
Optimization of High-Performance Superscalar Architectures for Energy Efficiency. �

V. Zyuban and P. Kogge

Computer Science & Eng. Department, University of Notre Dame, IN 46556, USA

Abstract

In recent years reducing power has become a critical design goal
for high-performance microprocessors. This work attempts to
bring the power issue to the earliest phase of high-performance mi-
croprocessor development. We propose a methodology for power-
optimization at the micro-architectural level. First, major targets
for power reduction are identified within superscalar microarchi-
tecture, then an optimization of a superscalar micro-architecture
is performed that generates a set of energy-efficient configura-
tions forming a convex hull in the power-performance space. The
energy-efficient families are then compared to find configurations
that dissipate the lowest power given a performance target, or,
conversely, deliver the highest performance given a power budget.
Application of the developed methodology to a superscalar micro-
architecture shows that at the architectural level there is a potential
for reducing power up to 50%, given a performance requirement,
and for up to 15% performance improvement, given a power bud-
get.

Introduction

Until heat removal from a workstation micro-chip became a major
issue, high performance microprocessors remained free of power
conservation requirements. As a result, microprocessor archi-
tecture tradeoff decisions have traditionally been based on cost-
performance analysis. Such features as wide out-of-order issue,
speculation, register renaming, multiple branch prediction, multi-
level caches, memory disambiguation, etc. have become standard,
and little work has been done so far to improve the energy efficiency
of structures providing these architectural features.

This work attempts to bring the power issue to the earliest phase
of high-performance microprocessor development, where there is
still a significant potential for power reduction.

Since performance is the main factor that sells in this high-end
processor market, solutions compromising performance, such as
those used in low power embedded microprocessors, are not an
option. It is the goal of this paper to explore architectural level
solutions to the power problems in high-performance superscalar
microprocessors that achieve a power reduction without compro-
mising performance.

The organization of the paper is as follows: Sections 1 analy-
ses the critical design points of a superscalar microarchitecture and
discusses energy models. Section 2 applies the energy model to
the superscalar architecture and describes the developed optimiza-
tion procedure along with obtained results. Section 3 suggests an
architectural solution to the power growth problem and evaluates
the potential of the proposed technique. Section 4 summarizes the
paper.

�This work was supported in part by the National Science Foundation under Grant
No.MIP–95–03682.

1 Energy Models

1.1 Key power consumers in superscalar micro-architecture

Future growth in performance for modern superscalar CPUs is
predicated on higher and higher widths of instruction issue. There-
fore, when doing power analysis of high-performance future mi-
croprocessors, particular attention should be given to those struc-
tures in a microarchitecture where energy dissipation per instruc-
tion grows with increasing issue width. Among them are [10]: re-
name logic which includes a map table, storing logical-to-physical
register translations; issue window which keeps track of depen-
dencies between instructions and stores instructions until they are
ready for issue; memory disambiguation unit which keeps track of
load-store dependencies and allows out-of-order issue of memory
instructions; data bypass mechanism and multiported register file.

The baseline architecture model, shown in Fig. 1, is similar to
the micro-architecture of the MIPS R10000 [14], Alpha 21264 [4]
and HP PA-8000 [8]. We chose this scheme for its scalability and
logical simplicity [15]. In terms of dissipated energy it is compa-
rable to the reservation station model [11], used in other high per-
formance out-of-order processors such as Intel Pentium Pro, Pow-
erPC, and SPARC64.

F
et

ch

D
ec

o
d

e

 R
en

am
e

Is
su

e
W

in
d

o
w

R
eg

is
te

r
F

ile

 D
at

a
C

ac
h

e

m
em

o
ry

d
is

am
b

ig
u

at
io

n

B
yp

as
s

Figure 1: Baseline superscalar model.

Most of the structures listed above include multiported mem-
ory macros whose storage size and number of ports grow with in-
creasing instruction-level parallelism. For example, the number of
read ports from the register file and from the register rename map
table is a product of the number of read operands per instruction
and the issue width, and the number of ports from the issue win-
dow matches the issue width. Also, the number of entries in the
physical register file, issue window, and memory disambiguation
unit tends to grow approximately linearly with the issue width to
support higher degree of out-of-order execution, [3]. Taking into
account growth both in storage size and the number of ports, we
expect that the power portion of structures that include multiported
on-chip memories will grow rapidly in the future.

The above list does not include any of the functional units be-
cause their complexity is independent of the issue width. Never-
theless, we need to have simple and reliable energy models for the
functional units, because much of the CPU power is still dissipated
there.

Computer Science & Eng. Dept., University of Notre Dame, IN 46556, USA
V. Zyuban and P. Kogge

for Energy Efficiency*
Optimization of High-Performance Superscalar Architectures

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or dis-
tributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, to republish, to post on servers
or to redistribute to lists, requires prior specific permission and/or a fee.
ISLPED'00, Rapallo, Italy.
Copyright 2000 ACM 1-58113-190-9/00/007...$5.00.

7384

ISLPED '00, Rapallo, Italy.
Copyright 2000 ACM 1-58113-190-9/00/0007…$5.00.
ISLPED '00,

1.2 Energy models

In [15] we developed energy models for the key structures dis-
cussed above. The models express energy for all possible types
of accesses to each structure in terms of micro-architectural pa-
rameters. Different types of accesses typically dissipate different
amounts of energy. For example, there is a read and write access
energies in the register file [16], while the issue window has in addi-
tion a match access, when an instruction generating a result broad-
casts the result tag to all instructions in the issue window. There are
even more access types to the memory disambiguation unit [15].

These models have been incorporated into a very detailed
architectural-level simulator [15], written based on the Sim-
pleScalar tool set [1]. The simulator measures the architectural
speed of a simulated out-of-order superscalar processor and counts
the exact numbers of accesses of every type to every structure in the
micro-architecture. The data measured (over SPEC95) are then ap-
plied to the energy models to estimate the average energy dissipated
per instruction, as well as total power of a simulated processor.

issue width = 4 issue width = 6 issue width = 8 issue width = 12 issue width = 16
0

1

2

3

4

5

6

7

8

ac
ce

ss
 e

ne
rg

y
pe

r
in

st
ru

ct
io

n,
 n

J

rename map table
bypass mechanism
load/store window
issue window
register file
functional units

Figure 2: Average energies dissipated per committed instruction
(measured on SPEC95); 0:35� feature size, Vdd = 3:3V .

Fig. 2 shows the results of applying the energy models to five
superscalar designs with issue width ranging from 4 to 16. The
shaded bars represent the energy per instruction, assuming that ev-
ery fetched instruction is committed. In a real processor with spec-
ulation instructions fetched from mispredicted paths are flushed
from the pipeline at various stages. The white bars show the total
energy per committed instruction, taking into account the energy
dissipated by instructions flushed from the pipeline. Notice that
the portion of energy dissipated by flushed instructions grows with
increasing issue width, because wider processors rely on deeper
speculation to exploit more Instruction Level Parallelism (ILP).

As can be seen from Fig. 2, the energy per instruction grows
faster than linearly with the issue width for all the key structures,
while for functional units it grows much slower, the growth being
determined by the increasing portion of instructions flushed from
the processor.

Table 1: Estimated energy growth parameters.
Structure Energy growth parameter

register rename logic = 1:1
instruction issue window = 1:9
memory disambiguation unit = 1:5
multiported register file = 1:8
data bypass mechanism = 1:6
functional units = 0:1

The energy-per-instruction growth in each structures can be de-
scribed as E � (IW) , where IW is the issue width, and is
an energy growth parameter, specific for every structure. Table 1
shows the energy growth parameters for these structures, based on
a polynomial curve fit in Fig. 2.

2 Inherent Energy Inefficiency of Superscalar Design

2.1 Energy-Delay Product

The energy-delay product, E � D = energy
instruction

�
cycles

instruction
,

which can be expressed in terms of IPC as E � D =
Energy=cycle

IPC2 , is a reasonable metric for energy efficiency at the
micro-architectural level [6]. We call a micro-architecture energy-
efficient if its energy-delay metric does not grow with increasing
architectural performance, IPC.

According to Table 1, the energy dissipated per cycle in every
structure can be described as Energy=cycle � IPC � (IW) .
By substituting this into the energy-delay formula, we get

E �D =
Energy=cycle

IPC2
�

IPC � (IW)

IPC2
=

(IW)

IPC
: (1)

To reduce this expression we need to establish a relation be-
tween the issue width of a processor, IW and the architectural
speed, IPC. Assuming that IPC = IW� yields

E �D � (IW)�� (2)

If the IPC grew linearly with the issue width (� = 1) then
to achieve energy-efficiency it would be sufficient that the energy
growth parameters of all structures be no higher than one, � 1.
For example, the register file built using the Port Priority Selec-
tion technique combined with differential reads and low swing
write, according to [16], would be considered an energy-efficient
design, because the energy growth parameter for this design was
found in [16] to be = 0:96. On the other hand, the register file
built using the conventional technique would not be energy effi-
cient, because, according to Table 1, its energy growth parameter is
 = 1:8.

However, since in real machines IPC increases less than lin-
early with an increase in the issue width (� < 1), the condition
 � 1 may not be sufficient for energy efficiency. In fact, for an
Amdahl’s law-like � of 0:5 [12, 15] we have:

E �D � (IW)�
1

2 � (IPC)2�1 (3)

This formula shows that only those structures that have � 0:5
are energy efficient. Thus, even the use of the most energy-efficient
register file circuitry known to the authors [16] that reduces access
energy at a cost of much higher design complexity does not solve
the power growth problem, since it leaves the energy dependence
parameter well above 0:5.

2.2 Energy-Efficiency Optimization Methodology

There are many parameters involved in the micro-architecture, and
different combinations of architectural parameters result in design
points with different performance and energy efficiency. This sec-
tion describes our methodology to optimize the superscalar archi-
tecture for energy efficiency.

We found that it is practically impossible to determine a sin-
gle optimal design point for an architecture, because the optimal-
ity criteria highly depend on the orientation of a processor. There
can be high-end configurations targeted at achieving the maximum
performance. On the other hand, there can be low-end configu-
rations targeted at achieving the minimum energy dissipation per
instruction. Between these two extremes, there are configurations
targeted at achieving a reasonably high performance with a reason-
ably low power. To address this diversity of possible optimality
criteria we performed an energy-performance optimization for the
whole power-performance design trade-off space. In other words,

27485

optimal configurations were sought for the whole range of opti-
mization targets.

To better understand the energy-performance design trade-off
space, it is helpful to define an energy-efficient configuration as a
configuration that delivers the highest performance among all con-
figurations dissipating the same power. An alternative definition
is that it is the one that dissipated the least power among all con-
figurations that deliver the same performance. The definitions are
equivalent.

Thus, for every micro-architecture there is not just one opti-
mal configuration, but a whole set of energy-efficient configura-
tions, called hereafter an energy-efficient family. Each configura-
tion from the energy-efficient family is optimal in terms of some
energy-performance optimality criterion, E �D� , � > 0. If plot-
ted on in power-versus-performance coordinates, energy-efficient
configurations form a convex hull of all possible configurations of
a given architecture.

Having the energy-efficient family of configurations can be very
useful in making power-performance trade-offs, because it provides
an insight to the power-performance design tradeoff space. For ex-
ample, it allows a designer to immediately find the highest perfor-
mance for a given energy budget, achievable for an architecture in
study, or estimate the lowest power dissipation, given a minimal
performance requirement.

Every particular configuration of a microarchitecture is speci-
fied by a large number of architectural parameters, for example our
architectural simulator accepts about 50 input parameters. How-
ever, not all architectural parameters have equally strong effect on
the energy-performance tradeoff. Selection of values for most of
the parameters is affected by implementability issue.

We found that the most fundamental parameters that have a
strong affect on both power and the out-of-order processor capa-
bilities and, thus, performance, are the size of the physical regis-
ter file, the size of the instruction issue window and the size of
the load/store issue window (memory disambiguation unit). We
treated these parameters as independent variables in the optimiza-
tion process. The rest of the architectural parameters were set to
the values that were found to be optimal over a wide region of the
energy-performance tradeoff space, or to values selected for imple-
mentability considerations [15].

SPEC95 INT
Benchmarks

SimpleScalar
 Compiler

Architectural
 Simulator

 Statistics
Collection

Energy
Models

Result Database

Technology
Parameters

 Simulation
Parameters

 Processor
Configuration

 Generation
 of a new
Configuration

 Comparison
 to prior
 configurations

IPC
energy

 Convex
 Hull
Extraction

 Energy-
Efficient
 Family

Figure 3: Methodology for constructing energy-efficient families.

To construct the energy-efficient configuration families we
started with an initial configuration, and then used multidimen-
sional optimization algorithms to find configurations minimizing
the energy-delay product, energy-delay-square metric, and energy-
square-delay metric. The configurations optimizing each of these
metrics obviously belong to the energy-efficient family of the ar-
chitecture in study. The energy-delay optimal configuration is the

one that is optimal in the conventional sense of Power
Performance2

, as
discussed above. The energy-delay-square optimal configuration
represents a power conscious, performance oriented configuration,
while the energy-square-delay optimal configuration represents a
low-power oriented processor.

Upon obtaining these three energy-efficient design points, we
scaled the architectures by linear interpolation. Local optimiza-
tions were further performed at every new point on the interpolation
intervals. Then the energy-efficient family curves were extended
through linear extrapolation beyond the energy-delay-square opti-
mal points to see the maximum performance that every architecture
is capable of delivering, and beyond the energy-square-delay opti-
mal points to get the minimal power, if the performance is not an
issue. Figure 3 summarizes this methodology.

In the energy-efficiency optimization process every evaluation
involves running eight SPEC95 benchmarks on the architectural
simulator, which takes about 18 hours on UltraSparc 300MHz
workstation. Taking into account such a high cost of every evalua-
tion, we used the Nelder-Mead simplex method [9] which typically
requires only one or two evaluation per iteration.

Good intuition on the interdependence of architectural config-
uration parameters had been developed in the process of devel-
opment of the simulator, resulting in good initial guesses for the
optimization process. As a result, only from ten to twelve itera-
tions were sufficient to obtain the energy-delay optimal, energy-
delay-square optimal and energy-square-delay optimal points. This
required approximately 50 evaluations. To complete the energy-
efficient families another 50 evaluations were needed.

2.3 Results and Analysis

The most straightforward way to analyze the constructed energy-
efficient families is to represent each configuration as a dot on the
energy-per-cycle versus IPC graph. If multiplied by clock, the axes
would transform to power and performance, respectively.

0.6 0.8 1 1.2 1.4 1.6

1

2

3

4

5

 e
ne

rg
y

pe
r

cy
cl

e,
 n

J

1x4−way

IPC

3.7

0.5 0.9

3.3 2.9 2.5 2.1

1.7

region of improving
energy−delay metric

region of
optimal
ExD
metric

region of degrading
energy−delay metric

1.3

Figure 4: Energy-efficient family and all simulated configurations
for the 4-way architecture.

Figures 4 and 5 present the energy-efficient families for the sim-
ulated 4-way, 6-way and 8-way superscalar architectures. All sim-
ulated configurations are shown with stars. Circled stars represent
the initial guesses. Solid lines connect the points on the convex
hulls, and, thus, represent the energy-efficient family curves.

Dotted lines correspond to constant energy-delay product, E�
D = xnJ�cycle

instr2
, with x incrementing in steps of 0.4. In

the energy-per-cycle versus IPC coordinates the constant energy-
delay product lines are represented by parabolas. Points lying
on lower equal energy-delay product lines represent configuration
with lower energy-delay product. Charts for 12-way and 16-way
superscalars look similar [15].

37586

For all architectures the energy-delay product is very high for
low-end configurations, because the processor functional resources
are underutilized, and the delay term in the energy-delay product
is high. Then, as we increase the out-of-order issue capabilities,
the energy-delay product improves, until it reaches the minimum.
At this point, the functional resources of the processor are well
utilized, while the energy overhead of structures needed to support
these out-of-order issue capabilities is reasonably low.

1 1.2 1.4 1.6 1.8 2 2.2
2

3

4

5

6

7

8

9

 e
ne

rg
y

pe
r

cy
cl

e,
 n

J

1x6−way

1.4 1.6 1.8 2 2.2 2.4 2.6

4

6

8

10

12

14

16

18

 e
ne

rg
y

pe
r

cy
cl

e,
 n

J

1x8−way

IPC

Figure 5: Energy-efficient family and all simulated configurations
for the 6-way and 8-way architectures.

As we try to further increase the performance by pushing the
out-of-order capabilities of the processor, the performance growth
begins to saturate, while the energy overhead of structures needed
to support the growing out-of-order capabilities explodes. Thus,
pushing performance to the limit results in a very fast growth of the
energy-delay product at the high-end portion of the energy-efficient
family curves.

By looking at the positions of the circled stars, representing the
initial guesses for the energy-efficiency optimization process, one
can appreciate the value of energy-efficiency optimization. Most of
the initial guesses turned out to be close to the optimal curves, be-
cause they were based on extensive analysis preceding the experi-
ment. However, without performing the energy-efficiency analysis,
a combination of architectural parameters picked up based on intu-
ition or pure performance analysis may be as much as 30% off the
optimal curve (which we found to be the case in many academic
works), which means that there exists another configuration deliv-
ering the same performance, at 30% less power. By constructing
the energy efficient family a designer can easily control how far a
particular configuration is off the optimal curve.

We made a number of observations by analyzing the configura-
tions on the energy-efficient family curves. First, the optimal sizes
of the major structures, even if the energy-delay-square product is
chosen for the optimization target, are significantly smaller than
those assumed in the majority of academic architectural studies.
The reason is that in most academic architectural studies all archi-
tectural parameters are pushed to achieve the limit performance,
neglecting the power issue. This approach makes the resulting ar-
chitectures very inefficient in terms of energy dissipation.

The optimal sizes of major architectural structures typically
grow as the issue width of the processor increases, because the
resulting enhancement of the out-of-order capabilities allows the
processor to more fully take advantage of the growing issue ca-

pabilities and functional resources, and the resulting performance
gain over-weighs the associated growth of the energy dissipated by
these structures.

0.5 1 1.5 2 2.5 3

2

4

6

8

10

 e
ne

rg
y

pe
r

in
st

ru
ct

io
n,

 n
J

1 x 4−way
1 x 6−way
1 x 8−way
1 x 12−way
1 x 16−way

IPC

Figure 6: Global energy-efficient family for the centralized super-
scalar architecture.

Figures 4 through 5 indicate that configurations with a fixed
issue width can work efficiently only over a certain performance
range. To find what issue widths allow configurations that dissi-
pate the least amounts of energy per instruction, given a perfor-
mance target over the whole range of achievable IPC, we plot-
ted on the same graph all the energy-efficient curves for architec-
tures with a given number of clusters. Figure 6 graphs energy-
per-instruction versus IPC for all the energy-efficient curves for all
simulated micro-architectures.

Highlighted curves in the graphs on Figure 6 represent config-
urations with the lowest amounts of energy dissipation per instruc-
tion given a performance target. We will refer to the configurations
on these highlighted curves as global energy-efficient families. A
non-linear growth of the energy per instruction in Fig. 6 indicates
that the centralized superscalar architecture, even when optimized
for the energy efficiency, is inherently energy inefficient. The next
section demonstrates the potential for improving the energy effi-
ciency at the architectural level using a decentralization approach.

3 Improving Energy Efficiency through Decentralization

3.1 Multicluster Architectures

One way to address the energy growth problem at the micro-
architectural level is to replace the today’s tightly coupled super-
scalar CPU with a set of clusters, so that all key energy consumers
are split between clusters. Ideally, instead of accessing centralized
structures in the traditional superscalar design, instructions sched-
uled to individual cluster would access local structures most of the
time. The primary advantage of accessing a collection of local
structures instead of centralized ones is that the number of ports
and entries in each local structure is much smaller, which makes
them simple and low power.

The problem of the growth of centralized structures in a super-
scalar architecture has been recognized by some researchers pri-
marily because of the associated increase in access time and imple-
mentability problems, and a few decentralized architectures have
been proposed [10, 2, 5, 13, 3, 7]. However, access times have
been the primary concern thus far, not energy costs.

In [15] we propose a new version of the multicluster architec-
ture, tailored to achieving a higher energy efficiency. It addresses
the access energy growth problem in the key problematic points of
the superscalar micro-architecture, in particular, register file, issue
window, memory disambiguation unit and bypass mechanism.

47687

Fetch

Decode

 Rename
and steering

Issue Window

Register File

Bypass

 Data
Cache

RAW

RAB

 memory
disambiguation

Issue Window

Register File

Bypass

 Data
Cache

RAW

RAB

 memory
disambiguation

Figure 7: Overview of the proposed multi-cluster architecture.

We propose an architecture where today’s tightly coupled su-
perscalar CPU, Fig. 1, is replaced with a set of clusters, as shown
in Fig. 7. Each cluster could be either a simple in-order single-
issue machine, multiple-issue machine, or it could be an out-of-
order machine. Our simulations showed, however, that in order to
compensate for the overhead of inter-cluster communication and
get a significant improvement in the energy-delay metric over the
tradition superscalar processor, every cluster must be a powerful
out-of-order superscalar machine by itself. The optimal number of
clusters and their configurations have been determined by simula-
tion targeted to the minimization of the energy-delay metric [15].

Each cluster, Fig. 7 is provided with a local instruction issue
window, local physical register file containing a subset of physical
registers, a set of execution units, local memory disambiguation
unit, and one bank of the interleaved data cache.

Each architectural register named by an instruction is renamed
to a physical register in one of the local register files. A global map-
ping table is used for renaming source registers. For the destination
register named by an instruction a physical register is picked up
from the free list of the cluster to which it is dispatched. A simple
heuristic is used to assign instructions to clusters [15].

After renaming, the renamed instructions are dispatched to in-
struction windows in individual clusters. The availability of source
operands mapped to the local register file is monitored in the con-
ventional way. To monitor the availability of a source operand
mapped to a remote register file, an appropriate request is placed
to the Remote Access Window (RAW) corresponding to the regis-
ter file holding the needed operands. Also, a free entry is allocated
in the corresponding Remote Access Buffer (RAB) that will accept
the value read from the remote register file through one of remote
access ports, and will keep it until the instruction that needs it is
issued.

Issued instructions get their source operands from either the
local register file, or from the appropriate RAB. One clock cycle
penalty is incurred for accessing a remote operand. This extra cycle
of latency is the main reason why a multi-cluster architecture can-
not reach the same IPC as a centralized architecture for the same
total issue width and the same total sizes of major hardware re-
sources. The other reason is that centralized resources are always

better utilized that distributed ones.
The number of the remote access ports and the number of en-

tries in the RAW and RAB have been determined for every con-
figuration through the energy-efficiency optimization process. The
typical inter-cluster traffic on SPEC95 benchmarks was measured
to be about 0:2 remote register file access per instruction, and from
1 to 3 remote access ports were found be sufficient to handle it. The
optimal number of entries in RAW and RAB were found to be in
the range from 4 to 8.

Memory instructions are allocated entries in the disambiguation
unit of the cluster to which they are issued. The selection of a
cluster to which a memory instruction is dispatched is based on the
memory bank prediction, done in the decode stage.

3.2 Energy-Efficiency of Multicluster Architecture

To optimize the multicluster architecture for energy efficiency we
used the same optimization methodology, Fig. 3. There are six in-
dependent variables involved in the optimization process, including
the sizes of the register file, issue window, memory disambiguation
window, remote access window and remote access buffer, as well
as the number of remote access ports.

Having constructed global energy-efficient families for single-
cluster and multi-cluster architectures allows a knowledgeable
comparison of these architectures for energy efficiency. Figure 8
shows the global energy-efficient families for single-cluster, two-
cluster and four-cluster architectures plotted on the same graph in
energy-per-instruction versus IPC coordinates.

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

2

3

4

5

 e
ne

rg
y

pe
r

in
st

ru
ct

io
n,

 n
J

centralized
2−cluster
4−cluster

IPC

Figure 8: Global energy-efficient families for single-cluster, two-
cluster, and four-cluster architectures.

An important result that can be derived from Figure 8 is that
using multi-cluster configurations for building higher-performance
processors allows us to further increase the architectural speed
of the processors, while keeping the micro-architecture energy-
efficient in the sense of the of the energy-delay product, E �D, as
discussed in Section 2.1. Indeed, for keeping the micro-architecture
energy-efficient it is sufficient to guarantee that the energy dissipa-
tion per instruction grows no faster than linearly with increasing
IPC. This can be achieved by using the single-cluster 1 � 4-way
and 1� 6-way configurations for delivering IPC below 2, the two-
cluster 2�4-way and 2�6-way configurations for IPC in the range
from 2 to 2:5, and the four-cluster configurations for achieving ar-
chitectural speed up to 3 instructions per cycle. This provides an
energy efficient micro-architecture road-map for the next several
generations of high-performance processors.

Figure 9 (upper graph) shows the global energy-efficient fami-
lies plotted in energy-per-cycle versus IPC coordinates. It indicates
that given the same power budget the multi-cluster architecture al-
lows configurations that can deliver up to 20% higher performance

57788

than the best configurations with the centralized architecture, while
the typical performance improvement for the IPC range from 2 to
3 is around 15%. Conversely, given a performance target, con-
figurations the multi-cluster architecture can deliver the required
performance, dissipating only half the power dissipated by the best
configurations of the single-cluster architecture.

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

5

10

15

20

25

 e
ne

rg
y

pe
r

cy
cl

e,
 n

J

centralized
2−cluster
4−cluster

IPC

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
1

1.2

1.4

1.6

1.8

2

2.2

2.4

 e
ne

rg
y−

de
la

y
pr

od
uc

t,
nJ

 ×
 c

yc
le

centralized
2−cluster
4−cluster

IPC

Figure 9: Global energy-efficient families for single-cluster, two-
cluster, and four-cluster architectures.

The plots showing the energy-delay product for the global
energy-efficient families in Fig. 9 (lower graph) prove that ex-
ploiting Instruction-Level Parallelism (ILP) generally improves the
energy-delay metric as long as the energy overhead of the hardware
is moderate. As the energy overhead of exploiting ILP becomes too
high, further pushing the IPC by increasing the processor out-of-
order capabilities causes the energy-delay product to grow. Thus,
for any architecture there exists a certain value of IPC for which the
energy-delay metric reaches its minimum.

The lower graph on Fig. 9 shows that architectures with more
clusters reach the minimum energy-delay metric at higher val-
ues of IPC. The minimum energy-delay product achieved by the
two-cluster architecture is lower than that achieved by the single-
cluster architecture, and the minimum energy-delay product of
the four-cluster architecture has the lowest value of approximately
1nJ�cycle
instruction2

, achieved at IPC = 2.5 instructions per cycle.

4 Conclusions

A methodology has been proposed for power-optimization at the
micro-architecture level. Major targets for power reduction have
been identified, then an energy-efficiency optimization of a super-
scalar micro-architecture has been performed to construct a family
of energy-efficient configurations. Analysis of centralized super-
scalar architecture has been performed, indicating the inherent en-
ergy inefficiency of the traditional approach. Multicluster architec-
ture has been suggested as a possible solution to the problem. Com-

parison of energy-efficient families of centralized and multicluster
micro-architectures shows that at the architectural level there is a
potential for reducing power of the traditional design up to 50%,
given a performance requirement, and for up to 15% performance
improvement, given a power budget.

References

[1] D. Burger and T. Austin. The SimpleScalar tool set, ver-
sion 2.0. Technical Report 1342, University of Wisconsin-
Madison, Computer Science Department, 1997.

[2] R. Colwell et al. A VLIW architecture for a trace scheduling
compiler. IEEE Transactions on Computers, 37(8):967–979,
August 1988.

[3] K. Farkas. Memory-System Design Considerations for
Dynamically-Scheduled Microprocessors. PhD thesis, Uni-
versity of Toronto, 1997.

[4] James Farrell and Timothy Fischer. Issue logic for a 600-
MHz out-of-order execution microprocessor. IEEE Journal
of Solid-State Circuits, 33(5), May 1998.

[5] M. Franklin. The Multiscalar Architecture. PhD thesis, Uni-
versity of Wisconsin-Madison, November 1993.

[6] R. Gonzalez and M. Horowitz. Energy dissipation in general
purpose microprocessors. IEEE Journal of Solid-State Cir-
cuits, 31(9):1277–1283, September 1996.

[7] R. Kessler. The Alpha 21264 microprocessor. IEEE Micro,
19(2):24–36, March 1999.

[8] A. Kumar. The HP PA8000 RISC CPU. IEEE Micro, 17(27-
32), April 1997.

[9] J. Nelder and R. Mead. A simplex method for function mini-
mization. Computer Journal, 7(4):308–313, 1965.

[10] S. Palacharla, N. Jouppi, and J. Smith. Complexity-effective
superscalar processor. Proceedings of the 24th Annual Inter-
national Symposium on Computer Architecture, pages 206–
218, June 1997.

[11] J. Smith and G. Sohi. The microarchiteture of superscalar
processors. Proceedings of the IEEE, December 1995.

[12] M. Tremblay, D. Greenley, and K. Normoyle. The design of
the microarchitecture of UltraSPARC-I TM. Proceedings of
the IEEE, pages 16531–1663, December 1995.

[13] S. Vajapeyam and T. Miltra. Improving superscalar in-
struction dispatch and issue by exploiting dynamic code se-
quences. Proceedings of 24th Annual International Sympo-
sium on Computer Architecture, June 1997.

[14] N. Vasseghi, K. Yeager, et al. 200-MHz superscalar
RISC microprocessor. IEEE Journal of Solid-State Circuits,
31(11):1675–1685, November 1996.

[15] V. Zyuban. Inherently Lower-Power High-Performance Su-
perscalar Architectures. PhD thesis, University of Notre
Dame, January 2000.

[16] V. Zyuban and P. Kogge. The energy complexity of register
files. IEEE Symposium on Low Power Electronics and De-
sign, pages 305–310, August 1998.

67889

	Main Page
	ISLPED'00
	Front Matter
	Table of Contents
	Session Index
	Author Index

