
FDRA: A Software-Pipelining Algorithm for Embedded VLIW Processors*

Cagdas Akturan and Margarida F. Jacome
Department of Electrical and Computer Engineering

The University of Texas at Austin
Tel: (512) 471-2051 Fax: (512) 471-5532

E-mail: {akturan, jacome}@ece.utexas.edu

Abstract
The paper presents a novel software-pipelining
algorithm suitable for optimizing compilers targeting
embedded VLIW processors. The proposed algorithm is
different from previous approaches in that it can
effectively handle code size constraints along with
latency and resource constraints. Experimental results
are presented showing that FDRA’s solutions to the
“traditional” software-pipelining problem, which
considers latency minimization under resource
constraints only, have similar quality to those produced
by the best state-of-the-art algorithms. Additionally, it is
argued that FDRA’s novel ability to explicitly consider
code size constraints allows embedded system designers
to explore performance vs. code size trade-offs, both
unquestionably important figures of merit for embedded
software.

1. Introduction
Software-pipelining is a performance enhancing loop
optimization technique particularly effective when applied to
time critical segments of embedded digital signal processing
and multimedia applications executing on VLIW machines.
The key idea in software-pipelining is to increase instruction-
level parallelism, and thus the execution performance
(throughput) of a loop, by properly overlapping several
iterations of the loop body in a single execution cycle.
Although software-pipelining can lead to dramatic increases in
performance, it may also lead to a significant increase in code
size and, thus, to a costly increase in memory size
requirements. Most previous research in software-pipelining
(and retiming) has focused strictly on minimizing latency
under resource constraints. However, particularly in the
context of compilers for embedded processors, code size is an
important cost factor and must be explicitly considered by
software-pipelining algorithms.

In this paper we propose a novel software-pipelining
algorithm, FDRA, suitable for optimizing compilers targeting
embedded VLIW processors. As will be seen, FDRA can

handle data-paths with multi-cycle and pipelined functional
units. Experimental results are presented showing that FDRA
solves the “traditional” software pipelining problem, i.e.,
latency minimization under resource constraints as effectively
as previous state of the art approaches.

The key difference between FDRA and previous approaches is
that FDRA can effectively handle code size constraints along
with latency and resource constraints. We argue that this novel
ability to explicitly consider code size constraints is critical,
since it allows embedded system designers to perform
compiler assisted exploration of pareto “optimal” points with
respect to code size and performance, both important figures
of merit for embedded software.

FDRA targets loop bodies comprised of a single basic block.
A large percentage of characteristic time critical segments of
signal processing and multimedia applications are indeed
single basic block loops. The effectiveness of FDRA is
demonstrated on a set of relevant DSP benchmarks, all of
which meet such a requirement. We note, however, that a
hierarchical reduction technique, such as the one described in
[1] [2], could have been easily incorporated in our algorithm,
making it completely general. We return to this topic in the
last section of the paper.

The organization of the paper is as follows. Section 2 defines
the problem to be addressed. Section 3 presents our proposed
software-pipelining algorithm. Section 4 reviews previous
work. Section 5 presents experimental results and Section 6
gives some conclusions and discusses work in progress.

2. Background and Problem Definition
This section introduces basic models and notation, and then
formally defines the two problems addressed in the paper.

Loop body basic blocks are modeled using a retiming graph,
denoted G N Ed (,). G N Ed (,) is a data flow graph, where N

denotes the operations on the loop body, and E N N² �

denotes the set of directed edges, i.e., data dependencies
between operations. Operations may need to consume data
objects that are produced at the same or at a previous iteration
of the loop. Thus, for each edge we define a corresponding
(iteration) delay, given by the difference between the loop
index at which the data object is consumed and the one at
which it is produced. The delay on an edge e n nk i

ek
j()£ �£ is

represented by the weight function w e Z e Ek k: ;� " ³
+ . A

simple loop body and its corresponding retiming graph are
shown in Figures 1(a) and 2(a), respectively.

*This work is supported by a National Science Foundation NSF
CAREER Award MIP-9624231, NSF Award CCR-9901255 and
Grant 003658-0649-1999 of the Texas Higher Education
Coordinating Board Advanced Technology Program.

Retiming is a transformation performed on the original
retiming graph, Gd , aimed at pipelining several loop body
iterations within the same execution cycle. Formally, given a
retiming function r n Z n Ni i: ;� " ³ , the original retiming
graph’s weights are transformed into a new set of weights
w e Z e Er k k: ;� " ³

+ , where wr is given by ([3], [4]):

w e w e r n r nr k k i j() () () ()= + - (1)

Before retiming is performed, all nodes/operations in the
retiming graph belong to the same iteration, i.e., pipe-stage.
After retiming, several iterations may be pipelined on the same
execution cycle. Given a retiming function, the pipe-stage (PS)
of node/operation ni is given by:
PS n Max r n r n j ni j i ops() (()) () ; , , ,... ,= - = 0 1 2 (2)

The total number of pipe stages (iterations executing
concurrently), denoted P, is given by:
P Max PS n i ni ops= + =(()) ; , , ,.. ,1 0 1 2 (3)

The number of execution steps required by any such
(balanced) pipe-stage corresponds to the initiation interval (lb)
of the retimed loop body, i.e., the latency of one execution
cycle of the loop [5]. The total number of scheduling steps
(t), obtained by “flattening” the pipe stages, is given by:
τ = *lb P (4)
An important point is that, after retiming, total code size is
equal to P times the size of the original loop body. This is so
due to the prolog and epilog needed to start and conclude the
set of iterations that will execute simultaneously in the retimed
version of the loop (See example in Figure 1b).

 fo r i= 1 to n do
in str1 : x [i]= t[i] * c1 ;
in str2 : y[i]= x[i] + z[i-2] ;
in str3 : z[i]= y[i] * c2 ;
 en d

fo r i= 1 to n -2 do
 x[i+ 2]= t[i+ 2] * c1 ;
 y[i+ 1]= x[i+ 1] + z[i-1] ;
 z[i]= y[i] * c2 ;
en d
z[n -1]= y[n -1]* c2 ;
y[n]= x[n] + z[n -2];
z[n]= y[n] * c2 ;

x[1]= t[1] * c1 ;
x[2]= t[2] * c1 ;
y[1]= x[1] + z[-1];

P ro lo g

E p ilo g

 (a)N o n -P ip elin ed lo op bo d y (b)P ip elin ed loo p b od y

S tead y
sta te

Figure 1. Example loop body
We model the data-path of the VLIW embedded processor as
follows. The set of resource types available in the data path is
denoted by R r l nl res= ={ ; , , ,..., }0 1 2 . We define a resource type

function, denoted by σ : { , }N R� - > 0 1 , which maps each
operation ni to a resource type rl. Specifically, if operation ni

requires resource type rl, then σ(,)n ri l evaluates to 1,
otherwise it evaluates to 0. The number of instances of each
resource type available in the data-path is given by the
cardinality function θ:R Z� + . The execution delay of resource
type rl is denoted c(rl), and the data introduction interval of a
pipelined resource is denoted d(rl).

Consider the loop body given in Figure 1(a) and its
corresponding retiming graph shown in Figure 2(a). (In this
example, for simplicity, we assume that all operations have
unit execution delays and the data-path has “unlimited”
resources). The throughput of this loop can be tripled, i.e., its
initiation interval can be reduced from 3 to 1 control steps, if,
for example, nodes 0 and 1 are retimed by 2 and 1,
respectively. The corresponding loop body schedule would

then have 3 pipe-stages and, thus, the code required by the
retimed loop (shown in Figure 1b) would be three times longer
than the original code.

We define two optimization problems that are of interest for
embedded applications executing on VLIW processors:

Problem 1: Find a retiming that minimizes the initiation
interval (latency) subject to constraints on the number of pipe
stages (code size) and on resources.

Problem 2: Find a retiming that minimizes the number of pipe
stages (code size) subject to constraints on resources and on
the initiation interval (latency).

The objective in problem 1 is to find a minimum latency
software pipelining solution that conforms to the maximum
allowed increase in code size, for a given VLIW data-path
configuration.

Problem 2 is the “traditional” software-pipelining problem.
The objective is to derive a software-pipelining solution that
meets the latency constraint and leads to a minimum increase
in code size. (Note that most software pipelining algorithms
reported in the literature do attempt to minimize the number of
pipe stages, i.e., the depth of retiming).

 Pipe stage 2

(a) Non pipelined

(b)
Pipelined loop body, r(0)=2, r(1)=1, r(2)=0

xec.
tep 1

 0*

 1+

 2*

xec.
tep 2

xec
tep 3

 0* 1+ 2*

 Pipe stage 1 Pipe stage 0 Pipe stage 0

 1D
 1D

 1D

2D

Figure 2. Example retiming graph
In the next section we present a core algorithm that can be
used to address both problems.

3. Force Directed Retiming Algorithm
(FDRA)
As alluded to before, our proposed Force Directed Retiming
Algorithm (FDRA) is a software pipelining algorithm that can
handle code size constraints (i.e., constraints on the number of
pipe stages), in addition to latency (initiation interval)
constraints, and resource constraints.

We start by describing the core algorithm used in our
approach, and then discuss how it can be used to solve
problems 1 and 2 defined in the previous section.

3.1 Core Algorithm
The core algorithm has three main steps. First, it computes
lower bounds for the initiation interval and the number of
pipe-stages. Then, it extracts all retiming solutions for each
strongly connected component of the input retiming graph.
Finally, a modified force directed scheduling algorithm is used
to schedule the retiming graph, considering these solutions.
The FIR filter shown in Figure 3 will be used to illustrate the
discussion. The graph has 1 strongly connected component
comprising nodes 1, 2, 3 and 4. Although FDRA supports
multi-cycle and pipelined functional units, in this example, for
simplicity, we assume that all operations have unit execution
delay.

 0 L

 2 A 1 A

 4M 3M 5 M

 7A 8A 9 S

 6 M

 2D D 2D D

Figure 3. FIR filter (M=multiplier, A=ALU, L=load, S=store)

3.1.1 Phase 1: Computing the lower bounds
The lower bound on the initiation interval (lb’) is computed as
follows. A new iteration of the loop can be initiated at every
lb’ execution steps if the total number of resource instances
available in these execution steps satisfies the aggregate
resource requirements of the loop body [1]. Accordingly, if the
resource instances of type rl are pipelined, lb’ is given by
equation 5. For non-pipelined resource instances, d(rl) in (5)
should be replaced by c(rl).

lb max d(r)* s(n ,r) q(r) l 0..nl i l

i 0

n

l res

ops

� =

�

�
���

�

�
���

=

�

�
��

�

	

=

� (5)

The lower bound on the number of pipe stages (P’) is
computed as follows. The critical path of the original input
graph is determined (ignoring non-zero delay edges). It can be
easily shown that, in order to achieve a given target initiation
interval, the sub-graph induced by the nodes on the graph’s
critical path must be pipelined into at least P’ stages, where P’
is given by:

� = �P CriticalPathLenght(G) lbd (6)

The bounds lb’ and P’ are used as initial values for lb and P.

3.1.2 Phase 2: Extracting solutions for the strongly
connected components of the graph
A graph is strongly connected if, for every pair of nodes

(,) , , , ...,n n i j ni j ops= 0 1 2 , there exists a path n ni

p

j�

1 and a path

n nj

p

i�

2 [6]. The presence of strongly connected components in

Gd makes the retiming problem harder to solve. Specifically,
cycles impose restrictions on the maximum iteration distance
(i.e., delay) that can exist between any two nodes belonging to
the cycle.

Differently from many previous software pipelining
approaches, which treat nodes belonging to cycles in a
constrained way, FDRA schedules all nodes of the graph
uniformly, while effectively exploring the space of alternative
retimings for the graph’s connected components. Specifically,
we determine all possible retiming solutions for the strongly
connected components of the input graph, and then rank them,
so as to consider first those alternatives that are most likely to
yield an optimal solution.

Accordingly, we start by identifying the strongly connected
components of the input graph, denoted by SCGSet1. After that,
we generate all retiming solutions for each such component.
This is done using the method described in [6].

The critical path length for each solution Si, denoted CP(Si), is
then determined using ASAP scheduling, and used for
feasibility analysis and for ranking of the solutions.
Specifically, during feasibility analysis, the algorithm checks if
the initiation interval of the input graph is smaller than the
solution’s critical path. If so, that solution is marked as

1 This is done using the algorithm Strong described in [7].

unfeasible, and dropped from consideration, otherwise, the
ALAP schedule is determined. Then, the iteration delays of the
solution under consideration are used to further restrict the
operation’s set of feasible execution steps, and the execution
steps that violate the delay constraints are marked as
"unfeasible execution steps".

The next step is to find the minimum number of pipe stages
required by each strongly connected component solution Si,
denoted ~

P , which is given by the retiming depth of Si.

Our experiments show that, in general, considering first the
retiming solutions (for the strongly connected components)
that have the least number of pipe-stages and the smallest
initiation interval typically improves the efficiency of the
algorithm. Accordingly, we rank the retiming solutions for the
strongly connected components using the function shown
below:
Rank S P SCG S CP SCG Si i i()=((,)+)* (,)

~
1 (7)

The solution with best ranking for the strongly connected
component of our example FIR filter is shown in Figure 4.

 2 A 1 A

 4M 3M
 D D

r(3)=1r(4)=1

r(2)=1
r(0)=0

 D

Figure 4. A retiming solution for the strongly connected
component of the FIR Filter

3.1.3 Phase 3: Finding the best retiming solution
In the third phase, the core algorithm iteratively derives a
schedule under resource, code size and latency constraints, for
the complete retiming graph, using the retiming solutions
generated in the previous phase. At each iteration, the input
graph is modified, i.e., the selected strongly connected
component’s solution(s) are properly inserted in the graph, and
then a modified form of the Force Directed Scheduling
Algorithm is utilized to schedule the graph's operations.

 0 L

 2 A 1 A

 4 M
 3 M 5 M

 7 A 8 A 9 S

 6 M

 D
 D D

 2 D

r(3)= 1r(4)= 1

r (2)= 1

r(0)= 1

D

r(5)= 0 r(6)= 0

r (1)= 0 r (7)= 0 r (8)= 0 r(9)= 0

Figure 5. FIR Filter modified for the solution in Figure 4
Accordingly, a new iteration starts by identifying the next best
solution set among those not yet considered. The initial graph
is then modified according to the retiming function of the
selected solution set. This procedure may result in negative
delay values on the edges belonging to the feed-forward (i.e.,
acyclic) parts of the graph. These negative delays are corrected
by feeding more delays to the graph, until no negative delay
edges are left. Figure 5 shows the retiming graph obtained for
the FIR filter when considering the solution set given in
Figure 4. Note that node 0 had to be retimed, to prevent a
negative delay on edge (0,2).

After this initialization step, our Modified Force Directed
Scheduling algorithm is executed. This algorithm either
returns a valid solution or detects unfeasibility.

Similar to the extension algorithm described in [8], the time
space is sliced into a number of pipe-stages. An important
point is that, during the execution of the algorithm, the relative
iteration differences between the various nodes of a strongly
connected component, which have been set for the selected

solution set, must be preserved. Thus, differently from
conventional retiming, our retiming function depends on the
node membership type. We define two node membership
types: "Connected Node", for nodes belonging to strongly
connected components, and "Free Node", for the remaining
nodes of the graph. The retiming function used for “Connected
Nodes” is as follows: when a connected node needs to be
retimed, all nodes belonging to the same strongly connected
component are retimed by the same amount. The retiming of
“Free Nodes” is performed in the standard way.

After the solution set is properly inserted in Gd, a modified
ASAP (ASAPM) and a modified ALAP (ALAPM) scheduling
algorithms are applied to the graph, in order to find the earliest
and the latest scheduling steps for each (unscheduled) node.
There are two main differences between our modified and the
conventional ASAP and ALAP algorithms. The first difference
is that ASAPM and ALAPM identify unfeasible execution steps
for “Connected Nodes”, by taking into consideration the
precedence relationships defined in the retiming graph. For
example, if there is a zero delay edge from node ni to nj, then
node nj must be placed at a later "execution step" than its
predecessor ni. If node nj cannot be scheduled in the same pipe
stage as ni, then nj is pushed down to the next pipe stage, in
order to remove the immediate data dependency between these
two nodes. Note that, when pushing a node down to the next
pipe stage, the modified retiming function alluded to above is
used for the connected nodes. The second difference is that
these algorithms also identify scheduling steps with zero
available resources and remove them from the operation's time
frame. The resulting set of feasible executing steps for
operation ni is denoted fi. The ASAPM and ALAPM schedules
for our FIR example are shown in Figure 6.

 0 L

 2 A

 1 A

 4M

 3M 5 M

 7 A

 8 A

 9 S

 6 M
P -stage 0 (0)

 0 L

 2 A

 1 A

 4 M

 3 M

 5 M

 7A

 8 A

 9 S

 6 M

P -stage 0 (1)

P -stage 1 (0)

P -stage 1 (1)

P -stage 2 (0)

P -stage 2 (1)

A S A P M A L A P M

Figure 6. ASAPM and ALAPM Scheduling for FIR Filter
Similarly to the standard Force Directed Scheduling Algorithm
[8], we then associate each operation with a probability
function. Specifically, each operation has a uniform
probability of being scheduled to any of its feasible scheduling
steps (fi), given by:

p t t t t

p t t t w h ere

t f t L t L d r n r

n
i

f i f

n f

f i f l i l

i

i

() ; ,

() ; ,

() ((() (,)))

= ³ =

= ´

³ ¿ ³ < < + ¾ =

1

0

1

µ
µ

σ

(8)

After calculating the probability function for each operation, a
pipelined distribution graph (pq) for each resource type is
derived, as shown in (9). (Note that the distribution graph of a
resource type gives a profile of the demand for that resource at
each execution step.) In our model all pipe-stages execute
simultaneously and, thus, unlike the standard Force Directed
Scheduling Algorithm, this equation takes the summation of

operations’ probabilities at each execution step x, instead of
each scheduling step t.

pq x p t n r w h ere x t lbr n i ll i

opsi n

() () * (,); m o d
, ,..,

= =

=

�
0 1

σ (9)

Using the pipelined distribution graphs, we then compute the
self-forces and predecessor and successor forces for each
operation at each feasible scheduling step [8]. Note that, the
self force of operation ni at a scheduling step t measures the
change in concurrency resulting from scheduling ni at step t.
(A positive sign self-force signifies an increase in concurrency,
while a negative self-force indicates a decrease in
concurrency.) The predecessor and successor forces for
operation ni, on the other hand, account for the change in the
predecessor and successor operations’ concurrency, resulting
from scheduling ni at step t. The equations for computing self-
forces and predecessor and successor forces are given in (10)
and (11), respectively.

s f(n , t) p q (t)
(m 1)

p q (m)i r
n

r

m t , m f

t

l

i

l

i
S

i

i
L

= -

+

= ³

�1 (10)

ps

(m 1)

pq (m)
(m 1)

pq (m)(n ,t)

n

~ r

m t ,m f

t

n
r

m t ,m f

t

i

j

l

n j
S

i

~

n j
L
~

j

l

n j
S

i

n j
L

=

+

-

+

= ³

= ³

� �1 1 (11)

After this process is completed, for each operation a sum force
is computed over all scheduling steps. The operation with
maximum sum force is selected and scheduled to the time step
with minimum force. This scheduling strategy allows the
algorithm to schedule the most urgent operations first, to the
most appropriate time step. If such a scheduling is not
possible, due to resource constraints, the operation with the
next maximum force is selected. After updating the set of
feasible time steps for the unscheduled operations, the
calculation of forces is repeated, until all nodes are scheduled.

If it is not possible to schedule all operations, then the next
(best) solution set is identified, and the third phase of the
algorithm is repeated.

3.2 Main Optimization Algorithm
When the core algorithm described in section 3.1 is unable to
find a retiming solution meeting the constraints lb and P, one
of two actions can be taken by the main optimization
algorithm, depending on the problem being solved.
Specifically, if the algorithm is solving optimization problem
1, lb is incremented by 1, and the core algorithm repeated,
until a solution is found. Otherwise, if the algorithm is solving
optimization problem 2, P is incremented by 1, and the core
algorithm repeated. Note that, when lb or P are incremented,
the retiming solutions for the strongly connected components
should be revisited so as to consider candidate solutions that
were marked as invalid in the previous executions.

4. Previous Work
This section surveys previous work in retiming and software
pipelining.

In [6], an algorithm to find all valid retiming solutions for a
strongly connected graph is proposed. FDRA finds the set of
retiming solutions for the strongly connected components of
the input graph using this technique.

The software-pipelining algorithm proposed in [1][2]
considers resource and latency constraints, and is able to
handle conditionals in the loop body. The graph’s strongly
connected components are first individually scheduled using
list scheduling. Then, a reduced feed-forward graph (i.e., a
DAG) is constructed, by reducing each strongly connected
component in the original graph to a single node, with the
corresponding aggregate resource usage. A modified list-
scheduling algorithm is then used to find a schedule for the
reduced graph, considering a given target initiation interval. If
a schedule can not be found, the initiation interval is increased
and the list-scheduling algorithm is reinvoked. Although this
approach is attractive due to its simplicity, the a priori
individual scheduling of strongly connected components may
give sub-optimal results. In this algorithm, conditional

branching constructs are handled using a hierarchical
reduction technique. Specifically, the branches of the
conditionals are first scheduled and then contracted into a
single node. Software pipelining is applied only after the graph
has been completely reduced, using the same technique
employed for basic blocks.

The retiming algorithm proposed in [9] compacts a given valid
schedule by applying a phased iterative retiming and
scheduling on the first n steps of the schedule. The number of
down rotations and the rotation size (i.e., the number of
scheduling steps to be down rotated by the algorithm) are
input parameters to the algorithm. If adequate phase and
rotation sizes are specified, this algorithm is likely to converge
to an optimum solution.

Table 1- Experimental results obtained executing FDRA in mode 2.

An algorithm for latency constrained scheduling (using
implicit retiming) is proposed in [10]. If the latency is
fractional, unfolding is applied before retiming the graph.
Nodes belonging to the strongly connected parts of the graph
are given higher priority. The algorithm starts by breaking
cycles into parts-- the breaking points are the edges with
positive delays. Then, a set of cycle parts that covers all nodes
of all strongly connected components is found. This set of
cycle parts is scheduled according to the priority function.
Resource conflicts are solved by shifting flexible cycles to
later time steps. If shifting is not possible, then the number of
resources is increased. After scheduling all loops, the
algorithm schedules the feed-forward parts of the graph.

The algorithm proposed in [11] schedules a loop body under
latency and resource constraints, trying to minimize the
number of pipe-stages. This algorithm has two phases. In the
first phase, the input graph is scheduled assuming unlimited
resources. Resource conflicts are then solved by delaying
selected operations. If a valid schedule cannot be generated,
the number of pipe-stages is incremented and the algorithm is
repeated. The software pipelining algorithm proposed in [12]
also performs an initial scheduling assuming unlimited
resources. The resulting retimed graph is then scheduled for
minimum latency under resource constraints, using list
scheduling. If the latency of the scheduled graph is larger than
the target latency, the nodes at the tail of the graph are retimed

repeatedly, until the target latency is reached.The resource-
constrained software-pipelining algorithm proposed in [13]
handles conditionals on the loop body. A scheduler repeatedly
unfolds the loop and schedules operations selected by a
dependence analyzer, until a repeating pattern is detected. In
order to guarantee the termination of the algorithm, a
scheduling window (of operations) is used. (The scheduling
window can include operations in at most k further iterations,
where k is an input parameter).

The algorithm proposed in [14] uses a probabilistic
rejectionless algorithm, aiming at achieving high resource
utilization. Each iteration of the algorithm randomly selects a
candidate "move" of a delay in the graph. The probability of
selecting a certain move is proportional to the increase in

demand for all types of resources. This algorithm is similar to
[9], in the sense that when the running time is sufficiently
large, the algorithm is likely to converge to an optimum
solution.

None of the algorithms described so far is capable of handling
code size constraints. To the best of our knowledge, the only
exception is the heuristic algorithm reported in [15] which,
similarly to FDRA, handles minimum code size under latency
constraints or minimum latency under code size constraints.
This algorithm uses list scheduling and gives higher priority to
the nodes in the strongly connected components of the input
graph, giving higher priority to strongly connected
components sometimes eliminates optimal solutions from
consideration.

Table 2- Experimental results obtained executing FDRA in mode 1.

5. Experimental Results
In this section we compare the results produced by FDRA with
the results produced by our implementation of Rotation
Scheduling [9] and our implementation of the software-
pipelining algorithm described in [1]. Rotation scheduling [9]
was chosen to be one of the comparison algorithms because it
is one of the best software pipelining algorithms proposed to
date-- our experiments show that it consistently finds optimal
(or near optimal) solutions, i.e., minimum latency schedules
under resource constraints, with a corresponding minimum
depth retiming function (i.e., minimum number of pipe

stages)2. The software-pipelining algorithm in [1] was chosen
because it typifies the advantages and disadvantages of list-
scheduling based algorithms, and also produces good quality
results. Although the selected reference algorithms do not
handle code size constraints, the results of this experiment are
still informative, since they empirically demonstrate that
FDRA handles code size minimization under latency and
resource constraints (i.e., Problem 2) at least as effectively as
previous state-of-the-art approaches.

2 Unfortunately, because the retiming is implicit in this approach, it is

not clear how it could be extended to also consider constraints on
the number of pipe stages i.e., on the depth of the retiming solution.

Experimental data was collected for various digital signal-
processing benchmarks widely referenced in the
retiming/software pipelining literature, considering various
VLIW data-path configurations. Each row in Table 1
represents a different experiment. Columns 1 and 2 specify the
DSP benchmark and the VLIW data-path configuration
considered in each particular experiment, respectively. The
following two columns (labeled LB and P) show the initiation
interval (i.e., latency) and number of pipe stages achieved by
ours and by the two reference algorithms, considering three
alternative multipliers (with execution delay=1, pipelined with
initiation interval=1, and non-pipelined with execution
delay=2 cycles). The third column (labeled t) shows execution
time in seconds for an Intel Pentium II XEON Processor. Note
that FDRA was executed in problem 2 optimization mode for
these experiments—in this mode, the objective is to minimize
latency under resource constraints, and simultaneously derive
the minimum number of pipe stages required by the solution.

As it can be seen, our algorithm finds the minimum latency
solution in all cases (sub-optimal solutions are marked in
gray). It outperforms or gives identical results to rotation
scheduling and to the algorithm in [1] in all of the
experiments. This empirical evidence strongly suggests that
FDRA handles latency minimization under resource
constraints, at least as effectively as previous state-of-the-art
approaches. Moreover, FDRA is faster than Rotation
scheduling in 66% of the benchmarks in Table 1. [1] is
consistently the fastest algorithm, but is also the one with the
poorest overall performance.

Consider now Table 2. In order to generate the data presented
in this table, our algorithm was executed in problem 1 mode,
i.e., latency was minimized under resource constraints, yet
considering also a constraint on the maximum number of pipe
stages (i.e., on code size). By varying the constraint on
number of pipe stages, several pareto “optimal” points,
exhibiting different latency vs. code size trade-offs, were
generated by FDRA. Naturally, none of the two other
algorithms, designed to minimize latency at “whatever cost”, is
capable of identifying such “trade-off solutions”. For example,
for the 4-cascaded FIR Filter with 8 adders and 8 multipliers
shown in Table 2, the rotation scheduling algorithm is capable
only of generating a solution with 10 pipe-stages and a latency
of 2 steps. Our algorithm is capable of generating solutions
with 9 pipe-stages and latency of 2 steps, 6 pipe-stages and
latency of 3 steps, 5 pipe-stages and latency of 4, etc.
Naturally, deciding on which solution is the “best” depends on
the performance and code size requirements/budgets defined
for each specific embedded application.

6. Conclusions and Work in Progress
The paper proposes a novel software-pipelining algorithm for
optimizing compilers targeting embedded VLIW processors.
FDRA can handle general VLIW data-path configurations, i.e.,
data-paths with multi-cycle and pipelined functional units.
Experimental results were presented demonstrating that FDRA
handles the “traditional” software-pipelining problem as
effectively as previous state of the art approaches. In addition,
it was shown that FDRA can efficiently handle code size
constraints along with latency and resource constraints. The

explicit consideration of code size constraints enables a
compiler-assisted exploration of performance vs. code size
trade-offs for time critical segments of embedded software
components

References
[1] M. Lam, “A systolic array optimizing compiler”, Ph.D.
Thesis, Carnegie Mellon University, 1987.

[2] M. Lam, Software Pipelining, “An Effective Scheduling
Technique for VLIW Machines”, Proceedings of the
SIGPLAN 1988, Conf. on Programming Language Design and
Implementation, Atlanta, Georgia, June 22-24, 1988.

 [3] C. E. Leiserson and J. B. Saxe, “Optimizing Synchronous
Circuitry and Retiming”, Proceedings of the 3rd Caltech
Conference on VLSI, pages 5-35, 1983.

[4] C. E. Leiserson and J. B. Saxe, “Retiming Synchronous
Circuitry”, Algorithmica, pages 5-35, 1991.

[5] B.R. Rau, C. D. Gleaser, “Some Scheduling Techniques
and an Easily Schedulable Horizontal Architecture for High
Performance Scientific Computing”, Proceedings of 14th
Annual Workshop on Microprogramming, October 1981,
pages 183-198.

[6] T. C. Denk, K. K. Parhi, “Exhaustive Scheduling and
Retiming of Digital Signal Processing Systems”, IEEE
Transactions on Circuits and Systems-II: Analog and Digital
Signal Processing, pages 821-837, Vol. 45, No. 7, July 1998.

[7] E. M. Reingold, J.Nievergelt, N. Deo, “Combinatorial
Algorithms: Theory and Practice”, Englewood Cliffs, New
Jersey: Prectice-Hall Inc., 1977.

[8] P. G. Paulin, J. P. Knight, “Force Directed Scheduling for
the Behavioral Synthesis of ASIC’s”, IEEE Transactions on
Computer-Aided Design, Vol. 8, No. 6 June 1989.

[9] L. Chao, A. LaPaugh, E.H. Sha, “Rotation Scheduling: A
loop Pipelining Algorithm”, IEEE Transactions on Computer
Aided Design”, Vol. 16, No. 3, March 1997, pp. 229-239.

[10] C. Wang, K. K. Parhi, “High Level DSP Synthesis Using
MARS Design System”, Proceedings of the International
Symposium on Circuits and Systems, pages 164-167, 1992.

[11] T. Lee, A. C. Wu, D. D. Gajski, Y. Lin, “An effective
methodology for functional pipelining”, Proceedings of the
International Conference on Computer Aided Design, pages
230-233, Dec 1992.

[12] G. Goossens, J. Vandewalle, H. De Man, “Loop
optimization in register-transfer scheduling for DSP-systems”,
Proceedings of the ACM/IEEE Design Automation
Conference, pages 826-831, 1989.

[13] A. Aiken, A. Nicolau, S. Novack, “Resource-
Constrainted Software Pipelining”, IEEE Transactions on
Parallel and Distributed Systems Vol.6, No. 12, Dec.er 1995.

[14] M. Potkonjak, J. Rabaey, “Retiming For Scheduling”,
VLSI Signal Processing IV, pages 23-32, Nov 1990.

[15] M. F. Jacome, G. de Veciana and C. Akturan, "Resource
Constrained Dataflow Retiming Heuristics for VLIW ASIPs",
Proceedings of IEEE/ACM 7th International Workshop on
Hardware/Software Codesign (CODES'99), Apr 99.

	Main Page
	ISSS'00
	Front Matter
	Table of Contents
	Session Index
	Author Index

