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Abstract
In this paper, we present a novel approach to use test stimuli gen-
erated by digital components of a mixed-signal circuit for testing
its analog components. A wavelet transform is applied to the re-
sponse signal of the device under test (DUT). We will show, that
in comparison to Fourier transform or no transform at all, partic-
ular properties of this transformation are advantageous for mixed-
signal test and especially built-in self test.

We introduce a new method for test measurement selection
based on a non-deterministic parametric fault model for analog
circuits. This approach allows for noise and measurement error in
testing. We show, how test quality can be optimized in the pre-
sented fault model. Our test methodology is demonstrated on an
analog CMOS bandpass filter.

1 Introduction
The increasing trend towards integration of digital and analog
components on the same chip has spawned growing attention to
the test needs of mixed-signal ICs. After all, the price of an in-
creasing number of devices is presently dominated by the cost of
production testing. A major part of these testing costs are due to
performance test of analog components.

Faults that occur in analog circuits are commonly classified into
catastrophic faults (hard faults) caused e.g. by spot defects and
parametric faults (soft faults) [1]. A circuit fails due to a para-
metric fault, if random fluctuations inherent to the manufacturing
process lead to a significant performance loss that violates the cir-
cuit’s specification. Mixed-signal test engineers and designers are
primarily concerned with parametric faults because these faults are
hard to distinguish from acceptable process variations [2, 3].

Most of the early work dealing with test design for analog cir-
cuits can be classified into two groups. The first group uses mea-
surements of the specified performances only, and aims at mini-
mizing test cost by optimal ordering of tests or by reducing the
number of tests [3, 4]. The second group constructs a test set
based on measurements that are regarded to be sensitive and rea-
sonable, but do not necessarily include the specified performances
of the circuit. Most of these approaches aim at the detection of
catastrophic faults [5–7]. Recently, approaches aiming at the de-
tection of parametric faults for LTI systems [9] and for arbitrary
circuits [8] have been published.

Analog components that are embedded in a mixed-signal cir-
cuit impose harder restrictions on test methodologies than isolated
analog components, since functional testing of analog circuits re-
quires insertion of analog stimuli into the DUT as well as precise
measurement of the circuit response. This often conflicts with the
goal of dense integration. Support for testing by means of on-
chip test structures may solve some of these problems. Research
in this area showed results regarding on-chip support for genera-
tion of test stimuli as well as for evaluation of the DUT’s output
signals [9–12]. To circumvent the complexity of high-speed high-
performance test equipment, some built-in self test (BIST) strate-
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Figure 1: Test method

gies try to detect circuit faults by means of simple measurements
performed by low-performance test circuitry that is integrated with
the DUT [13, 14].

In this paper, we introduce a new method for test selection to-
gether with a parametric fault model that includes measurement
errors and allows an optimization of test quality and test effective-
ness (Section 3). We demonstrate our approach on a test method
selected particularly with regard to BIST (Section 2). Important
features of this method are simple generation of test stimuli, feasi-
ble on-chip evaluation of test measurements by wavelet transform,
and a low sensitivity to measurement noise. Our test method is
performed on an analog CMOS bandpass filter circuit. The cir-
cuit’s specification regarding center frequency (f0 > 17.5MHz)
and quality (Q > 15.5) will be tested by means of a 10-bit,
1MSamples/s A/D-converter (ADC). The moderate performance
of the ADC has been chosen to show that a test based on charac-
teristic observations may yield an acceptable test quality in situ-
ations where the performance of a specified test equipment is in-
sufficient for a full functional test, or where application of high-
performance test structures is not feasible. In Section 5, we will
show that wavelet transform may significantly increase test quality
compared to Fourier transform or no transform.

2 Test method
Figure 1 shows our way to determine spectral coefficients that can
be used for testing a DUT. A test stimulus x(t) as shown in Fig-
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ure 2 is applied to the circuit. The test stimulus has been cho-
sen particularly with regard to analog BIST in the digital environ-
ment of the DUT. x(t) can be generated by digital circuitry, and
hence this test method needs no external signal generation or a
complex integrated analog test signal generation. We assume the
shape depicted in Fig. 2, that is defined by two parameters T0, T1
and the rise/fall time tr. In the example performed in Section 5,
3T0 ≤ 60µs, which leads to a short overall testing time. Note that
due to the large voltage swing of this digital input signal, the DUT
cannot be treated as a linear time-invariant (LTI) system anymore.

The circuit’s response g(t) is sampled and quantized, and then
undergoes a wavelet transform. The resulting wavelet coefficients
o are used to calculate a test result di for each specified perfor-
mance fi, i = 1 . . . nf , that indicates whether the DUT satisfies
this specification or not.

The test decision has to be made upon the output signal g(t) of
the DUT, when the test stimulus x(t) is applied to it (Fig. 1). In
g(t), the information content may be condensed at discrete points
(e.g. local extrema, poles and zeros, etc.) or spread over larger
parts of the function (e.g. the global maximum or the mean value).
In many applications that depend on the non-local information
content, function transforms play an important role, since they may
condense wide-spread information at a few discrete points. For ex-
ample, with G(ω) being the Fourier transform of g(t), the integral∫∞
−∞

g(t) dt is G(0).
A drawback of the Fourier transform is its handling of “semi-

local” information content, i.e. a characteristic of limited extent in
time like a slope or a spike. These properties are often of inter-
est, and are detected more clearly by other transformations such
as a windowed Fourier transformation or wavelet transformations.
Wavelet transformations [15] as used in this work are based on a
set of orthonormal basis functions ψ(a,b) that are derived from a
single function ψ by scaling and shifting

ψ(a,b)(t) = |a|−1/2 ψ

(
t− b

a

)
. (1)

The wavelet transformWψ{g} : R
2 → R of a function g : R →

R is then

Wψ{g}(a, b) = cψ

∫ ∞

−∞

g(t) ψ(a,b)(t) dt , (2)

with some constant value cψ that depends on the used basis func-
tion ψ. The basis function used in this work is the widely used
Daubechies wavelet of second order (Fig. 3), since it yields an
orthonormal basis for discrete transforms as well as a fast trans-
form algorithm. In the case of sampled functions, a real-valued
sequence 〈gn〉, 0 ≤ n < N , is transformed into the mean
value c0 and a set of coefficients dmk = Wψ{g}(2m, k2m) for
1 ≤ m ≤ log2N and 0 ≤ k < N/2m, altogether N values.

In contrast to the Fourier transform, the basis functions of this
transform have compact support. Thus, each of the resulting co-
efficients is influenced only by a part of g just like the coeffi-
cients of a windowed Fourier transform. Furthermore, algorithms
for discrete transforms are available that make VLSI implementa-
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Figure 3: Daubechies wavelet

tions feasible [12,16]. For test measurements, wavelet coefficients
have three important advantages over Fourier coefficients or time-
domain measurements:

1. SNR at high frequencies. The high-frequency part of the spec-
trum of g(t) may either result from a long-time high-frequent
oscillation (i.e. a global characteristic of g(t)), or from steep
slopes (i.e. an event-like characteristic of limited extent in
time). A small transform window around an event like this con-
tains all values of g(t) that contribute to the high-frequency co-
efficients, but only a small part of an inevitable noise floor that
is induced by measurement errors. In this case, a wavelet trans-
form yields a far better signal-to-noise ratio than the Fourier
transform.
The test stimuli x(t) used in this approach induce high-frequent
spectral components by steep slopes. Although this characteris-
tic need not automatically be assumed to be valid for the output
signal g(t), this is probable for many kinds of circuits. Thus,
by using the wavelet transform, higher frequency parts of the
spectrum of g(t) can be utilized for making a test decision.
In contrast to a windowed Fourier transform that uses a win-
dow of constant width, the wavelet transform does not lead to a
decrease of relative precision for higher frequencies and has a
better time-domain resolution for fast events.

2. Time-domain localization. To keep the number of observations
small, the employed transform must extract and concentrate
important information of g(t) as good as possible. Unfortu-
nately, the information content “when did event x happen” is
distributed over the phase of all coefficients after Fourier anal-
ysis. Many test approaches that use the Fourier transform for
test measurements hence consider only the magnitude of the re-
sult [17,18]. Since this is not the case for the wavelet transform,
time-domain localization of discrete events can be employed for
making a test decision [19, 20].

3. Fast transformation. Fast discrete wavelet transform can be
computed in O(n) operations, whereas fast Fourier transform
can be computed in O(n log2 n) operations. In the example
presented in Section 5, calculation of the Fourier coefficients
took almost twice as long as calculation of the wavelet coef-
ficients. Depending on the test equipment, calculation of the
transform may dominate testing time.

3 Test design

3.1 Selection of test measurements

In this section, we will present a new test selection procedure that
combines the following features:

• parametric fault model based on specification
• selection of test groups
• measurement error considered
• ambiguity groups considered
• scalar minimization goal



Most of the previous work dealing with test selection for the
detection of parametric faults consider an excessive statistical pa-
rameter variation a parametric fault. Hence, the authors concen-
trate on the relation between measurements and statistical param-
eters s. The goal of selection algorithms is then a minimal subset
of the measurements that allows a robust prediction of s in a linear
model [4, 21, 22].

In our approach, a parametric fault is defined as a violation of
the circuit’s specification. Since applying a single test stimulus to
the circuit will yield a large number of characteristic observations,
a test selection algorithm for o has to consider that the observations
cannot be selected independently from each other. Instead, they
are divided into groups of observations (or test points tpi), each of
which is to be measured separately. In our example, a test point
denotes a certain test stimulus that is applied to the circuit. Each
of the resulting spectral coefficients of the measured output signal
is a characteristic observation.

The presented approach is based on a parametric fault model
that builds up a relation between specifications f ≥ fb of the circuit
(e.g. A0 ≥ 80dB) and characteristic observations o. Observations
may be any measurable values of the circuit, and may include the
specified performances. Observations o and performances f vary
between devices due to process fluctuations (e.g. oxide thickness
or width/length fluctuation), which are modeled by using a vector
of random variables s for transistor model parameters (e.g. vth0,
tox, lcorr). The measurement of o is influenced by errors ε in-
duced by noise, sampling error or quantization error in the test
equipment. In the following, the real value o is considered dif-
ferent from its measured value o′. The inclusion of measurement
errors into the fault model leads to a non-deterministic description
of the go/no-go test decision, because it allows for a DUT being
classified differently in two subsequent measurements. The classi-
fication of a DUT during production test is indeterminate to a cer-
tain degree due to measurement errors and noise, which we take
into account by a probability of acceptance that is less or equal
to 1.

The test selection algorithm uses a model of o and f that is
linear in s. Since the presented method aims at gaining information
on f by measuring o, the estimation error in that linear model is
used as a quality measure of a selected set of measurements.

In the following, s ∼ N(0, I) is assumed. Since the commonly
used distributions for modeling of process fluctuations (uniform,
Gaussian, log-normal etc.) can be transformed into a N(0, I)-
distribution, this assumption imposes no restrictions to the algo-
rithm.

We use a linear model for o and f

ō(s) = S · s + o0 (3)

f̄(s) = gT · s + f0 . (4)

Each test point corresponds to a set of rows in S. After performing
the test measurement, a Maximum-Likelihood (ML) estimator for
f is

f̂(o′) = gT · S+ · (o′ − o0) + f0 , (5)

where S+ is the pseudo-inverse of the measurement sensitivity ma-
trix S = ∇so, i.e.

min
s

‖S · s + o0 − ō‖2 ⇒ s = S+ · (ō− o0) (6)

If S has full column rank, then S+ = (STS)−1ST . The influence
of some parameters could be indistinguishable from the influence
of others, i.e. some parameters form an ambiguity group [4, 21].
In this case columns of S are linearly dependent, i.e. S is rank
deficient. So, S+ has to be calculated by means of a singular value
decomposition (SVD):

S = UWVT (7)

S+ = VW+UT (8)

W = diag(σ1, . . . , σr, 0, . . . , 0) (9)

W+ = diag(1/σ1, . . . , 1/σr, 0, . . . , 0) (10)
The estimation error due to measurement errors ε is then

η(s, ε) = f̂(ō(s) + ε)− f̄(s)

= gT ·
(
(S+ · S− 1) · s + S+ · ε

)
. (11)

The mean value E{η2} = σ2
η of the squared estimation error is

used as a quality measure for test selection:

E{η2} = ‖h‖2 + ‖g− ST · h‖2 (12)

h = ST+ · g . (13)
If S has full column rank, the second summand of (12) vanishes.

Since the case of a rank-deficient sensitivity matrix S is included
in (12), the influence of ambiguity groups [21] in the set of statisti-
cal parameters is systematically contained in the optimization goal
without the need for a special treatment. Those statistical param-
eters that have a large impact on the specified performance f are
estimated more precisely than others that are of minor influence
on f .

The optimization algorithm starts with an empty selection, i.e.
S = 0 and E{η2} = ‖g‖2, and greedily includes new test points
aiming at decreasing E{η2} for the first specified performance f1
most rapidly. If the maximum possible relative improvement drops
below a given bound (20% used in the example), the algorithm
switches to the next specified performance, starting with the cur-
rent selection. For the example shown in Section 5, the CPU time
needed to perform the test point selection was negligible in com-
parison to the simulation times.

3.2 Calculation of the test criterion

Each set of values for the statistical parameters s results in either
a good or a faulty circuit. The regions of statistical parameter sets
leading to good resp. faulty circuits, Ωg resp. Ωf , are defined by:

Ωg = {s | f(s) ≥ fb} (14)

Ωf = {s | f(s) < fb} . (15)
In this paper, the go/no-go test decision for a single performance

f is based on a linear combination d of the characteristic observa-
tions o of the DUT [8].

d(o) = θ
T · o + θ0 (16)

o′ = o + ε . (17)
A DUT is assumed to meet the specification f ≥ fb, if d(o′) ≥ 0,
else it is rejected. Without loss of generality, ε ∼ N(0, I) and
‖θi‖2 = 1 is assumed. Then, pdf(d(o′) | o) conforms to a Gaus-
sian distribution with mean d(o) and variance 1.

For a perfect test, the conditions

f(s) ≥ fb ⇔ s ∈ Ωg
!⇔ d(o′) ≥ 0 (18)

are fulfilled. Due to noise and measurement errors, (18) cannot
be achieved, even if the specified performance was included in the
set of measurements. Furthermore, non-linearities of the functions
f(s) and o(s) inhibit a perfect separation of good and faulty cir-
cuits by measuring o. Hence, every possible decision rule based
on measurements yields a certain fault coverage fc, that is the
percentage of correctly classified faulty circuits among all faulty
circuits, and a certain yield coverage yc, which is the percentage
of correctly classified fault-free circuits among all fault-free ones.
For a sample DUT with statistical parameters s, the probabilities
of acceptance pa resp. of rejection pr are

pa(s,θ, θ0) = P{d(o′,θ, θ0) ≥ 0 | s}

=
1√
2π

∫ ∞

−d(o(s),θ,θ0)

exp(−τ2/2) dτ (19)

pr(s,θ, θ0) = 1− pa(s,θ, θ0) (20)



and the yield coverage and fault coverage are

yc(θ, θ0) =
1

Y

∫

Ωg

pa(s,θ, θ0) · pdf(s) ds

= E{pa(s,θ, θ0) | s ∈ Ωg} (21)

fc(θ, θ0) =
1

1− Y

∫

Ωf

pr(s,θ, θ0) · pdf(s) ds

= E{pr(s,θ, θ0) | s ∈ Ωf} (22)
given the parametric yield Y = P{s ∈ Ωg}.

Goal of the test design is to minimize the overall test cost, which
is determined by the number and kind of test measurements needed
and by the probabilities of misclassification. Important figures
are the proportion of good circuits that will fail the test (“yield
loss”) [23]

YL = 1− yc , (23)
and the proportion of faulty circuits that will pass the test

FL = 1− fc , (24)
which could be called “fault loss” accordingly to yield loss. Note
that “faulty” means, that a particular circuit fails to meet the spec-
ification f ≥ fb. However, in order to consider the severity of the
failure, the maximum relative deviation from the spec of all unde-
tected faulty circuits MRD,

MRD = max
s∈Ωf

d(o(s))≥0

∣∣∣∣
f(s)− fb

fb

∣∣∣∣ , (25)

is introduced. The MRD shows how close the performance of the
misclassified faulty circuits is to the specification boundary. If the
MRD lies within the noise and measurement error range of a con-
ventional functional test, then a test based on characteristic obser-
vations may be acceptable, independent from FL. The concept of
fault and yield coverage is therefore enhanced by MRD.

For a given set of measurements, test optimization is minimiz-
ing an arbitrary cost function q(FL, YL) over θ and θ0. In the
following, the mean of the error probabilities q = (YL + FL)/2 is
used. At each of the selected test points, o and f are simulated for
a number of sample circuits. The circuits are classified as good or
faulty. The test criterion d(θ, θ0) is determined by minimizing q
over θ and θ0. The minimization algorithm uses first and second
order derivatives of q, that are estimated by Monte-Carlo methods
applied to the integrals (21), (22) and

dq = −(dfc + dyc)/2

= −0.5 ·
(

1

1− Y

∫

Ωf

dpr(s,θ, θ0) · pdf(s) ds

+
1

Y

∫

Ωg

dpa(s,θ, θ0) · pdf(s) ds

)
, (26)

and similarly for second derivatives. As a consequence of using
the non-deterministic fault model, these estimations are continu-
ous functions of θ and θ0.

Commonly, there are more than one specified performance. The
overall test criterion is a combination of the partial criteria di of
the single performances fi

∀i di(o′) ≥ 0 ⇒ accept DUT, else reject. (27)
In this section, the calculation of a test criterion for a single per-
formance fi has been shown.

4 Generation of samples
If the samples used by the discrimination analysis are drawn
from their original distribution N(s0,C), only few faulty sam-
ples will occur, facing many good samples. For the robust-
ness and efficiency regarding the total number of necessary sam-
ples, it is desirable to have a large number of samples in each

class [24]. Hence, we propose to enrich the sample set with sam-
ples drawn from a second distribution N(swc,C) centered around
the worst-case point swc, as parametric faults most probably occur
at s ≈ swc [25]. Taking n0 samples from N(s0,C) and n1 sam-
ples from N(swc,C), the overall probability density function is

pdf∗(s) = (n0 · pdf0(s) + n1 · pdf1(s)) /(n0 + n1) . (28)
When estimating figures like yc and fc with samples generated us-
ing pdf∗, it has to be taken into account, that the sample generating
distribution is different from the original distribution:

ŷc(θ, θ0) =

∑
s∈Ωg

pa(s,θ, θ0) · w(s)
∑

s∈Ωg
w(s)

(29)

f̂c(θ, θ0) =

∑
s∈Ωf

pr(s,θ, θ0) · w(s)
∑

s∈Ωf
w(s)

(30)

w(s) = pdf0(s)/pdf∗(s) (31)

5 Results
The example circuit is a CMOS differential bandpass filter con-
sisting of 41 transistors. Table 1 shows two specifications that
are defined for this circuit: center frequency and quality. The
signal used as a test stimulus is shown in Figure 2. Two pa-
rameters T0 and T1 determine its shape. The rise time and
fall time are both 200ps. This signal can be created by digi-
tal circuitry, so that no external signal generation is necessary,
and more important, the DUT doesn’t have to be controllable
from outside the system. A certain set of possible stimuli pa-
rameter values is determined by the signal generation hardware,
here 1/T0 ∈ {50kHz, 88.9kHz, 158kHz, 281kHz, 500kHz} and
T1/T0 ∈ {0.100, 0.525, 0.950}, yielding 15 test points to choose
from. The test stimuli are applied to the DUT and the circuit’s
behavior is simulated for 4T0. Both output signals gp and gn are
sampled with 1MSamples/s and are quantized with 10-bit resolu-
tion between 0 and 5V. The quantization error determines ε in (17).

Performance Spec. Nom. Value Partial Yield

f0 [MHz] > 17.5 19.57 87.0%
Q > 15.5 20.4 96.7%

Table 1: Specifications of the circuit example for temperature
−15◦C < Temp < +55◦C and supply voltage
4.8V < VDD < 5.5V.

The test selection procedure presented in Section 3.1 reduced
the number of test points to consider from 15 to 5. Two different
sets of 350 samples each were used for calculating the test crite-
ria and for validating them. Performing all necessary simulations
took 3.5h on a network of 20 Intel P II 350MHz PC’s using the
Infineon in-house simulator TITAN [26] and the circuit synthesis
tool WICKED [27].

Tables 2 and 3 show the achieved fault loss FL and yield loss YL
for each specification and for different transform options: time-
domain (—), Fourier, and wavelet. Using wavelet transform for
test significantly decreased yield loss and fault loss in comparison
to Fourier transform or time-domain measurements. In compar-
ison to Fourier transform, wavelet transform reduces the number
of faulty circuits passing the test (FL) for the first specification by
nearly 50%, and reduces the yield loss by more than 50%. In com-
parison to time-domain measurements, wavelet transform leads to
a 70% reduction in undetected faulty circuits (FL) and a 80% re-
duction in yield loss YL.

For the second performance “quality”, the differences in FL and
YL between training and validation sample is nearly as large as
the change achieved by choosing a different transform. The test
quality for this performance is however improved by employing
wavelet transform.



As can be seen in column “MRD”, the faulty circuits that mis-
takenly pass the test lie nevertheless close to the specification
boundary and are almost fault free. The delivered faulty circuits
fail the specification by less than 2% (center frequency) resp. 4%
(quality), whereas the rejected faulty circuits exceeded their speci-
fication by up to 19%. This shows that although there is some fault
loss FL for circuits that almost fulfill the spec, this test method de-
tects all circuits that violate it more than slightly.

FL YL MRD
training valid. training valid.

— 6.8% 5.7% 13.9% 14.1% 1.5%
Fourier 4.3% 3.3% 7.2% 6.0% 0.3%
Wavelet 1.6% 0.8% 2.7% 2.5% 0.0%

Table 2: Fault and yield loss for specification “center frequency”

FL YL MRD
training valid. training valid.

— 7.0% 8.8% 7.2% 7.3% 3.2%
Fourier 6.1% 5.5% 7.2% 7.3% 1.1%
Wavelet 4.3% 6.4% 7.4% 7.5% 3.2%

Table 3: Fault and yield loss for specification “quality”

To show the efficiency of the proposed optimization of q, it has
been replaced by a conventional Fisher linear discriminant analysis
(lda) for comparison. Table 4 shows that direct minimization of the
proposed goal q with a quadratic optimization approach reduces
fault loss and yield loss significantly.

center freq. quality
Algorithm FL YL FL YL

lda 8.6% 9.3% 31.8% 44.2%
q 0.8% 2.5% 6.4% 7.5%

Table 4: Discrimination algorithms

6 Conclusion

A new approach to test parametric faults in analog components
of mixed-signal circuits has been presented. It has been shown,
that particular properties of the wavelet transformation are advan-
tageous for mixed-signal test with digital test stimuli. This has
been demonstrated on an analog CMOS filter circuit, where the test
quality figures for measurements after wavelet transform showed
to be significantly better than after Fourier transform or with pure
time-domain measurements.

We presented a new efficient method for test measurement se-
lection and quadratic test optimization for a parametric fault model
that is based on the specification of the circuit. Our method sys-
tematically considers measurement errors and parameter ambigu-
ity groups. The presented test design methodology allows testing
for parametric faults by means of test equipment that does not have
to surpass the DUT in speed and precision.
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