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Abstract

A high accuracy system for transistor-level static timing
analysis is presented. Accurate static timing verification
requires that individual gate and interconnect delays be
accurately calculated. At the sub-micron level, calculating
gate and interconnect delays using delay models can result
in reduced accuracy. Instead, the proposed method calcu-
lates delays through numerical integration using an embed-
ded circuit simulator. It takes into account short circuit
current and carefully chooses the set of conditions that
results in a tight upper bound of the worst case delay for
each gate. Similar repeating transistor configurations of
gates in the circuit are automatically identified and a novel
interpolation based caching scheme quickly computes gate
delays from the delays of similar gates. A tight object code
level integration with a commercial high speed transistor-
level circuit simulator allows efficient invocation of the sim-
ulation.

1.  Introduction

Static timing analysis (STA) allows quick and comprehensive
timing verification of large circuits. Compared to simulation,
STA is much faster and with the exception of false paths,
guarantees the identification of the critical paths. Simulation,
on the other hand, is impractical for large circuits because
simulators are typically slow and finding the right input
vectors to excite the critical paths is very difficult.

STA has three main steps: (1) calculating delays of individual
gates (and interconnect), (2) adding up the delays of the gates
to obtain the path delays for the entire circuit, (3) verifying
the circuit constraints by checking whether certain signal
transitions occur before/after certain other transitions. This
paper deals with the issue of calculating delays of individual
gates.

It is possible to approximate the gate delay in terms of
transistor sizes, output loading and input slew without
calculating the exact output waveform. This idea has led to
numerous methods for gate delay calculation using formulas
and table look-up methods [1,6]. In effect, these methods
offer a closed form solution to the non-linear system of
equations describing the gate behavior and are commonly
used in delay calculators. However, as features sizes become
smaller, existing approximations for this solution become
increasingly inaccurate because new considerations,
neglected in previous models, must be taken into account.
Enhanced models that attempt to rectify this accuracy
deficiency become complex, unwieldy and are often heuristic

formulas whose results under certain conditions a
questionable [2]. For high accuracy and reliability, close
form expression for delay can no longer be used. Therefore
has become necessary to go back to the method of solv
non-linear equations via numerical integration, i.e., using
circuit simulator. Circuit simulation is now a mature field an
efficient techniques that trade accuracy for speed have b
proposed [3]. One approach that uses simulation for de
calculation is presented in [4]. However, it requires multip
simulations to calculate a single pin-to-pin gate delay. Th
method proposed here also uses a circuit simulator for de
calculation. Our method has the following key features: (
Master based simulation to allow simulation of sma
subcircuits separately and to avoid circuit reloading, (
Fanout reduction to reduce the number of masters genera
(3) Worst case delay calculation using a single simulation, (
Tight integration of STA with the simulator to reduce
simulation time, and (5) A novel caching scheme to minimiz
the number of simulations. With the introduction of thes
features, the result is a high accuracy STA environment w
the flexibility approaching that of a model based STA and th
speed that is orders of magnitude faster than conventio
simulation.

2.  Overview

The block diagram of the STA system is shown in Figure
After reading the input netlist, the netlist processor creates
internal representation of the design and the master extrac
generatesmasters, which are unique channel-connecte

Figure 1.  Block diagram of STA with embedded simulator.
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components (CCCs). The delay calculator pre-loads these
masters into an event-driven transistor-level simulator, EMU2
[3]. To calculate the delay of an instance, the delay calculator
sets the parameters of the corresponding master along with its
input conditions, and queries the cache, which stores the
results of all previous simulations. If a match is found, the
cache returns the output waveform. Otherwise, the simulator
is run to calculate the output waveform. The caching scheme
is based on interpolation of the simulation results of the same
master configuration with similar parameters.

A built-in incremental timing capability, allows quick
recalculation of the circuit delays affected by local circuit
modifications. This feature enables various applications,
including circuit optimization and block characterization, to
be linked into this system to form a comprehensive transistor-
level timing solution.

3.  Subcircuit Extraction

For a small circuit, it is feasible to simulate the entire circuit
and calculate its delays. However, it is either impossible or
computationally very expensive to simulate large circuits as a
whole. To handle large circuits efficiently, our method
partitions the circuit into small subcircuits and then simulates
each subcircuit individually. The subcircuits are the CCCs
extracted from the circuit. The task of subcircuit identification
is done by the master extractor which traverses the input
netlist and creates a new master each time a new basic
subcircuit (CCC) is found. It uses a pattern recognition
algorithm [5] to match the same basic subcircuits. Once all
the masters are found, they are preloaded into the simulator
for efficiency. Figure 2(a) shows an example circuit with its
CCCs identified. The masters extracted from this circuit are
shown in Figure 2(b), 2(c), and 2(d). Note that RC
interconnect networks are part of the masters.

The masters are parameterized in order for each one to
represent all the CCCs having the same basic subcircuit. Each
master has the following parameterizable attributes: device
width (W), device source area (AS), device drain area (AD),
device source perimeter (PS), device drain perimeter (PD),
wire resistance values and node wire capacitance values. Each
time a particular CCC needs to be simulated, first the
parameters of the master corresponding to this CCC are set,
and then the master is simulated.

In order to decrease the number of masters that need to be
created, the loading (fanout) devices for each master output
port are reduced to two FET devices (p-gate and n-gate) with
equivalent parameters as shown in Figure 2(c) and (d). The
equivalent device gate capacitance is the sum of the gate
capacitances of all the devices connected to the output node.
Hence, the parameters (AS, AD, PS, PD) for each equivalent
FET are approximated by the sum of the corresponding
parameters of the similar (P or N) fanouts. The length (Leq)
and width (Weq) of each equivalent FET are approximated as:

4.  Subcircuit Simulation

Traditionally, the delay of a gate can be found by simulatin
the gate with a set of input vectors. However, even for sm
circuits, this method requires multiple simulations. Ou
method uses a single simulation to calculate the worst ca
delay by carefully choosing the input excitations and th
internal node initial conditions.

The timing behavior of each subcircuit or gate in the circuit
represented internally by a set ofarcs, [6] corresponding to
the causal relationships between its inputs and outputs. Fo
arc, all the devices through which the output is charge
discharged are calledarc devices,the path from the supply to
the arc output node through the arc devices is called thearc
path and the arc device driven by the arc input is called th
trigger device. In Figure 3(a), for the arc from the rising
transition of i0 to the falling transition of o1, devices m6, m5
m7 and m8 are arc devices, the path GND-n1-n2-o1 is the
path and the device m5 is the trigger device. The calculati
of arc delays for the entire circuit is done in a levelize
manner, proceeding from the circuit inputs to its outputs,
that slews are available at all arc inputs. When an arc delay
being calculated, the corresponding master parameters are
in the simulator through an API. These master paramete
including transistor sizes, wire resistances, and node w
capacitances, are obtained from the subcircuit surround
the arc.

A waveform with a single transition (rise or fall) is applied to
the switching input of a subcircuit. For a primary input,
two-point waveform is derived from the input slew. For a
intermediate node, the output of the driving gate produces
input waveform. Normally, a single input of a subcircuit i
allowed to switch. However, in case of transmission gate
both the FET gate inputs switch for increased accura

Leq Li

i 1=

n

∑ n⁄= and Weq Wi Li×( )
i 1=

n

∑ Leq⁄=
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Figure 2.  The original circuit and the extracted masters
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Switching only one FET gate may cause the output to fail to
switch completely. Also, one of the transmission gate input
waveforms is delayed by the difference in arrival times
between two gate inputs.

The fixed voltages on the side inputs and the initial voltages
on internal nodes are set to give the worst case delay by
maximizing the number of nodes, and hence the capacitance,
to be charged/discharged. The algorithm to find the worst
case excitation voltages, first sets the default excitations for
all the nodes in the master subcircuit to the arc output initial
state. It then turns ON all the devices on the arc path and if
necessary, overwrites the default initial voltages on internal
nodes connected to supply or ground. Finally, it traverses
each device on paths from arc output node to supply and
ground and turns it ON, if it does not enable a parallel path to
supply or ground. For a given arc, the excitation voltages can
be found using the following procedure:

/*All the excitation voltages set on master inputs are either fixed
voltages (for the side inputs) or input waveforms (for the driving
inputs) and the rest are initial voltages (for the internal nodes). */

SetArcExcitations(arc) {
/* Set default excitation */
for (eachnode in arc_master_subcircuit)
setnode Excitation = arc_output InitialState

SetArcDeviceExcitations(arc)
/* Set the remaining pass-gates to OFF, if possible */
for (each pass-transistordevice in arc_master_subcircuit) {
if (device_gate_node is not set)

setdevice_gate_node Excitation that turns OFF thedevice
if (device hascomplementary_device &&

complementary_device_gate_node is not set)
setcomplementary_device_gate_node Excitation that turns
OFF thedevice

}
if (arc outputis rising) {
/* Set pullup device excitations first, it will automatically set the

excitations for the complementary pulldown devices */
SetNonArcDeviceExcitations(arc, VDD)
/* Set pulldown device excitations for structures which are

non-complementary */
SetNonArcDeviceExcitations(arc, GND)

} else {
SetNonArcDeviceExcitations(arc, GND)
SetNonArcDeviceExcitations(arc, VDD)

}
}

SetArcDeviceExcitations(arc) {
for (eacharc_device)
if (device is trigger_device) {

setdevice_gate_node Excitation = InputWaveform
if (device is pass-transistor &&
device hascomplementary_device)
setcomplementary_device_gate_node Excitation
= InputWaveform

} else {
setdevice_gate_node Excitation that turns ON thedevice
if (device is onarc_path betweensupply node(vdd or gnd) and
trigger_device) {
/* Overwrite default initial voltages */
setdevice_source_node Excitation =supply
setdevice_drain_node Excitation =supply

}
}

}

SetNonArcDeviceExcitations(arc, supply_node) {
for (eachpath from arc_output_node to supply_node)
for (eachdevice onpath)

if (device_gate_node is not set)
if (making thedevice ON does not make a parallel path ON)
setdevice_gate_node Excitation that turns ON thedevice

else
setdevice_gate_node Excitation that turns OFF thedevice

}

If the master subcircuit has multiple gates connected throu
a complex pass-gate structure, there may be side paths driv
the arc output node. The excitation voltages for nodes in t
side path are determined by propagating output no
excitation through turned ON pass-gates and the drivi
devices. This method results in absolute worst ca
excitations for most circuits. The circuit types supporte
include static CMOS, pass-gates, latches and domino ga
Figure 3(a) shows the master subcircuit with a single gate a
Figure 3(b) shows the excitation voltages of the circuit fo
two arcs.

Once the master parameters are set, the simulator is called
dynamic regionization [7] and event-based algorithm provid
fast yet accurate simulations (<5% accuracy and 10-50
faster vs. SPICE). In this work, enhancements have be
made to provide for dynamically controllable simulation wit
a callback mechanism, and master-based simulation to av
circuit reloading. The simulator’s tight integration into the
STA environment allows the simulation to be run only for th
period long enough to calculate the delay and output sle
thus enhancing the performance. Finally, the delay and sl
values are calculated from the input and output waveforms

5.  Caching

The concept of global caching is to save, or cache da
relative to specific simulations with the intent of using tha
data to derive estimated results for other prospecti
simulations. The goal is to substantially reduce the number
simulations required during execution. The keys to cachi
are that cache retrieval must be efficient and the retriev
result must be very close to the result that would ha
occurred if simulation were performed.

A simulation can be considered as a functionS(pi) wherepi
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Figure 3.  Example circuits and their their excitation voltages
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are the various inputs to the simulation withS being the
result, i.e., output waveform. The input parameters to the
simulation are the master subcircuit, the input node
excitations, the internal node initial conditions, the device
sizes (W, AS, AD, PS, PD), the node capacitances, the wire
resistances, and the output node. These input parameters can
be classified into two types. First there are the discrete or
fixed type parameters such as master subcircuit, nodes, and
initial conditions. Simulations that differ on any of these
parameters are fundamentally different simulations. The other
parameters can be classified as variable parameters.
Incremental changes in these parameters result in incremental
differences in the simulation results. Thus, the inputs to every
simulation can be represented as apoint P, whose coordinates
are the input parameters, and thus having the form (pfj, pvk),
where thepfj are the fixed type parameters and thepvk are the
variable type parameters.

For the purpose of caching, input waveforms are represented
by three values, those being fall to rise time (tfr), time to
threshold (tthr), and threshold offset from first input waveform
(toff). On the other hand, output waveforms, which are the
results of simulations, are stored in the cache essentially
intact. They undergo a reduction that eliminates redundant
points along contiguous segments of the piecewise-linear
waveform whose slopes are within a pre-set tolerance. This
reduction preserves waveform integrity, and typically results
in a 50%-75% reduction in waveform size. Using the
following definitions for waveform (wf)

tvlow(wf) : wf low voltage time (normally 10%)

tvthresh(wf) : wf threshold voltage time (normally 50%)

tvhigh(wf) : wf high voltage time (normally 90%)

the formulae for the input waveform representation are

tfr(wf) = tvhigh(wf) - tvlow(wf),

tthr(wf) = tvthresh(wf) - min(tvlow(wf), tvhigh(wf)),

toff(wf) = tvthresh(wf) - tvthresh(wfinput1)

In order for retrieval to be efficient, points are partitioned into
multi-dimensional rectangular grids, called point classes. The
grid point functionG(P) is used to determine the point class
thatP should be placed in.

The resultG(P) = (g(pfj), g(pvk)) is determined as follows.
For fixed parameters, g(pfj) = pfj. For variable parameters,
each parameter type has a pre-defined parameter range array,
A[0...N], with A[0] = 0.

g(pvk) = m if A[m] ≤ pvk < A[m+1] and

 0 ≤ pvk < A[N]

= N if pvk ≥ A[N]

= -g(-pvk) if pvk  <  0

For example, the range array for capacitance is {0, 1x10-14,

3.2x10-14, 1x10-13, 3.2x10-13, 1x10-12, 5x10-12}). So for
capacitance valuepv = 75 FF,g(pv) = 2.

Before a simulation is performed, the input parameters for the

prospective simulation are used to create a pointP. In order to
avoid a simulation, there must exist a pointQ, in the same
point class asP, that is very close toP. The formula used for
calculatingclosenessis a weighted normalized RMS of the
differences between the variable coordinates of the poin
The formula for closeness betweenP andQ is

C(P,Q) = ( Σ(((pvk - qvk) wk/rk )
2) / Σ(wk

2) )1/2

whererk, the range size forpvk, is given by

rk = A[|g(pvk)| + 1] -A[|g(pvk)|] if   |g(pvk)|  < N

= A[N] - A[N - 1] if   |g(pvk)|  =N

andwk is the relative weighting of the parameter type ofpvk.
The weightings of 1.0 for time values, 0.7 for device size
0.7 for capacitances, 0.3 for resistances and 0.1 for ar
were determined to yield the best results.

Benchmarking revealed that points must be very close
cached results to be close enough to use in lieu of simulati
Our implementation offers 4 levels of cache usage, with cac
level 2, for example, requiring closeness values,C(P,Q) ≤
.003, to result in cached results within 3% of simulation.

Once a close pointQ is found, the slope (S) of the delay

function along vector needs to be computed. B

multiplying this slopeS, with , the difference between

delay(P) and delay(Q) can be calculated, i.e.delay(P) -

delay(Q)= S* . This delay difference will be henceforth

denoted as∆(P,Q). Scan be calculated in terms of the slope o

the delay functions on each of the primary axes of the spa

in which the points reside. If is the vector whos

coordinates are these slopes, the expression for the de

difference becomes:∆(P,Q) = .

Note that points in the direction of maximum slope atQ.

To determine , the cached points nearQ are used. For each

suchQm nearQ, the slope of the delay function along

can be readily computed:

Using these delay slopes, a modified Gram-Schm

Orthonormalization [8] routine is applied to calculate th

slope of the delay function along each of the primary axe

resulting in the slope vector .

Once is calculated, the difference in delay is computed, i

∆(P,Q) = . Note that∆(P,Q) can be computed even if

some of the coordinates of are unknown. Specifically, t

coordinates of for the axes for which is null, are no

needed. Once∆(P,Q) has been calculated, the resultin

waveformS(P) can be derived from the waveformS(Q).

QP

QP

QP

V

V QP⋅

V

V

QmQ

slope delay Q( ) delay Qm( )–( ) QmQ⁄=
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There is a direct relationship between the use of cached
results and the reduction of run time for delay calculation on a
design. For example, if half of the simulations can be avoided
by use of cached results, then there is virtually a 50% run
time reduction. Each of the four cache retrieval levels offer
different expected accuracy, those being within 1%, 3%, 6%,
and 10% of simulation respectively.

6.  Experimental Results

Table 1 shows the timing analysis results for the ISCAS-85
benchmarks and three industrial circuits. The gate-level
ISCAS-85 benchmarks were mapped to transistor level using
a sample library. The remaining circuits are transistor-level
custom blocks: a portion of a datapath block (ckt1), an ALU
(ckt2), and a large multiplier (ckt3). Transistor count for each
circuit is given in the table. A full timing analysis was
performed for each circuit. Included in the table are the run
times in seconds (RunT) and the longest path delays in
nanoseconds (Delay) obtained with caching levels 0 (no
caching), 2 and 4. Notice that the run time goes down on
average by 40% for caching level 2, with the maximum
reduction being 96% for c6288, which has a very regular
structure consisting of a 2-D array of full adders. The average
run time reduction is 47% for caching level 4, with the
maximum reduction being, again, 96% for c6288. The run
time reduction is generally higher for larger circuits,
indicating the effectiveness of the cache. As for the path
delays, the level 2 results are on average within 0.19% of
those of level 0, with the maximum difference being 4%. The
level 4 results are on average within 0.25% of those of level 0,
with the maximum difference being 6%. These results
illustrate that the accuracy loss due to caching is minimal.

Experiments were also performed to compare the accuracy of
EMU2 against a commercial SPICE simulator. For each
circuit, the longest path identified with EMU2 was simulated
with SPICE using the worst-case conditions described in
Section 5. The EMU2 calculated path delays were found to
differ from SPICE by less than 1%. Given the speed
advantage of EMU2 over SPICE, it is clear that the proposed
approach results in considerable reduction in computational
effort with a minimal loss in accuracy.

7.  Conclusions

A method has been presented for transistor-level static timing
analysis, emphasizing on five salient features: (1) master-
based simulation to allow simulation of small subcircuits
separately, (2) fanout reduction to reduce the number of
masters generated, (3) worst case delay calculation in a single
simulation and (4) tight integration with a circuit simulator to
reduce simulation time, (5) a caching scheme to reduce the
number of simulations. The experimental results suggest that
the system can process large circuits with the accuracy and
speed required by today’s high performance designs. As part
of the future work, the following will be investigated:

• RC interconnect reduction techniques to reduce the R
interconnect networks to a simpler model [9]. This wil
further reduce the number of masters extracted and w
also make simulations more efficient.

• Support masters with multiple CCCs, using user specifi
patterns for special circuits with feedback.
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count

Cache level 0 Cache level 2 Cache level 4

RunT Delay RunT Delay RunT Delay

c432 784 658 6.92 441 6.91 428 6.91

c499 1364 901 10.98 707 10.95 674 10.96

c880 1802 415 6.33 296 6.34 255 6.28

c1355 2196 511 7.24 389 7.22 300 7.20

c1908 3878 863 9.13 566 9.13 470 9.10

c2670 5684 1259 10.80 771 10.84 598 10.86

c3540 7822 1668 12.99 1062 12.91 826 12.87

c5315 11308 2504 12.22 1595 12.20 1222 12.30

c6288 10112 2756 32.78 107 32.73 97 32.73

c7552 15512 3530 7.65 2583 7.66 1973 7.64

ckt1 7973 2750 85.74 2138 89.29 2018 90.50

ckt2 10527 4930 30.70 3471 30.57 2774 30.57

ckt3 29556 45262 9.55 9892 9.53 9454 9.52

Avg. diff. from
cache level 0

- -
-40% 0.19% -47% 0.25%

Table 1:  Timing analysis results with different caching levels.
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