
Low Power Techniques and Design Tradeoffs in Adaptive
FIR Filtering for PRML Read Channels

Khurram Muhammad1, Robert B. Staszewski1 and Poras T. Balsara2

(k-muhammad1@ti.com, b-staszewski@ti.com, poras@utdallas.edu)
1Texas Instruments Inc, Dallas, TX 75243, USA

2Department of Electrical Engineering, Univ. of Texas at Dallas, Richardson, TX 75083, USA

ABSTRACT
In this paper, we describe area and power reduction techniques for
a low-latency adaptive finite-impulse response filter for magnetic
recording read channel applications. Various techniques are used
to reduce area and power dissipation while speed remains as the
main performance criterion for the target application. A parallel
transposed direct form architecture operates on real-time input data
samples and employs a fast, low-area multiplier based on selection
of radix-8 pre-multiplied coefficients in conjunction with one-hot
encoded bus leading to a very compact layout and reduced power
dissipation. Area, speed and power comparisons with other low-
power implementation options are also shown. The proposed filter
has been fabricated using a 0.18 �m L-effective CMOS technology
and operates at 550 MSamples/s.

1. INTRODUCTION
Partial response maximum likelihood (PRML) equalization of mag-
netic recording read channels [1] is the recent breakthrough in mag-
netic storage technology and is widely used in commercial hard-
disk drives. In this technique, spectral shaping of read back signal
is performed using a combination of a continuous time and a digital
finite-impulse response (FIR) filter [2]. Using the Viterbi algorith-
m, the most likely symbol sequence is detected on a trellis which
results due to the spectral shaping operation. The coefficients of the
FIR filter are adapted to provide a desired channel response typical-
ly using the least mean square (LMS) algorithm. Efficient timing
recovery in a read channel is critical for fast phase and frequen-
cy acquisition in addition to acceptable bit error rate performance.
Therefore, it is also critical that the discrete-time spectral shaping
filters are implemented with as little latency as possible since the
output of these filters is used to extract timing information.

In a typical PRML read channel, the FIR filter may take up to 15%
of the total chip area. Storage capacity of media typically doubles
every eighteen months, and therefore, faster data retrieval rates are
consistently needed. This requires more aggressive techniques for
every new design. At the same time, new features are required
which inevitably increase the total area of the read channel. Con-
sequently, power dissipation is becoming one of the major design

concerns in modern read channels. For a chip with extremely high
volume, cost is another major concern and lower area designs are
very important for both power and cost. Power dissipation also
compounds the cost problem if more expensive packaging is re-
quired. Hence, in order to meet the challenge of fast data transfer
rate, new architectural and circuit design approaches are required
which provide high-speed operation with low area and low power
dissipation.

In this paper, we combine many architectural and circuit design
techniques to obtain a fast, low-area and low-power adaptive FIR
filter. The proposed architecture uses a novel parallel structure
which increases the operational speed by a factor of two while
keeping the overall increase in area to less than this factor. Fast
radix-8 multiplication is accomplished using a select and add of
pre-multiplied coefficients. This scheme is considerably simpler
and lower area than using a conventional multiplier and more ef-
fective than pipelined direct form (DF) implementations. The pro-
posed filter is compared with other implementation options to demon-
strate that the proposed scheme achieves the best speed-area-power
tradeoff for the application.

2. GENERAL IMPLEMENTATION TECH-
NIQUES

In this section, we will consider various adaptive FIR filter imple-
mentation approaches for the read channel. The main design goals
in this application are high speed, low latency, low area and low
power — all conflicting requirements. Therefore, the design re-
quires intelligent choices which result in best implementation for
the application. It is generally believed that DF implementation re-
sults in lower area and lower power dissipation while transposed
direct form (TDF) offers higher speed but requires larger area. In
this paper, we will show that when speed and latency targets cannot
be compromised, DF implementations are not viable alternatives
— even when pipelining and parallel processing is used to improve
the speed of operation. We also show that in applications where
speed and latency are not critical, TDF offers better speed-area-
power performance than the DF implementations.

2.1 TDF Implementation with Conventional
Multiplication

This scheme uses a radix-4 Booth-encoded Wallace tree multiplier
in the filter implemented in TDF and will be referred to as TDF-
BWT implementation. As shown in Fig. 1, the critical path consists
of a multiply-and-add operation in each stage. The carry-save for-
mat of the multiply-and-add output at each stage is converted to
regular binary format. This nearly halves the number of registers

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ISLPED '00, Rapallo, Italy.
Copyright 2000 ACM 1-58113-190-9/00/0007…$5.00.
ISLPED '00,

262

required for storing intermediate results in contrast to storing carry-
save outputs. Further, it reduces the latency of the filter since no
final carry propagation is needed beyond the last stage. For high-
speed designs which push the technology to its limits, registers with
very small CLK-to-Q delay, setup and hold times are required. This
increases the area and power dissipation in registers and, therefore,
reduction of registers is highly desirable.

C7 C6 C5 C4 C3 C2 C1 C0

D Q D Q D Q D Q D Q D Q D Q D Q

u(k)

y(k)

Figure 1: TDF FIR Implementation.

2.2 DF Implementation without Pipelining
Fig. 2 shows the block diagram of a DF FIR filter without pipelin-
ing. We will refer to this implementation as DF-Pipe-0 implemen-
tation. This implementation is generally considered to be the lowest
area implementation, however, it suffers from speed disadvantage.
The critical path consists of the CLK-to-Q delay and set-up time
of the storage register, one multiplication and O(logN) addition
stages, whereN is the number of filter taps. The multipliers used in
this implementation are radix-4 Booth-encoded Wallace tree mul-
tipliers. The output of the multipliers are kept in carry-save format
and added using an adder tree comprising full adders as shown in
figure. The final carry-save output is converted to regular binary-
format using a vector merge stage.

D Q D Q D Q D Q D Q D Q D Q

C0 C1 C2 C3 C4 C5 C6 C7

u(k)
u(k-1) u(k-2) u(k-3) u(k-4) u(k-5) u(k-6) u(k-7)

ca
rr

y
&

 s
av

e
bi

ts

D Q

Carry save adder tree

y(k)

Vector Merge (CPA)

Figure 2: DF FIR Implementation — no pipelining.

2.3 DF Implementation with 1 Pipeline Stage
This implementation will be referred to as DF-Pipe-1 implementa-
tion. The block diagram of this implementation is shown in Fig. 3
where one pipelining stage is inserted between the multipliers and
the adder tree. Again, Booth-encoded Wallace tree multipliers are
used and their output is converted to regular binary format. We
noted that registering multiplier outputs in carry-save format not
only doubles the area and power-intensive pipelining registers, but
it also increases the number of operands in the adder tree thereby
increasing the delay in the next stage. The carry-save adder tree
output is converted to regular binary format using a vector merge
stage. The delay due to vector merge prior to pipelining registers
did not increase the length of the critical path, as it is dominated by
the adder tree. In this case, the critical path consists of the CLK-
to-Q delay, set up and hold time of the storage registers plus the
maximum of the multiplier and the adder-tree delays. The latency
of this filter implementation is equal to the latency of the proposed
architecture.

D Q D Q D Q D Q D Q D Q D Q

C0 C1 C2 C3 C4 C5 C6 C7

D Q

Carry save adder tree

y(k)

u(k)
u(k-1) u(k-2) u(k-3) u(k-4) u(k-5) u(k-6) u(k-7)

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

Vector Merge (CPA)

Figure 3: DF FIR Implementation with 1 pipeline stage.

2.4 DF Implementation with 2 Pipeline Stages
Fig. 4 shows the block diagram of the direct form filter implementa-
tion with two pipelining stages and will be referred to as DF-Pipe-2
implementation. This filter implementation has one higher latency
than the proposed architecture which is traded-off for an increase in
the operating speed. As shown in figure, the first pipelining stage is
inserted at the output of the multipliers which are kept in carry-save
format for reducing the worst case delay. The carry-save output of
the adder tree is registered in the second stage of pipelining regis-
ters. The final output stage converts the carry save output to 14-bit
regular binary format using a vector merge stage. In this architec-
ture, the critical path consists of the CLK-to-Q and set-up times of
the storage registers plus the maximum of the delays through any of
the pipeline stage. The largest delay was observed in the adder tree
which was required to add 16 binary numbers (i.e., eight carry-save
outputs).

D Q D Q D Q D Q D Q D Q D Q

C0 C1 C2 C3 C4 C5 C6 C7

D Q

Vector Merge (CPA)

y(k)

u(k)
u(k-1) u(k-2) u(k-3) u(k-4) u(k-5) u(k-6) u(k-7)

ca
rr

y
&

 s
av

e
bi

ts

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

D

Q

Carry save adder tree

ca
rr

y
&

 s
av

e
bi

ts

Figure 4: DF FIR Implementation with 2 pipeline stages.

2.5 Interleaved DF implementation
Any DF implementation can be interleaved [3] to provide faster
speed of operation using the principle of parallel processing. In this
scheme, the data stream can be replicated such that in one stream

263

the even data leads the odd data while in the second stream, the odd
data leads the even data. Both streams are staggered in time by one
clock cycle with respect to each other and each stream is operated
upon by an independent filter. Two filters are required for an inter-
leaved design with two data streams and output two samples every
clock cycle. We will consider interleaved DF filter implementations
for each of the pipelined DF filters described earlier.

3. PROPOSED TRANSPOSE-TYPE ARCHI-
TECTURE

In this section, we will describe the proposed architecture. The
design choices made in the proposed architecture attempt to pro-
vide the best operating point in the speed-area-power-latency space.
The impact of choices made in the presented implementation will
become apparent in section 4 where this architecture is compared
with other implementations presented in section 2.

3.1 Parallel Architecture
0 1 2

0 0

1 1

u(k)

ue(k)

uo(k)

T Time

u(k)

ue(k)

uo(k)

ye(k)

yo(k)

y(k)

Even
Path

Odd
Path

Figure 5: Parallel FIR filter operation.

Let y(k) represent the output of an N -tap FIR filter at time instant
k. Then y(k) = c0u(k) + c1u(k� 1)+ :::+ cN�1u(k�N +1),
where cn and u(k) represent the nth coefficient and the input da-
ta sample at time instant k, respectively. This operation could be
performed in parallel as shown in Fig. 5. Fig. 6 shows the basic
idea of parallel TDF architecture. This structure is derived for real-
time data where ue(k) is the even interleave and appears at the
upper input at time slot k but is stable during the following odd
time slot k + 1. The data uo(k) is an odd interleave and arrives at
the lower input at odd time slot k but is stable during the follow-
ing even time slot k + 1. The FIR operational speed is doubled
since multiply-and-add operation is now performed at half the da-
ta rate. An important advantage of this structure is that it allows
computation sharing amongst the respective even and odd multiply
operations in the two parallel paths. By using a numbering system
that is higher than radix-2, some operations can be made common
to both parallel paths.

This new architecture naturally allows the application of latches in
the internal clocking stages, as a faster, smaller and lower-power
alternative to using flip-flops. The proposed architecture takes ad-
vantage of the normal irregularity of critical path delays between
neighboring stages by borrowing timing slacks from the less time-
critical taps. As a result, the operational throughput could be more
than doubled with less than twice hardware cost and area. This is
because the register overhead for the desired application was found
to be 33% of the clock period. However, by using the proposed

C7 C6 C5 C4 C3 C2 C1 C0

X1_E

DTI_E

C7 C6 C5 C4 C3 C2 C1 C0

DTI_O

X2_EX3_EX4_EX5_EX6_EX7_E

X1_OX2_OX3_OX4_OX5_OX6_OX7_O

D Q

C

D Q

C

D Q

C

D Q

C

D Q

C

D Q

C

D Q

C

D Q

C

D Q

C

D Q

C

D Q

C

D Q

C

D Q

C

D Q

C

D Q

D Q

ue(k)

uo(k)

ye(k)

yo(k)

path A
path B

X0_O

X0_E

Figure 6: Parallel TDF type 8-tap FIR filter structure.

structure, this overhead reduces to 16.5% of the half-rate clock and
allows speed up by a factor slightly greater than two.

This is in sharp contrast to pipelining which is normally used to
achieve higher speed. Pipelining also adds latency, area and pow-
er overhead since extra latching or re-clocking stages for every
pipelining order are required. These stages also add complexity
to the clock tree. In addition, the circuit is still clocked at the same
high frequency as the data rate which increases the dynamic power
dissipation. Our scheme alleviates these problems without the need
of input buffering as the even and odd data samples are applied at
the respective inputs exactly at the time when they are available.

3.2 Low Area Radix-8 Booth Architecture
In the proposed architecture we encode the incoming high-speed
6-bit data into radix-8 numbering system. The main advantage of
radix-8 encoding of data is that the 3x coefficient pre-multiplication
is performed off the critical path.

3.2.1 Data Encoding versus Coefficient Encoding
Encoding data allows reduction of area by sharing of resources.
Fig. 7 shows the basic concept. The physical format of the encoded
data for each of the parallel paths consists of two buses: The first
bus is a collection of 9 wires and is a function of the higher-order 4
bits of the original input data. The second bus is one-wire smaller,
8-bit wide, and is a function of the lower-order 3 bits of the original
input data. One bit is shared between the two encoded numbers and
leads to a redundant arithmetic system. The bits within each bus are
encoded in one-hot manner, meaning that at all times an exactly one
bit is asserted. This reduces the power dissipation as well as area
since both buses run straight to all taps of the FIR filter resulting in
a regular and compact layout (see Fig. 8).

6

DTI_E

Odd

Radix-8
Encoder

CLK

Radix-8
Encoder

6

DTI_O

E_E

E_O

17

17

X7_E

X7_O

X6_E

X6_O

CLK

Coef
pre-mult

Even
Coef

pre-multC7 C6

X5_E

X5_O

Coef
pre-multC5

X0_E

X0_O

Coef
pre-multC0

X1_E

X1_O

DTO_E

DTO_O

CLK CLK

CLKCLK CLK CLK

la
tc

h

la
tc

h

la
tc

h

re
g

re
g

la
tc

h

la
tc

h

la
tc

h

Figure 7: Parallel 8-tap FIR filter with radix-8 encoding of in-
put data.

264

Odd

R
ad

ix
-8

E
nc

o d
e r

6

DTI_O

Even

R
ad

ix
-8

E
nc

o d
e r

6

DTI_E

D
T

O
_E

D
T

O
_O

PR7O PR6E PR5O PR4E PR3O PR2E PR1O PR0E

PR7E PR6O PR5E PR4O PR3E PR2O PR1E PR0O

CF7 CF6 CF5 CF4 CF3 CF2 CF1 CF0

la
tc

h

la
tc

h

la
tc

h

la
tc

h

la
tc

h

la
tc

h

la
tc

h

re
g

la
tc

h

la
tc

h

la
tc

h

la
tc

h

la
tc

h

la
tc

h

la
tc

h

re
g

E_E

E_O

CLK CLK CLK

CLKCLK CLK

(DTI = input data)

(PR = partial products accumulation)

CLK CLK CLK CLK CLK

(DTO = output data)

CLK CLK CLK CLK CLK

(CLK = half-rate clock)

Figure 8: Floorplan of the 8-tap FIR filter.

3.2.2 Low-power Pre-multiplication
Each FIR coefficient is pre-multiplied for the following cases: -4C,
-3C, -2C, -C, 0C, C, 2C, 3C, 4C, where C is the coefficient val-
ue. The 0C (zero) and power-of-two pre-multiplications are triv-
ial. Similarly -2C and -4C cases are a simple left shift operation
of the pre-negated -C coefficient. As a result, only the negation
(-C) and multiplication-by-three (3C) non-trivial operations are re-
quired. The multiplier structure is shown in Fig. 9 where a multi-
plexer shown in Fig. 10 selects the appropriate pre-multiplied coef-
ficient. Since the FIR coefficients in read-channel equalization do
not usually change at high rate, the precomputation does not require
the high-speed operation of coefficients pre-multiplication. Hence,
the critical path of the multiplier does not include the delay in pre-
multiplication. The minimum size NMOS–based multiplexer cell
in Fig. 10 has a compact layout and features a low average switched
capacitance. This significantly reduces power while allowing the
cell to operate at high speed. The combination of one-hot operation
of each bus with the above pass-gate based multiplexer significant-
ly reduces the average switched capacitance and results in a fast
and low-power multiplier.

+3C

+C

-C

-3C

2C
4C

Partial
Product

Selection by the radix-8 encoded data

P
re

-m
ul

tip
lie

d
co

ef
fic

ie
nt

Multiplexer Switch

-2C
-4C

Figure 9: Radix-8 multiplier based on selection of pre-
multiplied coefficients.

In case faster pre-computation of FIR coefficient is desired, the
coefficients pre-multiplication operation could be easily retimed
through pipelining. The resulting coefficient update latency of one
or two clock cycles is negligible as compared with the slow rate of
the LMS adaptation itself.

P
ar

tia
l p

ro
du

ct
 b

its

Radix-8 encoded data
-4x -3x -2x -1x 0x 1x 2x 3x 4x

+4

+3

+2

+1

-1

-2

-3

-4

+1+3 +2 0 -1 -2 -3 -4

3c0

c0

-c0

-3c0

+4

+3

+2

+1

-1

-2

-3

-4

3c1

c1

-c1

-3c1

+4

+3

+2

+1

-1

-2

-3

-4

+1+3 +2 0 -1 -2 -3 -4

3c2

c2

-c2

-3c2

+4

+3

+2

+1

-1

-2

-3

-4

3c3

c3

-c3

-3c3

B
it-

0
B

it-
1

B
it-

2
B

it-
3

a3

a2

a1

a0

P
re

-m
ul

tip
lie

d
co

ef
fic

ie
nt

Figure 10: Radix-8 multiplier built with low-area multiplexer
cell array.

3.3 Efficient Quantization
A rounding scheme has been implemented that reduces hardware
complexity without significantly affecting the system performance.
It uses the idea of playing off a single large negative average er-
ror due to truncation versus a smaller positive average error due
to rounding contributed over multiple taps — such that the result-
ing average DC offset at the output is very close to zero. It has
been verified through system simulation (see [8]) that the RMS er-
ror attributed to this rounding scheme (with the bias componen-
t removed) was below 1=2 of the output LSB. The basic idea is
shown in Fig. 11. All the coefficients have the same resolution of
1=32. Consequently, the weight of an internal LSB bit corresponds
to the 2�5 weight of the external LSB. The three-bit rounding is
performed identically at each of the eight stages and is realized as a
truncation of the partial product 20 and 21 bits followed by round-
ing off of the 22 LSB bit of the accumulated sum. The final trun-
cation of two bits (23 and 24 internal LSB weight) is performed
just before the filter’s output Y at the zeroth tap (i.e. X0). This

265

Table 1: Area, speed and power dissipation comparison of the
proposed filter with other alternatives.

Filter Type Speed Area/ PDISS L Msps/ Msps/
(Msps) Tap (mW) at Area/W mW

Proposed 550 1125 36 2 13.6 15.3
TDF-BWT 350 1009 84 1 4.1 4.2
DF-Pipe-0 220 769 42 1 6.8 5.2
DF-Pipe-1 337 1027 80 2 4.1 4.2
DF-Pipe-2 423 973 108 3 4.0 3.9

contributes to the compensating negative bias.

C7 C6 C5 C3C4 C2 C1 C0

X7 X6 X5 X0X4 X3 X2 X1

11 12 13 13 13 13 13 13
Y

(14) (14) (14) (14)

6
U

31
32

0
63
32

63
32

63
32 63

320 0

0
31
32

31
32

13
13 12 11 10 9 8 7 6 5 4 3 2

Round

Truncate Truncate

Y

Span of U

X0:

31
32

1
1

0
0

31

E
xt

er
na

l

In
te

rn
a

l

8

6-bit Coef. range:

Figure 11: Bit resolution at various tap positions and rounding
scheme.

4. COMPARISON OF VARIOUS APPROACH-
ES

This section highlights some salient advantages of the proposed
architecture by comparing it with the alternative implementations.
Table 1 compares the area (in equivalent gates), speed and power
of the proposed filter with the other candidates. The power number
of the proposed design were extracted using Powermill. The power
dissipation results for all the contending designs were extracted us-
ing Synopsys Design Compiler by interpolating from the dynamic
power dissipation lookup tables of the cell library. Entries into the
two-dimensional lookup table are selected based on the gate input
transition time and the gate output load. Thus obtained transition
energy of each gate is multiplied by its switching activity.

When compared to TDF-BWT, the proposed architecture slightly
increases the area while increasing the speed by 60%. This shows
the effectiveness of the proposed multiplication scheme which re-
sults in a faster, low-area and low-power alternative to the tradi-
tional Booth-encoded Wallace tree multiplier. The relative speed
improvement of the precalculation-based multiplier is significantly
higher as the 60% improvement is achieved despite the CLK-to-Q
delay and the set-up time of the registers as well as the delay of the
add operation. This is due to reduced area and faster critical path
in the proposed scheme.

In Table 1, the entries for the direct form implementations are ob-
tained for filters that do not use any interleaving. Hence, the maxi-
mum operating speed of these can only be increased using pipelin-
ing. Pipelining overhead becomes apparent when we consider the
figure of merit Msps/Area/W , or a better-known inverse of the

power-delay product Msps/mW . Observe that putting one pipelin-
ing stage only improves the throughput by a factor of 1.5. Using
two pipelining stages improves the throughput by another factor of
1.25. This is because it is harder to “equalize” the delays through
different pipelining stages as the number of pipelining stages in-
crease. Further, in a design such as an FIR filter, one must remem-
ber that moving the pipelining stage in an adder tree can result in
a significant increase in pipelining registers, thereby exploding the
area and power dissipation. The insertion of pipelining registers
in the direct form filters was based on most effective increase in
speed without an explosive area growth. Although the critical path
in DF-Pipe-2 resided in the adder tree, any attempt to move the
second level of pipelining registers to decrease this delay resulted
in a massive increase in registers. The clock cycle latency of each
filter solution is also shown in Table 1 and abbreviated by Lat. As
explained earlier, smaller latency is highly desirable for more agile
timing recovery loop as the filter output is used to extract timing in-
formation. Figure 12 shows the typical nesting of timing recovery
and filter adaptation loops in the read channel.

The results shown in Table 1 deserve further elaboration. For a fil-
ter implemented for highest possible performance using the given
technology, the area and power consumption in registers and other
cells increases tremendously as compared to a design operating at a
much lower speed. This is because every technology has a “sweet-
spot” with optimum area-speed-power operating point for each cell
in the library. When the design constraints push for highest speeds
possible using the given technology, the area of cells increase rapid-
ly while providing only marginal speed advantage. In general, after
selecting a technology, a library of cells is constructed which offer
multiple alternatives to a function providing various area, speed and
power dissipation operating points. However, in an application op-
erating at highest possible speed, the cells with highest speed are
inevitably selected. The area of the fastest register, for example,
may be more than twice the area of a reasonably fast alternative.
Hence, higher speed design using architectural changes can be a
effective approach since it may allow selection of slower, but much
smaller cells, thereby tremendously impacting the area and pow-
er dissipation. Hence a fair comparison of different architectural
techniques requires them to operate at a common speed.

To appreciate this point further, consider the direct form implemen-
tations which are designed to operate at maximum possible data
rate which is a constraint in speed critical application such as the
read channel. The critical path in each of the direct form imple-
mentations require use of the fastest possible storage elements and
other cells. This has a tremendous impact on the overall area of
the implementation, while each still falls short of the speed achiev-
able using the TDF. One could use an interleaved design with the
direct-form implementations which provides twice as high frequen-
cy of operation in each case while doubling the area and the power
dissipation.

Table 2 demonstrates this point by providing a comparison of the
proposed filter with interleaved direct form implementations de-
signed to operate at 550 Msps. In this scheme, both pipelining and
parallel processing are employed to obtain fast-enough direct form
implementation with pre-determined number of pipelining stages.
The number of interleaves are shown in the second column. Again,
looking at the Speed/Area/PDISS figure of merit, we recognize that
the proposed architecture offers the best operating point for speed,
area and power dissipation. In an application with very high vol-
ume of number of devices, it is imperative that good compromise is

266

Table 2: Comparison of the proposed filter with interleaved DF
implementations for the target speed of 550 Msps.

Filter Type #Int Speed Area/ PDISS Msps/ Msps/
(Msps) Tap (mW) Area/W mW

Proposed 2 550 1125 36 13.6 15.3
DF-Pipe-0 3 550 2006 84 3.3 6.5
DF-Pipe-1 2 550 1575 108 3.2 5.1
DF-Pipe-2 2 550 1790 126 2.4 4.4

obtained for speed, area and power dissipation and the best choice
is very application specific.

The proposed architecture has been implemented in a 0.18 �m
Leff technology using a commercial CMOS standard cell [9] dig-
ital flow methodology. It is part of a commercial read channel and
the die-micrograph of the filter area is shown in Fig. 13. Table 3
compares the proposed filter by earlier reported work. Except for
[7], each work implemented an 8-tap FIR filter with 6-bit coeffi-
cient and data. [7] reported using an average of 4.4 bits per coeffi-
cient. In this table � represents �W/Msps/Tap/InBits/Coeff-Bits.

FIRADC

Equalized
samples

CLK

VGA CTF

AGC LMS

6 8

TR
Error/

Gradient

x(k)

e(k)

c(n)

Timing gradient

Gain gradient

y(k)

Figure 12: Timing recovery, AGC and FIR filter adaptation
loops in a read-channel. Smaller FIR latency improves the
agility of the outer timing recovery loop.

Figure 13: Chip micrograph of the FIR filter area.

5. CONCLUSION
We presented a high-speed, low-area and low-power FIR filter for
magnetic recording read channel applications. A parallel TDF ar-
chitecture operates on real-time input data samples and employs a
fast, low-area multiplier based on selection of radix-8 pre-multiplied
coefficients in conjunction with one-hot encoded bus leading to a
very compact layout and reduced power dissipation. This filter was

Table 3: �W/Msps/Tap/Inbits/Coeff-Bits figure of merit
[Thon].

Paper, Gate � PDISS Speed Area #Int
Implem. (�m) (mW) (Msps) (mm2)

This, TDF 0.18 0.23 36 550 0.3 2
[4], TDF 0.8 6.16 426 240 2.9 1
[5], DF 1.2 4.86 50 50 36.4 4
[6], DF 0.8 4.86 140 100 5.85 1
[7], DF 0.7 6.25 165 200 1.1 2

compared for area, speed and power with other common implemen-
tations and it was demonstrated that our approach is most effective
for speed critical implementations with the constraints of low cost
and low-power. The proposed filter has been fabricated using a 0.18
�m Leff CMOS technology and operates at 550 Msamples/s.

6. REFERENCES
[1] H. Kobayashi and D. Tang, “Application of partial-response

channel coding to magnetic recording systems,” IBM J. Res.
Develop., vol. 14, pp. 386–375, July 1970.

[2] R. Cideciyan et al., “A PRML system for digital magnetic
recording,” IEEE J. Select. Areas Commun., vol 10,
pp. 38–56, Jan. 1992.

[3] K. K. Parhi, “Digital Signal Processing Systems,” John
Wiley & Sons, Inc. 1999.

[4] L. Thon et al., “A 240 MHz 8-tap programmable FIR filter
for disk-drive read channels,” IEEE ISSCC Dig. Tech.
Papers, pp. 82–83, Feb. 1995.

[5] C. Wong et al., “A 50 MHz eigth-tap adaptive equalizer for
partial-response channels,” IEEE Journal of Solid State
Circuits, vol. 30, pp. 228–234, Mar. 1995.

[6] H. Ki et al., “A high-speed, low power 8-tap digital FIR filter
for PRML disk-drive read channels,” ESSCIRC ’97 Conf.
Proc., pp. 312–315, Sept. 1997.

[7] D. Moloney et al., “Low-power 200-Msps, area-efficient,
five-tap programmable FIR filter,” IEEE Journal of Solid
State Circuits, vol. 33, pp. 1134–1138, July 1998.

[8] R. Staszewski and S. Kiriaki, “Top-down simulation
methodology of a 500 MHz mixed-signal magnetic recording
read channel using standard VHDL,” ’99 Behavioral
Modeling and Simulation Conf. Proc.

[9] Texas Instruments Application Specific Integrated Circuits
Macro Library Summary, “TSC6000 0.18-�m CMOS
Standard Cells,” 1998.

267

	Main Page
	ISLPED'00
	Front Matter
	Table of Contents
	Session Index
	Author Index

