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ABSTRACT
A synthesis method for generating hybrid pass gate circuits
is presented. These circuits combine features from both
complementary CMOS and pass gates architectures. The
simulation results using a 0.7 �m technology show that cir-
cuits synthesized according to the proposed method may
achieve signi�cant improvements in terms of area, power
and delay over traditional full swing pass transistor logic
and complementary CMOS.

1. INTRODUCTION
New logic families using pass transistor circuits have been
proposed in the recent years, using solely NMOS logic net-
works [7, 3, 6] or using both NMOS and PMOS logic net-
works [5, 2]. Avoiding PMOS transistors is attractive, but
NMOS-only circuits su�er from the threshold voltage drop
at the output, hence the need for a level restorer. This has
a negative impact on the performance, especially when low-
ering the supply voltage [8]. On the other hand, the circuits
using both NMOS and PMOS logic networks provide full
swing outputs, and are more robust with respect to voltage
and transistor scaling. A synthesis method for Pass Gates
Logic (PGL) circuits was developed in [4], using a modi�ed
Karnaugh map minimization procedure. The aim of this
work has been to improve this synthesis method, such as
to give a further reduction in area, power consumption and
delay.

2. PASS TRANSISTOR LOGIC STYLES
The general structure of a pass transistor network is shown
in �g. 1. The source side of transistor networks is con-
nected to variable input signals instead of constants (VDD
or GND). The variables associated with the input signals
connected to pass transistors' sources are called pass vari-
ables. The variables associated with the signals driving the
gates of the transistors are called control variables. For a
full swing output, the pass transistor network consists of
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Figure 1: General structure of a pass transistor net-
work

both NMOS and PMOS logic networks, thus avoiding the
threshold drop due to the exclusive use of NMOS transistors.

Double Pass Transistor Logic (DPL) was proposed in [5]
as a dual-rail pass transistor logic style. An example of
basic logic gates implemented in DPL is given in �g. 2(a).
However, the high transistor count, especially large PMOS
transistors, and the requirement for complementary signals
are drawbacks of DPL, making it not so attractive in many
cases.

The Dual Value Logic (DVL) was obtained from DPL in [2],
by elimination of redundant branches and signal rearrange-
ment. It demonstrates the reduction in the number of tran-
sistors and interconnections, while preserving or improving
the speed. An example of DVL logic gates is given in �g
2(b). To the best of our knowledge, a thorough comparison
between DVL and DPL with respect to power consumption
has not been made. However, one may assume that DVL
is more power-eÆcient than DPL for the same reasons it is
faster: smaller transistor count and fewer interconnections.

Even though DVL and PGL were developed following dif-
ferent paths, there are no major di�erences between them.
Practically, they di�er in that any PMOS transistor branch
is doubled by a complementary NMOS transistors branch
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Figure 2: Example of AND/NAND gate implemen-
tation in a) DPL, b) DVL

in DVL, while PGL uses a single PMOS transistors branch
when passing a logic "1". The complementary NMOS tran-
sistor branch in DVL increases the speed of the correspond-
ing PMOS transistors branch, but in the same time has a
negative e�ect on the power consumption of the circuit.

The speed degradation due to a PMOS-only branch driving
a logic "1", as in PGL, can be reduced if one would merge
that branch with a pass gate branch, such as the �rst will
take advantage of the speed of the latter. This is made
possible by choice of pass implicants, so it is achieved as
part of pass transistor synthesis. The advantage of using
only PMOS transistors to drive a logic "1" is reduction in
area and power consumption of the circuit. An example of
branch merging is given in �g. 3. Here, branch merging not
only reduces the transistor count, but it also improves the
speed of the circuit when the PMOS-only branch is driving
the output.

In this paper, we will compare our implementations with
PGL circuits, which we consider as being performant com-
pared to the other full swing pass transistor logic styles.

3. IMPROVED SYNTHESIS METHOD FOR
PASS TRANSISTOR LOGIC

The Karnaugh map minimization procedure in [4] relies on
the use of pass implicants. If Vi is the pass variable and Pi is
the product term, Pi(Vi) is called the pass implicant, where
Vi is in the set [0, 1, Xi, �Xi], with Xi being any input vari-
able. The pass function is determined by covering every cell
in the Karnaugh map at least once, and it consists of pass
implicants.One may notice that the conventional Karnaugh
map minimization method for CMOS circuits is a particular
case of the method described in [4]. Indeed, if only pass
implicants whose pass variables are either 0 or 1 are con-
sidered, the resulting circuit is but a conventional CMOS
circuit.
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Figure 3: Branch merging for pass transistor net-
works: a) before merging, b) after merging

Our proposed method relies on the algorithm in [4], but
di�ers with respect to choice of prime implicants and imple-
mentation with pass transistor branches. It uses overlapped
implicants and eliminate redundancies in order to reduce
transistor count and the number of transistors in series, aim-
ing better performance in terms of speed and power over the
aforementioned method of synthesis.

For conciseness and clarity reasons, we will use throughout
the rest of this paper a set of naming conventions as de-
scribed below.

A homogenous pass implicant is an implicant who covers
only 0's or only 1's in the Karnaugh map (its pass variable
is 0 or 1 respectively, hence it connects the output to either
GND or VDD respectively). To implement a homogenous
pass implicant only a single pass transistors branch is re-
quired (made of NMOS or PMOS transistors).

A non-homogenous pass implicant is an implicant who cov-
ers both 0's and 1's (its pass variable is a literal). For its im-
plementation both NMOS and PMOS transistors branches
are required.

An N-implicant is a non-homogenous pass implicant who
covers both 0's and 1's in the Karnaugh map, but all the 1's
were previously covered by other implicants. This doesn't
necessarily mean that none of the 0's are previously covered,
the only requirement is that at least one minterm was left
uncovered by previously chosen implicants. Its pass variable
is a literal, but a single branch made of NMOS transistors is
required to implement it. The reason behind this is that only
"good" 0's have to be passed by this implicant, since passing
the "good" 1's is already taken care of by previously chosen
implicants. So, a redundant PMOS transistors branch is
eliminated. Same de�nition for P-implicants, for whom all
0's were already covered, and is implemented by a single
PMOS transistors branch. Note that N- and P-implicants
can only be de�ned during the minimization process, after
the Karnaugh map has been partly covered.

It is worth noticing that N- and P-implicants require only
a single transistor branch to implement, same as for the
homogenous implicants. However, homogenous implicants
pass a constant, either 0 or 1, so they don't add extra ca-
pacitive load to the input signal associated to a pass variable.
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The pass variable of an N- or P-implicant is a literal, hence
it increases the capacitive load on the input signal connected
to the source side of the pass transistor branch. Hence, an
homogenous pass implicant would be preferred over an N-
or P-implicant to be selected in a pass function.

The synthesis rules are based on the rules proposed in [4].
The modi�ed set of rules are described as follows:

1. Each and every cell has to be covered at least once.

2. To cover a cell which has not been covered before, al-
ways use the highest order pass implicant (a pass impli-
cant is of order i if it covers 2i cells, where i = 2; 3; :::)

3. Use a prioritized search for pass implicants: �rst �nd
the homogenous implicants, then N-implicants,
P-implicants and non-homogenous implicants, in this
order.

(a) For homogenous implicants passing a logic "0"
and N-implicants only an NMOS transistor branch
is needed. The control signals for the branch are
the signals associated with the literals in the prod-
uct term.

(b) For homogenous implicants passing a logic "1"
and P-implicants only a PMOS transistor branch
is needed. The control signals for the transistors
in the branch are the signals associated with the
complements of the literals in the product term.

(c) For non-homogenous pass implicants, both NMOS
and PMOS branches are required.

The focus of this approach is on the priority order when
selecting pass implicants. Pass implicants who require a
single transistor branch to implement (homogenous, N- and
P-implicants) are preferred, so the resulting circuit will have
a reduced transistor count. It is rather the type of implicant
than the number of previously uncovered cells it contains or
the number of implicants in the minimized function which
is important. The possibility of using these implicant types
depends on the logic function to be minimized, hence the
improvement in performance over conventional method de-
pends on the function as well. It is fair to say that in cases
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Figure 4: Example of Karnaugh map minimization
using the proposed synthesis method
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Figure 5: Function F = �D + �A �B + �AC synthesized in
a) HPGL, b) PGL, c) CMOS

when no N- and P-implicants can be identi�ed, the resulting
circuit is identical to the PGL version (e.g. sum generation
for a 1-bit full adder) or CMOS version (e.g. carry genera-
tion for a 1-bit full adder).

An example of how the synthesis method works is shown
for the function F = �D + �A �B + �AC in �g. 4. The highest
order implicants in the example are �D(1) and A( �D), of order
i = 3. First choose the homogenous implicant �D(1), and
then choose A( �D) as an N-implicant (all the 1's it covers
are already passed correctly to the output by �D(1)). Notice
that A( �D) can be considered an N-implicant only after �D(1)
was selected as part of the minimized function. To cover
the remaining 4 cells in the Karnaugh map we will use order
i = 2 implicants: homogenous implicants �A �B(1) and �AC(1),
and N-implicant B �C( �D). The minimized pass function thus
obtained is F = �D(1)+A( �D)N+ �A �B(1)+ �AC(1)+B �C( �D)N ,
where N designates an N-implicant.

An implementation of the minimized pass function requires
4 PMOS and 3 NMOS transistors, see �g. 5(a). We will refer
to the logic circuits synthesized using the synthesis guide-
lines given in this paper as HPGL (Hybrid Pass Gate Logic).
Using the conventional synthesis rules gives the pass func-
tion for the PGL implementation as F = �D(1) + AD(0) +
�A �CD( �B) + �ACD(1), which requires 5 PMOS and 4 NMOS
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transistors, see �g. 5(b). A DVL implementation would
require two more NMOS transistors (in parallel with the
PMOS-only branches). A CMOS implementation is shown
in �g. 5(c), using 4 PMOS + 4 NMOS transistors.

A consequence of reducing the transistor count in HPGL is
the reduction in power consumption, but in the same time
the circuit may su�er from speed degradation compared to
PGL. This is one reason to cover the cells in the Karnaugh
map with implicants of the highest possible order. By doing
this, the number of transistors in series required to imple-
ment a pass transistor branch can be reduced, thus com-
pensating for the speed degradation. This is especially true
because of the quadratic delay characteristic of pass transis-
tor branches.

Apart from the transistor count, we may also consider the
input signals required for a particular implementation. For
instance, in �g. 5, the CMOS implementation needs A, B,
�C, D as input signals, while the PGL implementation re-
quires A, �A, �B, C, �C, D, �D. The requirement for comple-
mentary input signals is one of the often mentioned draw-
backs of pass transistor logic, which translates at physical
level into a larger number of interconnects and inverters.
The large number of input signals required for PGL imple-
mentations could be explained by looking at the way non-
homogenous pass implicants are implemented. Both NMOS
and PMOS transistors are required, and the control signals
for the PMOS branch are the complements of those for the
NMOS branch. In the case of CMOS implementations, there
are the same signals driving the NMOS transistors and their
PMOS counterparts, usually leading to a smaller number of
inputs.

However, the HPGL implementation in �g. 5(a) requires
only A, B, �C, D, �D, which is a smaller number of input
signals than PGL requires, but larger than in the case of
CMOS. The reason for a reduced number of input signals
of HPGL compared to PGL is the priority order set for
implicants. We consider �rst the homogenous implicants,
then N- and P-implicants, whose implementation requires
only a single transistor branch, thus no need for comple-
mentary signals. Non-homogenous implicants are taken into
account only if there are still uncovered cells after homoge-
nous, N- and P-implicants were considered. Avoiding non-
homogenous implicants in the pass function, especially the
lower order implicants, usually leads to a smaller number of
inputs.

The HPGL and CMOS implementations have some simi-
larities. See �gures 5(a) and 5(c). Their PMOS transistors
networks are identical, while the NMOS transistors networks
of HPGL could be obtained from CMOS by eliminating the
transistor driven byD and connecting �D to the source of the
resulting NMOS branch. However, this cannot be regarded
as a rule and it strictly depends on the logic function to be
minimized. To illustrate this, the implementation of func-
tion F = �AC +A �BD+A �CD in HPGL, PGL and CMOS is
shown in �g. 6. Here, the HPGL implementation is made
of pass gates and single branches, thus combining features
derived from PGL with features derived from CMOS. The
resulting circuit has a reduced transistor count (4 PMOS +
5 NMOS compared to 5 PMOS + 5 NMOS for PGL and 6
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Figure 6: Function F = �AC+A �BD+A �CD synthesized
in a) HPGL, b) PGL, c) CMOS

PMOS + 6 NMOS for CMOS), and the same number of in-
puts as CMOS (6 compared with 8 for PGL). The synthesis
method presented in this paper generates a circuit which is
a hybrid between PGL and CMOS.

4. SIMULATION RESULTS
The simulations were performed using HSPICE and a stan-
dard 0.7 �m process technology. A layout-based netlist
similar to the one described in [1] was used. For all tran-
sistors the di�usion capacitances were estimated with re-
spect to the layout, considering the situations when there
are shared di�usions and contacts. An exception was made
for the input inverters when measuring the power consump-
tion, no di�usion capacitances being taken into account in
this case, for a higher accurancy of measurements. Tran-
sistors were sized manually for lowest power-delay product
(PDP), and an equal optimization e�ort was considered for
all logic styles. Note that by transistor sizing, power and
delay can be traded o� considerably, so the circuit perfor-
mance can be adjusted further for high speed or low power.
The size reported represents the total widths of transistors.
The number of inputs required are shown separately.
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Table 1: Simulation results for F = �D + �A �B + �AC (�g. 5)
Logic Delay [ns] Power [�W] PDP [fJ] No. of Size No. of
Style 5V 2V 5V 2V 5V 2V transistors [Wmin] inputs

PGL 0.34 (1.13) 1.93 (1.51) 325 (1.44) 55 (1.49) 110 (1.64) 106 (2.26) 9 20.5 7
CMOS 0.36 (1.20) 1.52 (1.19) 234 (1.04) 36 (0.97) 84 (1.25) 54 (1.15) 8 18.5 4
HPGL 0.30 (1.00) 1.28 (1.00) 226 (1.00) 37 (1.00) 67 (1.00) 47 (1.00) 7 15.5 5

Table 2: Simulation results for F = �AC +A �BD +A �CD (�g. 6)
Logic Delay [ns] Power [�W] PDP [fJ] No. of Size No. of
Style 5V 2V 5V 2V 5V 2V transistors [Wmin] inputs

PGL 0.36 (1.03) 2.01 (1.29) 367 (1.34) 62 (1.44) 132 (1.43) 124 (1.85) 10 21.5 8
CMOS 0.56 (1.60) 2.31 (1.48) 273 (1.03) 43 (0.96) 152 (1.65) 103 (1.54) 12 23 6
HPGL 0.35 (1.00) 1.56 (1.00) 265 (1.00) 45 (1.00) 92 (1.00) 67 (1.00) 9 12.5 6

All possible input transitions combinations were simulated,
and the worst case delay and the average power dissipation
were obtained from simulation. The input vectors frequency
was 100MHz, and the simulations were performed at 5V and
2V supply voltage.

The simulation results of the circuits in �g. 5 and �g. 6
are presented in table 1 and table 2, respectively. The
numbers in paranthesis are the normalized values for delay,
power consumption and power-delay product, with respect
to HPGL. For the considered circuits, HPGL implementa-
tions have the smallest delay and the smallest power-delay
product, at both supply voltages. HPGL circuits have also
the smallest power consumption at 5V, but when the sup-
ply voltage is lowered down to 2V, CMOS performs slightly
better. However, because HPGL circuits are the fastest at
both supply voltages, delay can be traded o� for power by
transistor sizing if power consumption is the main issue for
a speci�c application.

When compared to CMOS, both PGL and HPGL perfor-
mance gets worse with supply voltage reduction. However,
HPGL implementations considered are less sensitive to sup-
ply voltage downscaling than PGL circuits.

5. CONCLUSIONS
In this paper, an improved synthesis method based on Kar-
naugh map minimization for pass transistor logic was pre-
sented. It uses N- and P-implicants and a priority order for
selecting pass implicants to eliminate redundancies and re-
duce transistor count. It was shown that important savings
in area, power and delay could be achieved over PGL and
CMOS. Reductions in delay, power consumption and power-
delay product of up to 35%, 33% and 56% respectively were
demonstrated when compared to PGL at 2V supply volt-
age. Improvements in delay and power-delay product over
CMOS of up to 32% and 35% respectively were obtained at
the same supply voltage. Similar results were obtained at
5V supply voltage. The eÆciency of the synthesis method is
directly related to the logic function to be minimized, and
the resulting circuit becomes a hybrid between PGL and
CMOS.

The synthesis method presented in this paper was demon-
strated for logic functions with small number of inputs, be-

ing based on Karnaugh map minimization. Work is cur-
rently ongoing towards integrating the synthesis method
presented here in a Binary Decision Diagram (BDD)-based
[6] synthesis environment.
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