
Speeding up Power Estimation of Embedded Software

Akshaye Sama
Philips Semiconductors

Prof Holstlaan 4,Eindhoven
The Netherlands

akshaye.sama@philips.com

M Balakrishnan
IIT Delhi

Hauz Khas, New Delhi
India

mbala@cse.iitd.ernet.in

J F M Theeuwen
Philips Research

Prof Holstlaan 4,Eindhoven
The Netherlands

frans.theeuwen@philips.com

ABSTRACT
Power is increasingly becoming a design constraint for em-
bedded systems. A processor is responsible for energy con-
sumption on account of the software component of the em-
bedded system. The power estimation of this component
is a major concern due to the rising complexities of pro-
cessors and the slow estimation tools. This work attempts
to estimate the energy dissipation of the PR1900 1 proces-
sor based on instruction set model with improved accuracy.
The model is integrated in a simulation framework and val-
idated. Over 200 times speedup has been obtained with
average 1.4% loss in accuracy over gate level estimation.
Analysis of the energy dissipated by the instruction vis a
vis the processor architecture has been carried out and a
substantial reduction in the measurement e�ort to build the
processor energy model has been achieved.

1. INTRODUCTION
The essential tradeo� in power estimation is between esti-
mation accuracy and simulation time. Increasing e�orts are
being made to improve the simulation speed without appre-
ciable loss in estimation accuracies. The circuit and the gate
level techniques[11, 6] are found to be very slow when evalu-
ating power consumption of software executing on complex
microprocessor designs. A lot of useful e�ort has been di-
rected to architecture level macromodeling technique which
is faster and o�ers an estimate at higher level but o�ers low
accuracy and is useful only while exploring drastic changes
in architecture for power reductions [8, 7, 2, 1, 10, 9, 3]. In
the case of �xed architecture processors, this e�ort proves to
be redundant and better estimates can be arrived at using
instruction level energy model which was proposed in [14].
[12] provides the result that data dependency might not be
negligible in some processors and also proposes a bus tran-
sition based model to tackle this dimension. Two speedup
techniques for instruction level estimation are proposed in

1PR1900 is a embedded microprocessor core from Philips
Semiconductors which con�rms to MIPS II ISA.

[5], namely energy caching and power macromodeling.

This paper presents an energy estimator for the PR1900 mi-
croprocessor. Improvements in the instruction level model
are reported and also a technique for drastic reductions in
measurements for building the energy model is described
and evaluated.

The energy model and a brief introduction to the processor
architecture is described �rst in section 2. The measurement
procedure is described in section 3. Analysis of the power
dissipation with respect to the architecture to obtain a new
model is described in section 4. The experimental results
are presented in section 5 followed by the conclusion and
future directions in section 6.

2. ENERGY MODEL
The complexities of processors is hidden behind a relatively
simple interface - the instruction set. Each instruction on
execution activates some speci�ed modules on the processor
chip. This circuit activity is characteristic of the instruc-
tion and contributes to the energy cost of the instruction.
This hypothesis of measuring the instruction execution en-
ergy forms the basis of the instruction level model. The
components of this model are described next in the four
subsections. Though our model is based on Tiwari and Ma-
lik's work [14] who have also proposed the same components,
we have made substantial improvements in the circuit state
overhead and introduced operand modeling as a separate
component which can be accurately modelled.

2.1 Base energy cost
This is the primary component of the power model. It can be
associated with the basic processing needed to execute the
instruction. Physically, this component can be measured
by repeated executions of the particular instruction. Since
this energy is a characteristic of each instruction, it has to
be measured for each one individually. Programs have to
be made which cause repeated instruction execution and
then average power has to be measured during this time.
This average power consumed and the execution time of
the instruction gives the base energy cost of the instruction.
Special care is taken so that the stall cycle energies are not
included in this component.

191

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ISLPED '00,
Copyright 2000 ACM 1-58113-190-9/00/0007...$5.00.

Rapallo, Italy.

2.2 Circuit state overhead
During the transition from one instruction to the other,
there is some overhead energy dissipated. This energy is
dissipated due to the change in the processor state from the
execution of one instruction to the other. The major cause
for this overhead being the switching resulting from instruc-
tion opcode di�erences between the consecutive instructions,
the control state changes and the passing of data between
the pipeline stages. This overhead depends on the instruc-
tion pair between which the transition is occurring and has
to be measured for each such possible pair of instructions.

Since the number of possible instruction pairs can be quite
large even for small instruction sets, an approximation has
to be used for the circuit state overhead. Previous approach
has used the average state overhead value for this purpose.
The state overhead forms a relatively small part of the total
dissipation but, better approximations for this can increase
the accuracy of the overall model.

In this work, we grouped the instructions based on their
functionality and base costs. After which the intergroup and
intragroup state overheads are measured. This approach
was used because similar functionality and base costs usu-
ally indicate similar control state and opcode value. This
is veri�ed by measurements which show that average in-
tragroup state overhead dissipation is 22% of the average
intergroup state overhead.

2.3 Operand dependent dissipations
The energy consumed in the data-path during execution
of an instruction also depends on the operands that ow
through. The number of possibilities in the value of the
operands does not permit us to measure energy for each.
Hence, a model is required which can approximate this com-
ponent adequately. Tiwari [14, 15] integrate this value in the
base energy cost by using random operands during base cost
measurements. A better approximation for this enhances
the accuracy of the instruction level model.

The correlations in operands can be between the bits of the
same operand and the bits of consecutive operands. The
�rst one arises from the fact that in using 2's complement
arithmetic, where the operand does not use the full range
possible, the MSB's usually denote the sign of the number.
The LSB's on the other hand change with even small values
in the number and thus are better approximated as random.
This correlation is captured using the Dual Bit Type (DBT)
data model[8]. The second type of the correlation arises due
to the reasoning that the operands of the same program do
not show drastic changes in data. Hence, the switching in
the operand decreases as we progress from the LSB's towards
the MSB's. Using this, we can divide the operand into �elds
as shown in Fig-1. The bits in the same �eld assume the
same value. The data words are generated manually so that
the DBT conditions are obeyed and an activity decrease is
achieved. These data words are then used in place of totally
random operands for measurement of base instruction and
state overhead energy costs.

2.4 Stall cycles
The types of stall cycles present in a processor depend on
the architecture. Each type has to be identi�ed and the

31 1516192024 23 0

1/0 1/0 1/0 1/0 1/0 1/0 1/0 1/0 1/0 1/0 1/0 1/0 1/0 1/0 1/0 1/01/01/01/0

Figure 1: Data model

corresponding energy has to be measured. All stall cycles
such as cache misses, resource conicts, bu�er stalls etc are
included in this component.

2.5 PR1900 processor architecture
PR1900[13] is a 32 bit MIPS-II[4] instruction set based pro-
cessor. It consists of a 3 stage synchronous pipeline and is
a fully static CMOS design. It is implemented on a 0.35
micron 5 metal layer process with an area of 6.5mm2.

The memory hierarchy includes a 8KB 2-way set associative
uni�ed instruction and data cache. The write policy followed
is write through with no write allocate. A single entry write
bu�er is provided to distribute bus load. The memory of the
processor is divided into a cacheable and a non-cacheable
type. The processor bypasses the cache in case of a non-
cacheable memory access.

The possible stall cycles in this processor are cache miss
cycles, cache hold cycles, write bu�er stall cycles and load-
store interlocks. Cache hold cycles are caused when the
way-state has to be toggled due to a mismatch of the tags
in the current way-state. Write bu�er stalls are caused due
to store type instructions when the write bu�er is already
full. In this case, the write bu�er contents are �rst writ-
ten to the memory before introducing the new contents in
the write bu�er. Load store interlock is essentially a RAW
dependency on the memory which is caused by the write
bu�er. When the write bu�er is full and a read miss or a
non-cacheable load instruction is encountered, the contents
of the bu�er are �rst written to the memory before servicing
the read request.

The cache hold cycles can be of two types depending on the
gating of the integer unit. The integer clock is stopped for
cache hold cycles in case a multicycle instruction is not being
executed. Since the clock gating of the integer unit has a
power lowering e�ect, the two types of hold cycles have to
be catered to di�erently.

2.6 Overall energy model
The overall energy dissipated is the weighted sum of the
various components. For the PR1900 case, it sums up to..

Eprogram=�i(Bi * Ni)+�i;j(Oi;j *Ni;j)+NC:M*EC:M

+NW:B*EW:B+NC:H*EC:H+NL=S*EL=S

Bi:Base energy cost of instruction i

Ni:Number of times i is executed

Oi;j :Circuit state overhead energy for grp(i)->grp(j)

transition

192

data
Energy

Evaluation Energy
estimates

TSS power
simulations

Power model
PR1900

model integration
Instruction level

TSS model
PR1900

programs
Measurement

Verilog Model
PR1900

simulations
DIESEL/VERILOG

MIPS-gcc

Figure 2: Model characterization

Ni;j :Number of times grp(i)->grp(j) takes place

NC:M :Number of cache miss cycles introduced

EC:M :Cache miss energy/cycle

NW:B :Number of write bu�er stall cycles introduced

EW:B :Write bu�er stall energy/cycle

NC:H :Number of cache hold cycles

EC:H :Cache hold cycle energy

NL=S:Number of load store interlocks

EL=S :Load store interlock energy

3. INSTRUCTION POWER MEASUREM-
ENT

3.1 Gate level measurements
The energy numbers were calculated using DIESEL-verilog2

gate level cosimulation. The design is described as a gate
level netlist. With each component, a power view is stored
during the library characterization process. The output load
of each cell is �rst calculated from the fanout and the wire
capacitance extracted from the layout. Using this informa-
tion, the energy dissipated due to the transitions reported
by the logic simulator is calculated.

3.2 Instruction energy measurement
2DIESEL is a gate level power measurement tool used within
Philips.

The energy numbers have been derived from DIESEL gate
level simulations as depicted in Fig-2. Programs were made
in assembly and assembled using gcc(for MIPS II ISA). Verilog-
XL logic simulator was used to report the transitions to
DIESEL.

The base energy cost of the instructions is measured using
a loop consisting of repetitions of the same instruction. The
loop is executed twice. The energy dissipated during the
second execution of the loop is considered for calculating the
base cost since the �rst execution also includes the energy
for the cache misses. The e�ect of operand variations is
also captured in the base cost by providing the individual
instructions with di�erent operands generated as described
earlier in section 2.3.

The circuit state overhead is measured using a similar tech-
nique but with the loop consisting of an alternating sequence
of the two instructions. The base cost values are then sub-
tracted appropriately to give the state overhead. The in-
structions were divided into 15 groups on the basis of func-
tionality and base cost values. This overhead was then mea-
sured for four possible combinations for each possible group
transition. An average value is then calculated for each tran-
sition.

For the cache miss, the energy and cycle di�erence between
the two executions of the loop is calculated. Since the only
di�erence between the two executions are the cache misses,
these di�erences are contributed by it. The measurements
for other stall cycles was done by manually isolating the in-
terval in which these occurred and then triggering the energy
simulations for it. In all these cases, appropriate averages
were taken to get a better approximation.

4. ANALYSIS OF INSTRUCTION POWER
DISSIPATION

The instruction level model is then related to the architec-
ture of the processor so that prediction of some base energy
costs is possible. The objective in doing this is to speed
up the process of building up the instruction energy model
as this would reduce the number of instructions for which
measurements have to be carried out. The prediction is
done by �rst deriving an analytical energy model for the
architecture. This approach is based on the fact that each
instruction execution consists of a number of sub tasks such
as memory access and module activations. But, in most
of the cases, the instruction execution takes similar ow
through the pipeline. In a few cases, extra module activa-
tions are required or some module activations are supressed.
The approach described here, isolates the energy associated
with the instruction ow through the pipeline as a few stage
based components. Also, some components are isolated for
additional module activations. These component values are
calculated from the instruction base energy consumption of
a few instructions. Using these extracted values, base costs
of some other instructions have been predicted and shown
to be quite close to the measured values.

4.1 Model components
The model consists of stage based activation components
and module activation components. Since no clock gating is

193

implemented within the integer unit and most of the instruc-
tions pass through the same stages of the pipeline, two stage
based components are found to be enough. A usual execu-
tion goes through IF(Instruction Fetch), EX (execute) and
WB(write Back) stages therefore, a component IF EX WB
is isolated to account for this ow. Another component is
isolated for the extension cycles that are added for multicy-
cle instructions. This component IFI EX WBI is attributed
to the idle IF and WB stages and the active EX stage. In
addition to these two, 13 extra module activation energies
are isolated. Examples include IMM(S) for signed extension
for the immediate and Cache L W for cache and cache con-
troller activation for loading a word. These 15 components
are characterized using one instruction each.

4.2 Reduction in measurements
Using these, the base costs of some other instructions can
be predicted by just adding the stage based and the module
activations for that particular instruction. For example, a
LW(load word- 2 cycle) instruction consists of both the stage
based components along with IMM(S) and Cache L Wmod-
ule activations. Similarly, architectural information is used
to decide which components form a part of the instruction
execution and the corresponding components are then added
to predict the base cost. The components are derived here
for the case of a PR1900 processor but similar models can
be derived easily for other processor architectures also.

5. EXPERIMENTAL RESULTS
5.1 Integration in simulation environment
TSS(Tool for System Simulation)3 is a cycle level `C' lan-
guage based simulation environment. The energy estimator
was integrated into it so that the energy of programs could
be estimated along with the usual simulation.

The instruction level model estimates are �rst compared
with the gate level simulation in Table-1. These compar-
isons are done for the same programs to study the gain in
simulation speed and the corresponding loss in accuracy.
Five programs were used, Bub sort is a sorting program,
Op loop is a loop of a few arithmetic operations, IDCT is
an inverse discrete cosine transform program, FFT is Fast
fourier transform and Mat mult is a matrix multiplication
program. The program charachteristics are tabulated in the
�rst few rows which show that the comparison programs
cover a wide range in static(74 to 433) and dynamic(878 to
3018) instruction counts. Also, the constituent instructions
covered the whole instruction set appropriately. The next
three rows show that the simulation speed has increased be-
tween 240 and 380 times in all the cases and is expected to
be much more for larger programs. Next important consid-
eration is the average accuracy loss which is shown to be a
low 1.4% with only one signi�cant error of 5.7%.

In Table-1, the instruction type abbreviations are as- L-
Load, S-Store, B-Branch, A-Add, Su-Subtract, Se-Set, M-
Multiply and D-Divide.

5.2 Effect of instruction grouping
3TSS is a cycle accurate C language based simulation frame-
work used within Philips.

10

15

5

20

25

30

35

40

8 to 102 to 4 4 to 8 10 to 150 to 2

|%Error|

Number of
Instructions

Figure 3: Error variations

The improvement obtained through instruction grouping for
state overhead is tabulated in Table-2. The use of grouping
approach instead of the average approximation lead to an
accuracy gain of approximately 1.3%. The results also show
that the grouping approximation estimate is nearer to the
gate level estimate than the average approximation in all
the example cases.

5.3 Prediction of instruction energy
Since the measurements are done at a much lower level(gate
level), the e�orts and time for the instruction level model
characterization process is large. The method of predicting
instruction base costs can reduce this e�ort. In this work,
the method was applied on a subset of the total instruction
set and 27 instruction base costs were predicted from 15
measured values. A measurement set reduction of more than
60%. The price to pay for this reduction is tabulated in
Table-3 which is a small accuracy loss calculated to be less
than 1% for all the example cases. The error in predicted
values of instruction base costs for the instruction subset (42
instructions) is shown in Fig-3. This is a bar chart which
groups the instructions according to the error range in which
there base cost predictions fall. This also shows that 15
instructions are predicted with error within 2%.

6. CONCLUSIONS AND FUTURE WORK
The results show an increase in simulation speed of more
than 240 times at the cost of an average accuracy loss of 1.4%
with respect to gate level simulations. New accuracy en-
hancing measures of data modeling and grouping approach
for state overhead are also tried and found to give estimates
which are closer by approximately 1.3%.

A reduction of more than 60% in the measurement set for
characterization process is obtained through the new ar-
chitecture based model. This is achieved by relating the
instruction power dissipation with the processor modules.
Since the measurement process is done on a much lower
level, it requires a lot of time and e�orts. Also for the case
of large instruction set processors, this reduction is impor-
tant.

194

Program Bub sort Op loop IDCT FFT Mat mult

Instruction count(static) 116 74 318 433 142
Instruction count(dynamic) 3018 878 318 2268 1241

Execution cycles 5800 2990 1391 6173 2896
Majority instructions L,S,Se,B,A L,S,M,D,B L,S,A,Su L,S,A,B L,S,A,B

TSS simulation time(sec) <3 <3 <2 <3 <3
DIESEL simulation time(sec) 1131 726 610 792 726

DIESEL sim time/TSS sim time 377 242 305 264 242

DIESEL energy result(uJ) 17.64 6.75 2.80 15.36 7.48
TSS energy result(uJ) 18.64 6.78 2.80 15.22 7.49

Energy Error(%) 5.7% 0.4% 0.0% -0.9% 0.1%
Energy Error(nJ/ cycle) 0.17 0.01 0.00 -0.02 0.00

Energy Error(nJ/ instruction) 0.33 0.03 0.00 -0.06 0.01

Table 1: Comparing gate level with instruction level estimates

Program Bub sort Op loop IDCT FFT mat mult

DIESEL result(uJ) 17.64 6.75 2.80 15.36 7.48

Result using grouping(uJ) 18.64 6.78 2.80 15.22 7.49
Error using grouping% 5.7% 0.4% 0.0% -0.9% 0.1%

Result using average(uJ) 18.95 6.59 2.80 14.98 7.39
Error using average% 7.4% -2.4% 0.0% -2.5% -1.2%

Table 2: Validation of grouping approach

Program Bubble sort Operation loop 1D-IDCT FFT mat mult

DIESEL result(uJ) 17.64 6.75 2.80 15.36 7.48

TSS result using exp. data(uJ) 18.64 6.78 2.80 15.22 7.49
Error using exp. data % 5.7% 0.4% 0.0% -0.9% 0.1%

TSS result using derived data(uJ) 18.48 6.73 2.79 15.15 7.49
Error using derived data% 4.8% -0.3% -0.4% -1.4% 0.1%

Table 3: Evaluation of predicted data

195

If the link between instruction level and architecture level
is established, the e�ects of small changes in architecture
can be propagated to the instruction level without total re-
measurements. If the constituent instructions of a program
are known, the e�ect of such changes can be predicted. This
can provide us methods for �ne tuning the architecture (with
respect to power) for the application programs that use it.

Such an approach can be e�ectively integrated into the de-
sign space exploration for custom processor synthesis. An
instruction model taking the pipeline structure into account
can be used to quickly predict the e�ect of changes in the
stage power, and other architectural modi�cations on the
energy dissipation of the application programs. This can
prove useful in the design of low power application speci�c
processors.

7. REFERENCES
[1] G. Bernacchia and M. C. Papaefthymiou. Analytical

macromodeling for high level power estimation. In
International Conference on CAD, 1999.

[2] R. Y. Chen, R. M. Owens, M. J. Irwin, and R. S.
Bajwa. Validation of an architectural level power
analysis technique. In DAC'98, San Francisco, USA,
1998.

[3] S. Gupta and F. N. Najm. Power macromodeling for
high level power estimation. In DAC'97, Anaheim,
California, USA, 1997.

[4] G. Kane and J. Hienrich. MIPS RISC Architecture.
Prentice Hall, 1991.

[5] M. Lajolo, A. Raghunathan, S. Dey, L. Lavagno, and
A. Sangiovanni-Vincentelli. E�cient power estimation
techniques for hw/sw systems. In IEEE Alessandro
Volta Memorial Workshop on Low-Power Design,
Como, Italy, March 1999.

[6] P. L. Landman and J. M. Rabaey. Power estimation
for high level synthesis. In Proc. of

EDAC-EUROASIC'93, Paris, pages 361{366,
February 1993.

[7] P. L. Landman and J. M. Rabaey. Black box
capacitance models for architectural power analysis.
In Proceeding of international workshop on low power
design, pages 165{170, April 1994.

[8] P. L. Landman and J. M. Rabaey. Architectural power
analysis:the dual bit type method. IEEE Trans on
VLSI systems, 3(2):173{187, June 1995.

[9] J. Y. Lin, W. Z. Shen, and J. Y. Jou. A power
modeling and characterization method for macrocells
using struction information. In International
Conference on CAD, 1997.

[10] H. Mehta, R. M. Owens, and M. J. Irwin. Energy
characterization based on clustering. In DAC'96, Las
Vegas , NV, USA, 1996.

[11] F. N. Najm. Survey of power estimation techniques in
vlsi circuits. In IEEE Trans. on VLSI, December 1994.

[12] D. Sarta, D. Trifone, and G. Ascia. A data dependent
approach to instruction level power estimation. In
IEEE Alessandro Volta Memorial Workshop on
Low-Power Design, Como, Italy, March 1999.

[13] Philips Semiconductors. PR1900 microprocessor RISC
core user manual,v1.6. Philips Semiconductors, 1998.

[14] V. Tiwari, S. Malik, A.Wolfe, and M. C. Lee.
Instruction level power analysis and optimization of
software. In Journal of VLSI Signal Processing Kluwer

Academic Publishers, August/Sept 1996.

[15] V. Tiwari, S. Malik, and A. Wolfe. Power analysis of
embedded software:a �rst step towards software power
minimization. In IEEE Trans. on VLSI systems, pages
437{445, December 1994.

196

	Main Page
	ISLPED'00
	Front Matter
	Table of Contents
	Session Index
	Author Index

