 2jCj conditions c2 (C ! B) and each of these may force
us to schedule some of the jCj control users before u, so we
are very likely forced to do that, ending up with a schedule
in which all control users are executed as soon as possible
This corresponds with the the switch-select model and pre-
cludes important optimization possibilities.

For this reason, we prefer associating a priority to pairs
consisting of a user u and a subset h of (C! B), so that u is
considered by the list scheduler at the same time under all
conditions c 2 h.

We employ only subsets h called hypercubes of the form

h = hc;c0 = fc00 2 (C ! B) : ∆c;c00 � ∆c;c0g

for two conditions c;c0 2 (C! B). The set hc;c0 is in fact the
smallest hypercube containing both c and c 0. Let H denote
the set of all 3jCj hypercubes hc;c0 .

So we associate a priority πu;h to each pair (u;h) and in-
terpret it as described in the next section. In order to reduce
the computational overhead, we use a sparse representation
for priority vectors (assuming πu;h = 0 for all pairs not men-
tioned).

4.3. The conditional list scheduler

Because of lack of space we can not describe the list
scheduler here in full detail. Fortunately, it is not necessary
as the functionality of the scheduler can be derived from the
ideas given above.

We outline only the most important features of the list
scheduler:
� The remaining set R contains pairs (u;h) instead of users.

The same holds for the eligible set E.
� The pair (u;hc;c0) 2 R is eligible, iff all all data depen-

dencies applying under all conditions c 00 2 h are satisfied
and all control users needed for determining if a condi-
tion belongs to h have been computed. Written formally:

E =
n
(u;hc;c0) 2 R : 8

c002h�
8

(u0;u00)2D
(u = u00^appu;c00)) ϕu;c00 = 1

�
^

�
8

uc2C
c(uc) = c0(uc)) ϕuc;c00 = 1

�o

� While processing a pair (u;h) the scheduler considers
scheduling u under all conditions c 2 h at once with the
following exceptions:

� Condition c 2 h under which u has already been
scheduled is ignored.

� A condition under which some predecessor of u has
not yet been scheduled is also ignored. This way the
data dependency requirement from sect. 2.3 is never
violated.

Considering the conditions from the whole hypercube h
helps to satisfy the causality requirement from sect. 2.3.

5. Experimental results

GA combined with list scheduling have already been
shown to be efficient for scheduling for embedded systems
[5, 2]. Our results demonstrates that such algorithms can be
extended to handle also conditional scheduling problems.

We generated for every condition c2 (C! B) a reduced
user graph Gc including only users which must be com-
puted under c. For every such reduced user graph a (un-
conditional) schedule was generated using a genetic list
scheduling algorithm similar to [5].

The algorithm evaluated for each reduced graph G c 200
individuals (starting with a population of size 25). Our
auxiliary experiments show that using more individuals is
pointless.

100

105

110

115

120

125

130

0 50 100 150 200 250 300 350 400

Fig.4 Typical evolution of relative schedule length
depending on the number of individuals. The crosses

represent individual schedules while the line
represents the best individual generated so far.

Since the conditional schedule must allow for every pos-
sible condition, its makespan is not shorter than the optimal
makespan for any reduced graph Gc. So we compute for
each generated conditional schedule s the so called relative
schedule length defined as l

maxc2(C!B) lc
� 100% where l de-

notes the length of s and lc denotes the length of the best
schedule for Gc found.

Figure 4 shows how the relative schedule length evolves
(as a function of number of individuals). We are only inter-
ested in the best schedule found so far.

We repeated the experiment for examples with 1 to 6
control users so there were up to 64 reduced user graphs
to be scheduled in each experiment. We let the number of
tasks take the values 32, 64, and 128, so there are 6 � 3 dif-
ferent parameter settings.

Let xn denote the relative schedule length for the best of
the first n individuals generated by the conditional sched-
uler. We report the average value of xn over 10 runs for se-
lected values of n in table 1. We also report the average
times τ0 and τ1 in milliseconds the unconditional and the
conditional scheduler need for the generation of one sched-
ule, respectively.

Table 1. Relative schedule length and run times
number of individuals times

jCj jT j 25 50 100 200 300 400 τ0 τ1

1 32 113.5 113.2 111.9 106.5 103.6 102.2 35 40
1 64 111.5 108.6 106.4 104.9 103.5 102.5 66 77
1 128 108.3 106.8 106.0 104.7 103.8 103.1 131 156

2 32 117.7 115.3 114.4 112.3 111.6 110.8 34 67
2 64 111.3 110.6 109.3 104.5 103.4 102.4 66 131
2 128 109.4 106.7 105.5 104.1 102.2 101.0 132 271

3 32 118.4 116.6 116.3 113.4 113.4 111.9 34 122
3 64 112.2 111.5 109.9 107.7 107.6 107.3 65 240
3 128 111.3 109.8 108.8 106.4 105.4 105.0 128 491

4 32 116.8 114.4 113.6 109.8 109.2 107.6 35 245
4 64 113.4 112.8 110.9 109.9 108.6 106.9 66 460
4 128 111.9 111.1 110.2 108.1 106.9 105.8 123 909

5 32 114.9 112.4 110.1 105.7 105.4 103.7 32 441
5 64 120.2 119.0 116.4 115.6 113.9 113.2 65 928
5 128 113.5 111.5 110.5 108.9 107.6 106.9 122 1770

6 32 112.1 111.6 109.6 108.4 107.4 106.8 32 923
6 64 120.5 119.6 117.2 115.2 113.7 112.8 52 1481
6 128 112.7 112.0 110.1 108.8 107.4 106.8 113 3608

With increasing number of control users the conditional
scheduler needs more time for generating one schedule. The
ratio grows quickly with the number of control users since
the variables (ϕu;c;σu;c;assu;c) must be computed for each
condition (there is some room for optimizations here).

Anyway, even for our largest example containing 6 con-
trol users and 128 tasks the run time of the scheduler (eval-
uating 400 individuals) does not exceed 4 seconds (recall
that HW/SW codesign is a lengthy process) while produc-
ing reasonable results. Although we do not know the length
of the optimum schedule, there is a strong indication, that
our results lie within about 15% of the optimum:
� According to [5] and our auxiliary experiments, the ge-

netic list scheduler performs very well for the uncon-
ditional problem and typically returns schedules lying
within 5% of the optimum.

� The length of the conditional schedule exceeds the length
of the unconditional one only by about 10%.
According to [3], running times for the merging 32

schedules for a graph containing 120 tasks are about 0:3s.
This time does not include the time needed for computing
the schedules for all reduced user graphs Gc. We estimate
this time as 2jCj � τ0 corresponding with about 7s for our
largest example.

An important advantage of our approach compared to
the approach from [3] is the ability to benefit from specu-
lative execution. Moreover, the algorithm from [3] requires
to make the user assignments independent on the condition
(thus possibly excluding many good schedules).

Unfortunately, our algorithm can not be compared to [6]
as we do not assume the problem to be represented hierar-

chically. Other related algorithms (e.g. [9]) we are aware of
solve different problems (e.g. high-level synthesis), so no
comparison is possible.

6. Conclusion and outlook

A formal model for the conditional scheduling problem
has been given which provides for multiple optimization
possibilities. Principles of the conditional scheduler were
outlined and its performance evaluated. To our knowledge,
our scheduler is the only one allowing scheduling specula-
tive execution in the context of heterogeneous multiproces-
sor systems.

Albeit our current implementation misses some impor-
tant features of [5] (e.g., selecting from multiple genetic
operators and advanced parents selection mechanism), our
algorithm performs well both in terms of running speed and
result quality.

We plan on removing some programming inefficiencies
so the time the conditional scheduler need to generate a
schedule grows only slowly with the number of control
users and to incorporate the features mentioned above.

7. References

[1] A. Bender: Design of an Optimal Loosely Coupled
Heterogeneous Multiprocessor System; in European
Design&Test Conference 1996, Paris 1996, p. 275

[2] M. K. Dhodhi, I. Ahmad, R. Storer: SHEMUS: Syn-
thesis of heterog. multiproc. systems; in Microproc.
and Microsys., Vol. 19, No. 6, p. 311, 1995

[3] Eles, Kuchcinski, Peng, Doboli, Pop: Scheduling
of Conditional Process Graphs for the Synthesis of
Embedded Systems; Proc. DATE, Paris, 1998

[4] Garey, Johnson: Computers and intractability - a
guide to the th. of NP-completeness; Freeman, 1979

[5] M. Grajcar: Genetic List Scheduling Alg. for Schedul-
ing and Allocation on a Loosely Coupled Heterog.
Multiproc. System; 36th DAC, New Orleans, 1999

[6] T. Kim, N. Yonezawa, Jane W. S. Liu, C. L. Liu:
A Scheduling Algorithm for Conditional Resource
Sharing - A Hierarchical Reduction Approach; in
IEEE Trans. on IC and Systems, Vol. 13, No. 4, 1994

[7] Yu-Kwong Kwok, I. Ahmad: Dynamic Critical-Path
Scheduling: An Effective Technique for Allocating
Task graphs to Multiprocessors; in IEEE Trans. on
Parallel and Distributed Systems, Vol. 7, p. 506, 1996

[8] Z. Michalewicz: Genetic Algorithms + Data Struc-
tures = Evolution Programs; Springer, 1996

[9] R. Moreno, R. Hermida, M. Fernamdez, H. Mecha:
A unified approach for scheduling and allocation;
Integration, the VLSI Journal 23, p. 1, 1997

[10] I. Radivojevic, F. Brewer: Symbolic Techniques for
Optimal Scheduling; Proc. Synth. and Simulation
Meeting and Int. Interchange, SISAMI, 1993

	Main Page
	ISSS'00
	Front Matter
	Table of Contents
	Session Index
	Author Index

