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Abstract

In this paper, we propose a novel fault-oriented test gen-
eration methodology for detection and isolation of faults in
analog circuits. Given the description of the circuit-under-
test, the proposed test generator computes the optimal tran-
sient test stimuli in order to detect and isolate a given set of
faults. It also computes the optimal set of test nodes to
probe at, and the time instants to make measurements. The
test generation program accommodates the effects intro-
duced by component tolerances and measurement inaccu-
racy, and can be tailored to fit the signal generation
capabilities of a hardware tester. Experimental results show
that the proposed technique can be applied to generate tran-
sient tests for both linear and non-linear analog circuits of
moderate complexity in reasonably less CPU time. This
will significantly impact the test development costs for an
analog circuit and will decrease the time-to-market of a
product. Finally, the short duration and the easy-to-apply
feature of the test stimuli will lead to significant reduction
in production test costs.

1.  Introduction

In recent years, analog circuit testing has received a lot
of attention due to the large number of analog and mixed-

signal applications in various fields. Traditional test meth-
ods for analog circuits rely on specification testing, in
which some or all response parameters are checked for
conformity to the design specifications. However specifica-
tion testing is time consuming and expensive. As an alter-
native, fault-based test strategies are being increasingly
used. Fault-based techniques test for the presence (or
absence) of physical manufacturing-related defects (faults),
thereby providing a quantitative estimate of the effective-
ness and completeness of the testing process. They also
allow the test procedure to test only for the most likely
group of faults induced by a manufacturing process.

In fault-driven test strategies, appropriate parameters of
the test waveform (DC, AC or transient) are determined,
which can excite the faults and make them observable in

the measurement space. DC test generation schemes have
been proposed in [1] and [2] that use high-level iteration
and linear approximation of the circuit to generate DC test
stimuli. However, DC tests are not adequate for detecting
parametric faults. In [3] and [4], sensitivity-based algo-
rithms have been proposed to generate frequency-domain
(AC) tests. AC testing requires the circuit under test (CUT)
to settle down to a steady state before measurements can be
made, and this leads to longer test times. In transient test-
ing, an aperiodic waveform is applied to the CUT and its
response is measured during application of the transient.
By exciting the CUT with pulses and ramps whose fre-
quency spectrum stretches over a wide range of frequen-
cies, we can make all faults visible in the measurement
space. Transient test generation algorithms using quadratic
programming [5], minimax optimization [6] and bilinear
transformation [7] have been proposed in recent past. In
[8], a diagnostic transient test generator has been proposed
that uses optimization techniques at every time point to
determine the transient test stimuli for both fault detection
and fault isolation. However, all of the analog test genera-
tion techniques proposed so far suffer from the following
limitations. Firstly, the quality of tests is highly influenced
by the presence of local extrema of the objective function.
Also, the test nodes (circuit nodes at which measurements
can be made) and the sampling time instants (time at which
measurements are made) are given as input by the user. In
practice, the user may not have enough information about
the circuit to pre-specify the best test nodes or sampling
time instants. This leads to inferior test stimuli (low fault
coverage) and / or longer test times.

In this paper, we propose a novel transient test genera-
tion methodology for both fault detection (to determine
whether the circuit is good or bad) and fault isolation (to
identify the faulty sub-circuit). The input to the proposed
test generator consists of the circuit description, failure
modes of various circuit components and the tester specifi-
cations. The tester specifications provide information
(maximum slew-rate, peak-to-peak voltage, etc.) about the
kind of waveforms that can be generated and the type of
measurements that can be made on a hardware tester. The
output of the test generator consists of test stimuli, test
nodes and sampling time instants that are optimally suffi-
cient to detect (or isolate) all the failure modes (faults) in
the circuit under test (CUT). The proposed method is appli-Research supported by AFRL under contract E21E77



cable to both linear and non-linear circuits and systems of mod-
erate complexity, and accommodates component tolerance
effects and measurement inaccuracies. A complete test genera-
tion system for both fault detection and fault isolation has been
implemented and tested on several circuits.

The paper is organized as following: Section 2 introduces the
basic concepts in analog test generation and the fault models
used. Section 3 presents an overview of the test generator. The
key test generation and optimization module is described in Sec-
tion 4, followed by a brief discussion on the fault simulation
strategy in Section 5. The evaluation of the objective function is
described in Section 6, followed by some experimental results in
Section 7.

2.  Basic concepts and approach

In this section, we introduce some key concepts that are used
in the rest of this paper. First, we present the concept of auto-
mated test generation and its application to analog circuits fol-
lowed by a brief description of the fault models used in our
approach.

2.1  Test generation for analog circuits

Consider the leapfrog filter shown in Figure 1. The filter con-
sists of six sub-circuits called Part 0, Part 1, ..., Part 5 as shown
in the figure. Each sub-circuit, in turn, consists of resistors,
capacitors and an op-amp. The input to the filter is applied at cir-
cuit node in and the output is observed at circuit node out. Now,
let us assume that we are given a faulty instance of the leapfrog
filter in which the resistance of resistor R5 is 75% of its nominal
value (10 kΩ). Let us further assume that our goal is to do pass /
fail testing, i.e. to differentiate this faulty circuit from its fault-
free instance. In order to do that, we are allowed to apply a tran-
sient test stimulus at input node in and we can make node volt-
age measurements at any circuit node at any time instant. Note
that, the parameters of the transient test stimulus, i.e., slew-rate,
frequency, etc., are governed by the signal generation capabili-
ties of the testing equipment. Moreover, in most practical analog
and mixed-signal circuits only a few of the circuit nodes can be
probed at in order to make a test measurement. Therefore, the
testing process must use minimum number of test nodes in order
to detect a given list of faults. Finally, the time spent on a real

tester is extremely expensive. Therefore, the interval from the
time at which the test stimulus is applied to the time at which the
measurement is made must be as small as possible. We call this
time interval sampling delay.

Based on the above discussion, the requirements of an analog
pass / fail test generator can be summarized as the following.
Given the circuit description, the tester specifications and the list
of targeted faults, the objective of the test generator is to deter-
mine the minimal set of test stimuli that can detect the maximum
number of faults (i.e., maximize fault coverage), using least
number of test nodes (i.e., minimize test access) and minimum
sampling delay. Additionally, in case of test generation for fault
isolation, the test stimuli must also be able to differentiate among
faults from various sub-circuits. Note that, a fault can be differ-
entiated from another fault (or from the fault-free instance) only
when the corresponding measurement in the former differs from
the latter by a certain minimum threshold. This threshold
depends on component tolerances and measurement inaccuracy
and is computed by the techniques described in [9]. In this paper,
we assume the threshold is given as an input to the test genera-
tion program.

Let us consider the waveforms shown in Figure 2. Figure 2(a)
shows the test stimulus that detects the fault in R5 (described
earlier) within the leapfrog filter circuit. The corresponding
waveforms at five different test nodes within the filter circuit are
shown in Figure 2(b) through Figure 2(f). The threshold for fault
detection is 0.5 V, and node voltage measurements at test nodes
are used for simplicity (although any other transient measure-
ment supported by the testing equipment could be used). From
Figure 2, we can see that the fault at R5 is detected at test node 7
with minimum sampling delay.

2.2  Fault models

We assume that for each circuit component, a list of cata-
strophic (shorts and opens) and parametric (deviations outside
tolerance bands) faults is given. It is assumed that the fault-list
(list of all possible faults) is generated by inductive fault analysis

Figure 1. Leapfrog filter
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tools [10] or from manufacturing defect data. Faults in intercon-
nections between circuit components are subsumed into the
fault-list of the corresponding components and the existence of a
single faulty component is assumed.

3.  Overview of the proposed approach

Consider Figure 3, which shows an overview of the proposed
test generation methodology. The key components of the pro-
posed test generator are the following:

• Test stimulus generation and optimization: This module
uses a genetic optimization technique to compute the tran-
sient test stimuli that maximize fault coverage with minimum
test access and sampling delay.

• Fault simulation: For a given test stimulus, the fault simula-
tion module computes the response of the circuit in presence
of each fault in the fault list. This step is the most time con-
suming, and therefore, a heuristic fault simulation strategy
has been proposed to minimize the test generation time.

• Evaluation of test fitness: Given a test stimulus and the cor-
responding measurements in presence of all faults in the fault
list, this module determines the fitness (i.e., objective func-
tion) of the test stimulus with respect to other test stimuli in
the search space.

The input to the test generator consists of the following infor-
mation: (a) circuit description: SpectreHDL behavioral models
of the circuit components and their connectivity information in
Spectre netlist format, (b) fault list: list of faults targeted for test
generation, and (c) tester specifications: information on the type
of test stimuli that can be generated or the measurement that can
be made on the hardware tester, etc.

Given the above input, the test generation software generates
the following output for each fault in the fault list: (a) test stimu-
lus: the transient waveform (to be applied at the input of the
CUT) that detects (or isolates) the corresponding fault, (b) test
node: the circuit node at which the specified measurement is to
be made, and (c) sampling delay: the time instant at which it is to
be made.

In the following sections, we describe each component of the
proposed test generator in more details.

4.  Test stimulus generation and optimization

The goal of our approach, as described earlier, is to compute
the set of test stimuli that maximize the fault coverage while
minimizing test access and sampling delay. Therefore, the prob-
lem of test stimulus generation is an optimization problem in
principle. Here, we have used a genetic optimization technique
in our attempt to find the globally optimal test stimulus. Each
transient test stimulus, T, is coded using a genetic string (an n-
tuple), [t1, t2, ..., tn], as shown in Figure 4. The number (n) of
alleles in each string depends on the maximum slew-rate specifi-
cation (of the signal generator) and is equal to the number of cor-
ner points in the piece-wise linear transient stimulus. The
allowed range of voltage values is determined by the power sup-
ply levels of the CUT. The test stimuli are generated using the
following rules of genetic selection, cross-over and mutation:

• Selection: The selection of strings is biased towards strings
with higher fitness so that the average fitness of successive
populations tends to increase. To select the parent strings, we
have used tournament selection, in which two strings are
picked and the better one is selected (with certain probabil-
ity) for reproduction.

• Cross-over: During cross-over, genes from each parent string
is combined to create child strings. We have chosen uniform
cross-over in which each gene of the parent strings is chosen
with a certain uniform probability and the parent strings are
then crossed over at the selected gene to yield two child
strings.

• Mutation: Once created, the genes of the child strings are
selected with a certain probability and replaced with another
selected at random. In our case, the gene undergoing muta-
tion is replaced with a voltage value selected at random
within the allowed range of voltage values.

The generation and optimization of test stimuli can be
described as following. The algorithm starts with a random pop-
ulation of test stimuli. Next, for each test stimuli, every fault in
the given fault list is simulated and measurements are made at
each test node. Based on the measurements, the fitness of each
test stimulus is computed (Section 6) and the best stimuli are
then chosen for reproduction. The test stimuli with inferior fit-
ness are replaced with the newly generated child stimuli and the
above process is repeated. The goal of test optimization is to
move towards a better population with each successive iteration
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Figure 3. Proposed test generation methodology
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and the process continues till all the faults in the fault list are
detected (or isolated). Also, pre-specified limits on the test devel-
opment time can provide an alternate exit strategy.

5.  Fault simulation

Given a test stimulus, fault simulation determines the mea-
surement values in presence of each fault in the fault list. This
involves numerous circuit simulations and hence contributes to a
significant portion of the test development time. In this paper, we
propose a heuristic fault simulation strategy in order to reduce
the complexity of fault simulation. Consider an analog / mixed-
signal circuit with M sub-circuits, P1, P2, ..., PM. Assume that
we have K candidate test stimuli, T1 ,..., TK, generated during test
optimization (Section 4), and our goal is to compute the corre-
sponding fault coverage, test access and the minimum sampling
in the shortest possible time. At this point, let us introduce some
key notations that will help explain the proposed fault simulation
approach. Given a test stimulus Tj, we can identify a fault in each
sub-circuit Pi that is hardest to detect, i.e., the measurements in
presence of this fault are the closest to those in the fault-free
case. For test stimulus Tj, the hardest to detect faults in the M

sub-circuits are denoted by an M-dimensional vector f(Tj). We
also introduce a heuristic function h(Tj) which is used as a simi-
larity measure between two candidate test stimuli. We now pro-

pose that if , and if

then with a certain probability.

Therefore, if we compute f(Ti) and f(Tk) using partial fault simu-
lation and fault ordering techniques as described in [11], then we
can predict the hardest to fault vector f(Tj) for test stimulus Tj

without any additional fault simulation. However, in case

we need to actually determine f(Tj) via partial

fault simulation. The heuristic function h(Tj) is computed from
the response of the fault-free circuit to test stimulus Tj and, as
our experiments indicate, provide a very good estimate of the
similarity between two candidate test stimuli.

Once the hardest to detect fault vector f(Tj) for test stimulus Tj

is computed, we can then determine the corresponding fault cov-
erage, test access and sampling delay as described in the follow-
ing section.

6.  Evaluation of test fitness

Given the fault vector f(Tj) and the corresponding measure-
ment values, evaluating the fitness of test stimulus Tj consists of
two distinct steps. First, based on the above information, the
optimal set of test nodes are selected such that maximum number
of faults in f(Tj) are detected (or isolated) with minimum average
sampling delay. The next step consists of the actual evaluation of
the fitness function.

Selection of test nodes: The algorithm proposed for optimal test
node selection is as following. Let us assume that Fp denotes the
number of faults detected at test node Cp with average sampling
delay Sp. The test nodes {Cp, p = 1 to NC}, where NC is the total
number of test nodes, are then ranked according to the increasing
values of the product (FT-Fp).Sp, where FT is the total number of
faults detected by test stimulus Tj. From this ranked list, test
nodes with lowest values of (FT-Fp).Sp are chosen one at a time
till the number of faults detected by the selected set of test nodes
equals the total number of faults detected by test stimulus Tj, i.e.,
FT. The number of total test nodes thus selected is denoted by NT

and the average sampling delay is denoted by S.

Evaluation of fitness function: The function used to compute
the fitness of each test stimulus Tj must take into account the
objective of the proposed test generator, which is to detect (or
isolate) the maximum number of faults with minimum test
access and minimum sampling delay. Therefore, a good heuristic
for the fitness function will be of the following form:

(EQ 1)

where, D(f(Tj)) denotes the number of hardest to detect faults
detected by Tj and L denotes the total duration of the test stimu-
lus. The non-negative weights a, b and c depend on the relative
importance of the three sub-objectives, i.e., maximizing fault
coverage, minimizing test node and minimizing sampling delay.
For example, if the goal was to maximize fault coverage without
any constraint on test access or sampling delay, then the corre-
sponding weights will be a = 1, b = 0 and c = 0. For our experi-
mentation, we have assumed a = 0.7, b = 0.2 and c = 0.1. Note
that, the value of the fitness function drives the test generation
and optimization process described in Section 4.

7.  Experimental results

To illustrate our methodology, let us consider the leapfrog fil-
ter shown in Figure 1. We assume that we are allowed to apply a
transient test stimulus with a maximum frequency of 10 kHz up
to a time duration of 2 ms. In practice, the frequency and the
duration of the test stimulus will be determined by the tester
specifications. The test stimulus was constructed as a piece-wise
linear waveform with 20 segments and the maximum peak-to-
peak voltage allowed was from -15 V to 15 V at steps of 1 V.
Note that, the power supply voltage levels for the leapfrog filter
were -15 V and 15 V respectively. We also assume that at most
50% of the circuit nodes can be probed at for testing purposes.
This is a realistic assumption because of limited test access in
most practical circuits. The netlist of the leapfrog filter circuit
was coded in Spectre format and SpectreHDL behavioral models
were used for the op-amps in Figure 1. The faults in the fault list
were specified as percent deviations of the component parame-
ters and Spectre was used as the core simulator during fault sim-
ulation.

h Ti( ) h T j( ) h Tk( )≤ ≤ f T i( ) f Tk( )=

f T i( ) f T j( ) f Tk( )= =

f T i( ) f Tk( )≠

a D f T j( )( ) f T j( )⁄⋅ b NT NC⁄ c S L⁄⋅–⋅–



Case study 1: For our first experiment, we generate tests to
detect a set of 72 parametric faults in the leapfrog filter shown in
Figure 1. The detection threshold (Section 2.1.) is assumed to be
0.2 V, and the tests are generated twice, once using full-circuit
fault simulation and once using the partial fault simulation tech-
nique described in Section 5. Figure 6 shows the test stimuli and
the resulting node voltage measurements for some of the faults
in the given fault list. Full-circuit fault simulation was used to
generate the test stimulus in this case.

Similarly, Figure 6 shows the test stimuli generated using par-
tial simulation and the corresponding node voltage measure-
ments for the same subset of faults.

Table 1 shows the comparison between test generation using
full-circuit simulation and the same using partial simulation.
Note that, the CPU time (on Sun Ultra-1) required by the latter is
only 35% of that required by the former. Also note that, the fault

coverage is the same (100%) in both cases, although the test
access and the average sampling delay are slightly different.

Case study 2: In our second experiment, we generate tests for
detecting 60 parametric faults in the state variable filter shown in
Figure 8 with a detection threshold of 0.5 V.

Figure 7 shows the test stimuli generated by using the two differ-
ent fault simulation strategies. The corresponding comparison
data are shown in Table 2.

Case study 3: For our final case study, we generate tests for iso-
lating faults down to the corresponding sub-circuits within the
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Figure 5. Test stimulus with full simulation
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TABLE 1. Test generation data for leapfrog filter

Fault
coverage

Test
access

Sampling
delay

CPU
time

Full-circuit
simulation

100% 28% 0.03 ms
(average)

2138s

Partial
simulation

100% 35% 0.02 ms
(average)

756s

TABLE 2. Test generation for state variable filter

Fault
coverage

Test
access

Sampling
delay

CPU
time

Full-circuit
simulation

100% 18% 0.08 ms
(average)

1157s

Partial
simulation

100% 45% 0.09 ms
(average)
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leapfrog filter as shown in Figure 1. Figure 9 shows the test stim-
ulus and a few of the corresponding node voltage measurements
(at test node 5) that isolates the fault R2 = 5.5 k from all other
faults belonging to the remaining five partitions. The CPU time
required to generate tests for isolating all the 72 faults (consid-
ered in case study 1) is 2149 s. The threshold used to differenti-
ate between faults is 0.2 V.

8.  Conclusions and future work

In this paper, we have presented a novel transient test genera-
tion methodology for analog circuits. The proposed approach, to
the best of our knowledge, is the only technique that determines
the optimal test stimuli as well as the optimal set of test nodes
and sampling instants for both fault detection and isolation in
analog circuits. It also takes into account the effects introduced
by component tolerances and measurement inaccuracy. One key
feature of the test generator is that it accommodates the hardware
limitations of a real tester and can generate test waveforms that
are suited for generation on a tester. The proposed approach can
be applied to both linear and non-linear circuits as it uses a stan-
dard circuit simulator (Spectre) and behavioral models for fault
simulation. The test development time is very reasonable for cir-
cuits with moderate complexity. This is more so keeping in mind
that test development is a one-time process. Finally, the test gen-
erator can be easily modified so that the generated test waveform
is of a particular type, e.g., piece-wise linear or step waveform,
etc. This offers greater flexibility to the testing process.

Future work will involve extending and applying the pro-
posed test generator to mixed-signal and large analog circuits.
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