A Methodologyfor Verifying Memory AccessProtocolsin Behavioral Synthesis

GernotKochf TaevhanKimi

1Synopsysnc.
700E. Middlefield Rd.
MountainView, CA 94043USA

Abstract— Memory is oneof the mostimportant components
to be optimized in the several phasesof the synthesisprocess.
In behavioral synthesis,a memory is viewed as an abstract

constructwhich hidesthe detail implementationsof the mem-

ory. Consequently for a vendor's memory, behavioral syn-

thesis should create a clean model of the memory wrapper

which abstracts the properties of the memory that are re-

quired to interface to the rest of the circuit. However, this

wrapping processinvariably demandsthe verification prob-

lem of the memory accesprotocolsin order to be safelyused
in behavioral synthesisenvironment. In this paper, we pro-

posea systematic methodology of verifying the correctness
of the memory wrapper. Specifically, we analyze the com-

plexity of the problem, and derive an effective solution which

is not only practically efficient but also highly reliable. For

designerswho usememoriesasdesigncomponentsin behav-

ioral synthesisautomating our solution shortensthe verifica-

tion time significantly in contrast of simulating memory ac-

cessesn the context of full design,which is a quite complex
andtime-consumingprocessespeciallyfor designswith many

memory accesperations.

1 Intr oduction

Asthedesigncompleity is growing veryrapidly, usingbe-

havioral synthesis[12] startingfrom a high-level abstrac-
tion of designdescriptionis becomingnevitable for more
andmoredesignprojects. Moreover, high-throughpubn-

chip memoriesare widely usedin designingchipstoday

Thistrendturnsoutthatoneof the strongesargumentgor

behaioral synthesiss the easeof incorporatingnmemories
into adesign.

Memoryaccessearesimply specifiedasaccesse® an
arrayvariablein theHDL sourcecode.Thebehaioral syn-
thesisthentakescareof the detailsof the memoryaccess
protocolsand,if desiredgvenoptimizestheorderof mem-
ory accessegxploiting possibilitiesfor pipelinedaccesses
or parallelaccessesf multi-port memories.To enablethe
synthesigo infer memoriedor arrayvariables,t requires
anexistenceof anHDL wrapper(encapsulatonyvhich in-
stantiateshe memoryandtakescareof the setupandhold
time requirement®f the memory In addition,the synthe-
sisrequiresseparaténformationaboutthe cycle-by-g/cle

ReinerGeneriere;

iDept. of ElectricalEngineering& ComputerScience
andAdvancednformationTechnologyResearclCenter
KAIST, Taejon,305-701KOREA

protocolof thiswrapper

Until recently this informationandthe wrapperhadto
be creatednanuallyby thedesigner[2].Consequentlyau-
tomatingthis processcan save a considerablelesignef-
fort in behaioral synthesisandincreasethe productvity
further The automatiorrequiresa wrappingutility which
usesmemorypropertiesenteredby the designerto gener
ate memorywrappersto be usedin behaioral synthesis.
However, this memorywrappinginvariablelyinducesthe
verificationproblemof thememoryaccesgrotocols.That
is, the correctnessf everythingthe wrappingutility gen-
erateglependslirectly onthecorrectnessf the properties
enteredby the designer Earlier, with the hand-generated
memorywrappersuserswould createa small behaioral
designsolely to verify thesewrappers. As memoriesare
notvisible in the pre-synthesisimulation,this designhad
to besynthesize@nda post-synthesisimulationhadto be
performedto verify boththe HDL wrapperandthe proto-
col information. Sincethereare mary possibleconfigura-
tionsof parallelandinterleavedmemoryaccesse®.g.for
multi-port memoriescreatinga sampledesignanda test-
benchthatperformacompletecheckratherthanjustasan-
ity checkis very tedious,but very important. Fortunately
asthewrappingutility containsall theinformationit needs
to generatea memorywrappey it is in an ideal position
to generateaverythingnecessaryo verify the wrapperas
well.

In this paper we proposea systemati@approacho the
problemof (1) generatinga samplebehaioral design,(2)
a synthesisscript constrainingthe designappropriatelyto
pushit throughthe synthesisand (3) a self-checkingsim-
ulation testbencho verify the correctnes®f the memory
wrapper More specifically we analyzethe compleity of
the problemof generatingthe sampledesign,script and
testbencHor afull coverageof verifying the memoryac-
cessprotocolsin the memorywrapper andproposean ef-
ficientandhighly reliablesolutionto the problem.

2 Behavioral-level Memory Verification
2.1 Verification Structure

Testing the correctnessf the memory wrapperin the
contet of behaioral synthesisrequiresa samplebehav-

ioral designwhich mustbe designectarefullyto fully test

ary combinatiorof thepipeline/parallememoryaccesses.

Oncea sampledesignis generateda behaioral synthesis
scriptfile which controlsthe schedulef thememoryoper
ationsin the designis neededIn addition,we arerequired
to generatea self-checkingtestbenh file to simulatethe
sampledesignbeforeandafterscheduling.

Figure 1 shaws the designhierarcly for testingmem-
ory wrapper The memorywrapperencapsulatethe im-
plementatiorof thememory Behavioral synthesisiseghe
informationin the memorywrapperfor schedulingmem-
ory operationsn thesampledesign.Thecorrectnessf the
memorywrapperis verified by executingthreetasks: (a)
simulatingthe pre-scheduledehaioral-level samplede-
sign, (b) scheduling/allocatinghe sampledesignaccord-
ing to thescheduleonstraintsand(c) simulatingthe post-
scheduledRTL design. Completingtask (a) confirmsthe
correctbehaior of the sampledesignandis notrelatedto
the memorywrapperitself. Task(b) indicatesthatthe be-
havioral synthesigool followstheprotocolsof thememory
provided by the memorywrapper Finally, task(c) shavs
thatthe memorywrapperin the RTL designproducedby
thebehaioral synthesigool functionscorrectly Here,the
confidenceof thecorrectnessf thememorywrapperis es-
tablishedby creatinga sampledesignand schedulingthe
memoryoperationdn the designin mary differentways,
whichis themainsubjectof this paper Notethatthemem-

ory wrapperswe areconsideringarealwayssynchronous.

This meansthat memoryprotocolswith asynchronousr
combinationabehaior of memoryoperationaremadeto
appearsynchronousdy the memorywrapper e.g. by reg-
isteringinputsignalsin thewrapper

Test bench Test bench

Sample design
(post-scheduled)

Sample design
(pre-scheduled)

Memory wrapper
[~ Behavioral Synthesis ——3» &4 PP

Memory

(schedule constraints)

I
I
I
| Script
I
I

Figure 1: Designhierarcly of behaioral-level memory
wrappertesting

2.2 Preliminaries

We first clarify sometermsusedin our presentatiorto
avoid ary confusion.

Logical port: A memoryis connectedo the outsideworld
throughphysicalports (e.g.,addresgort, dataport, write
enableport etc.). The throughputof the memoryis char
acterizedby the timing synchronizatioramongthe wave-
forms passedo the ports, which determineghe logical

ports of the memory i.e., read-writeport, read-onlyport,
and write-only port. With this context, we call the read
andwrite memoryoperationgogical port operationsof the
memory

Raular pipeline A pipelinewith initiation interval < and
lateng [is regular if givenanoperationstartingat cycle s
anotheroverlappingoperationcanonly startto executeat
cycless + i, s+ 2i, - - -, s+ k - i wherek is anintegersuch
thatk-i <1< (k+1)-i.

Irregular pipeline A pipeline which is not a regular
pipeline, but still allows overlappedexecutionof opera-
tions,is irregular.

Conflictflag andConflictvector We definea conflictflag,
C., (1), to denotethe feasibility of pipelining memory
operationy to memoryoperationz with initiation inter
val i. C, (i) becomesl if sucha pipeline causesa re-
sourcecontention,andbecomes otherwise. We collec-
tively represent; , (i), i =1,2,---,1 — 1 wherel is the
lateng of = asavectorform, calledconflictvector, C'V, ,,
=[Cay(1),- -+, Coy (1 = 1]

A memoryoperationcanhave differentcycle-by-g/cle
input/outputconnectiongndresourceequirementsf the
overlappingexecutionsamongoperations.We canrepre-
sentthe cycle-by-g/cle connectionsof a memoryopera-
tion usinga conceptimilar to behaioral templatesn [3].
For example Figure2(b) shavs modelingof 3-cycle mem-
ory write operationfrom the RT-level timing relationsof
the signalsfor the write operationshavn in Figure 2(a).
The addressdataandwrite enableinputsare de-coupled
in termsof whenand how long eachinput must be sta-
ble. We thenextractthe feasibility of overlappingexecu-
tion of memoryoperationfrom the templatemodelingof
the cycle-by-g/cle connections.For example,2 memory
write operationn the left handof Figure2(c) cannotbe
pipelinedwith initiation interval 1 onthesamedogical port
becausehe addr connectiorconflicts,but pipelining with
initiation intenval 2 is possibleasshavn on the right hand
of Figure2(c). In summaryfrom Figure2(c) C, , (1) =1
andC, ,(2) = 0. Thatis, CV,, =[0, 1].

LU addr r]
N B
‘ o

Gy = 1 G@=
() (b)

Figure2: (a) An RT-level timing relationof signalsfor 3-
cyclememorywrite; (b) Thecycle-by-g/cletemplatenod-
elingof (a); (c) Derivationof conflictflagsfor two memory
write operationsc andy

Sincethe verificationof memorywrapperis tightly re-
lated to the type of the memoryand how the behaioral
synthesigool modelsthe memory we first introducea set
of assumptionghatareminimally requiredby our verifica-
tion solution:

(a) Memory hasat leastone port supportingreadaccess,
andalsohasatleastoneportsupportingwrite accessThat

is, we do not performary self-checkingfor the memory
wrapperf read-onlymemoriesandwrite-only memories.

(b) All readaccessesf amemoryhave thesameprotocol.
This appliesto all write accesseaswell. This assump-
tion simplifiesthecomputatiorof conflictvectors.We only
needto determinethe four conflict vectors,Cr r, Cw.w,
Cr,w, andCyw,r whereR andW represenainy readand
write memoryoperations.We extract the conflict vectors
of thememorywrapperfrom thewaveforms(protocols)of
thememoryoperations.

(c) Thedesigneihasno controlof bindingamemoryoper

ationto a particularport of memory Thetaskof memory
port bindingis automaticallydoneby the synthesigool in

away to optimizetheoverall design.

(d) The synthesigool canconstrainschedulingof mem-
ory operationselativeto theotheroperationsSpecifically
whenwe denotesch(x) to thecycle stepatwhichoperation
x startsthe execution,the scheduleisupportsa schedule-
constrainingcommandfix_cyc(c, X, y), which constrains
sch(y) - sch(x) =c.

Thememoryinformationthatthememorywrappercon-
tainsis usedto link the memorycell to the datapathand
to schedulenemoryoperationsThe correctnessf thein-
formationcan,in fact,beverifiedby simulatingthe sched-
uled RTL designof the samplebehaioral designthatis
createdby our methodologyof memorywrappertesting.
The memoryinformation necessaryor testingin beha-
ioral synthesiss (1) bit-widthsof addres@nddatabusses,
(2) numberof eachlogical port(i.e., read-onlywrite-only,
read-write),(3) control pinsusedfor eachlogical port op-
eration(read,write), and(4) latengy andrequiredcontrol
pin settingsfor eachlogical port operation.

3 Complexity Analysis
We could write arny samplebehaioral designwhich con-
tains memory operations,scheduleit and simulate the
scheduledRTL designtogetherwith the vendorprovided
simulationmodelof the usedmemory Our goalis, how-
ever, to achieve a highly reliablememorywrappertesting
systematically To do this, we could createa samplede-
signwith schedulingonstraintandasimulationtestbench
which coversall the possiblepipelinesandparallelismsf
memoryoperationsHowever, thiswould requireanexces-
sive amountof designeffort andruntimein scheduling.
For example considemmemorywith n read/write(log-
ical) ports. Whenwe assumehat the lateny of eachof

readandwrite operationgor every logical portis [anda
pair of any two operationcanbe pipelinedwith ary value
of initiation intenal, the numberof possiblecombinations
of pipelinesexecutedover the » logical portsis 2/~1 . 27
sincethereare up to 2!~! different patternsof pipelines
usingary of readandwrite operationsn a singlelogical
port andtherearen logical ports. Thus,the total number
of memoryoperationsn asampledesignfor testingall the
pipelinesbecome2(!~1)+" . [. n sinceup to I memory
operationsareinvolvedin apipelineon alogical port. We
mightalsotake into accounthenumberof possiblecombi-
nationsof parallelaccesseamongdifferent(logical) ports,
whichis 2". However, this hasalreadybeencountedwvhen
the combinationf pipelineswereconsidered.The solid
curwein Figure3 shavsthechangeof thenumberof mem-
ory operationsrequiredwith the changeof the valuesof
thelateng, [, andthe numberof (logical) ports,n. For ex-
ample,to fully testa memorywith 2 read/writeportsand
lateng 3, atotal of 96 memoryoperationsareneeded.In
contrastthedottedcurve in Figure3 shavs thenumberof
memoryoperationgequiredby our testingmethodology
It reduceghetestingcompleity significantly but achieves
a highly reliableandsystematidesting. The detailsof our
proposedestingmethodologyaredescribedn Sec 4.

#. of memory ops.
300

T

exhaustive testing

1001 n: #. of logical ports

I: latency

our testing

[
-

50+

11 12 (21) (22) (1,3) (31) (23) (3.2) (3853 (n')
Figure 3: The compleity of memorywrappertestingin
termsof the numberof operations

4 Behavioral-level Memory Verification
The scopeof our memorywrapperverificationis purely
functional. We generate samplebehaioral designwhich
containanemoryaccesseschedulat andsave the sched-
uledRTL designin VHDL or Verilog. This makesit tech-
nologyindependenandallows for amoregeneratesting?
We accomplishthe verification by carrying out two
classe®f memoryoperationsnamely checkingfor intra-
port accessesi.e., pipelinedmemoryaccessand check-
ing for inter-port accessegd.e., parallelmemoryaccesses.

IThe numberof operationss expressedas4n - [+n, n > 1 and
1 > 1 wherethefirst andsecondermscorrespondo thatin checkingsn
Sec.4.1landthatin Sec.4.2,respectiely.

2While the sampledesignmay also be usedas a starting point for
staticor dynamictiming verification,we excludethis from the scopeof
this paper

Thesechecksensurethatthe protocolsof logical port op-
erationsspecifiedin the memorywrapperare correctand
the memorycanbe operatedvith the maximumthrough-
put accordingto the numberandtype of logical ports,the
latenciesandpipelines. (Eachof the checksdescribedn
the following is assumedo startat cycle 0. Thisis to be
understoodas beingrelative to the start of the particular
check.As thesechecksare performedoneby onesequen-
tially, therealcycle numberat which a certaincheckstarts
depend®nthe previously performedchecks.)

4.1 Intra-port checkings

For eachlogicalportof memory everypipeline(read-read,
write-write,read-write write-read)s filled soasto achieve
a maximalthroughput. Sinceby the third assumptiorin
Sec.2.2,thereis no way to constrainthe synthesigool to
usea certainlogical port for a certainmemoryoperation,
for eachmemoryoperationall the portsthat supportthis
operationhave to be accesseat the sametime to ensure
thatthe pipelineof eachportis actuallyfilled. Ourtesting
consistf four typesof pipeline.

(1) Read-Readpipeline: Given a memorywith n logi-
cal ports supportingread operationseachwith a regular
pipelinewith initiation interval : andlateng [, the sched-
ule of readoperationf the pipelineis shavn in Figure4
wherek is anintegersuchthatk - i <1 < (k+ 1) -4. This
correspond$o thecasethatCr g (i) = Cg, R(Qz) =
Cr,r(ki)=0andCgr r(j)=1,j #4,2i,-- -, ki.

cycle-0 _
cycle-i —

cycle-ki— -m- - - -

Figure4: Expectedscheduldor testinga regular pipeline
of readoperations

To illustrate when and how an irregular read-read
pipeline is tested,let us considera memorywhoseread
lateny is 5 with its conditionvector CVg g = [0, O, 1,
0]. To effectively testthe pipeline at eachlogical read
port we attemptto maximizethe overlappingof the exe-
cutionsamongthe memoryoperations.Consequentlyin
Figure5(a),operationr2 is pipelinedto operationr1 with
initiation interval 1 becauséhereis no accesgonflict be-
tweenthem(i.e., Cy1 72(1) = 0), resultingin the pipeline
in Figure5(b)whichis thenoverlappingwith operationr3
with initiation interval 1 sinceCy1,,3(2) = Crz,73(1) = 0
asshawvn in Figure 5(c). However, overlappingr4 with
r3 with initiation interval 1 is not possiblebecausehere
is an accessconflict by C;1 ,-4(3)) = 1 asindicatedby a

block box in Figure5(d). Furthermorer4 cannotoverlap
with 3 with initiation interval 2 asshavn Figure5(e)since
Cy2,4(3) = 1. Consequentlythe pipelinewe have found
sofaris theonein Figure5(c).

pipeline 1
rl r1 r1

o
@

N

pipeline 2

@ ®) ©

D nonconflict with operation of dotted box

NN

. : conflict with operation of dotted box
© U]

Figure 5: An example of shaving the generationof
pipelines;(a) checkpipeliningwith 2; (b) checkpipelin-
ing with r3; (c) pipelinewith threeoperationsfd) access
conflictingwhenpipeliningr4 with initiationinterval 1; (e)
accesgonflictingwhenpipeliningr4 with initiation inter-
val 2; (f) anothempipelinederivedfrom (e)

To exploreanotherpossibilityof pipeliningwhichis to-
tally differentfrom the previously generatedne, we uti-
lize the conflictinformationproducedefore.Specifically
if we examinethefailureof overlappingr4 with r1 in Fig-
ure 5(e), it is dueto the conflict with 2, not becauseof
thatwith r1. This meanghatwe canstartto createa new
pipelinewith 1 andr4 suchthatr4 is overlappedwith r1
with initiation intenval 4 asshavn in Figure5(f). If there
were more than one cycle stepat which suchconflicting
occurs,a new pipeline,for eachconflicting cycle step,is
generatedvith theinitiation interval startingwith thecycle
step. In thefollowing, we summarizehe ideaof generat-
ing pipelinedesignswith a constructve procedurewhich
worksfor irregular pipelinesaswell asregularones. It is
recursve andstartsby calling Gen_RR_Pipelines(1, 0).

Gen_RR_Pipelines(i, K): Genenteread-eadpipelines

(1) e SetM = {}; /* conflictingoperations/

(2) e SetS ={}; /* scheduledperations/

(3) e Scheduleanoperation(sayr) to cycle stepK;

(4) Foreachk=K +14,---,andK +i+1—1{

(5) if (Crg,r, (kK — K)=1) continuey* conflictwith rx */

(6) elseif (thereis anr; in S suchthatC:. », (k — 7)=1) {
@) [* conflictwith someof theremainingscheduleaps*/
8 o M =M+ {r;};

9) e continue;

(10) } else{ /* non-conflicting*/

(12) e Schedule;, to cycle k;

(12) eS=S8+{r;};

(13) e lastcstep=k;

14) }

(15) } /* endfor*/

(16) /* Generatenew pipelinesrecursvely */

(17) e startcstep= K+last.cstepl; /* D: definedin Sec.4.3/
(18) e Gen_RR_Pipelines(k, start.cstep;

Note that eachof the pipelinesgenerateds replicated

to the numberof readandread-writelogical ports of the
memory which arethenconstrainedo be executedn par-
allel to ensurethat the schedulerof behaioral synthesis
producesthesepipelines. For example,in Figure5 two
typesof pipelinewere extractedto test. Supposehatthe
correspondingnemoryhas1 read/writeport and 1 read-
only port. Then,eachtype of pipelineis duplicatedto be
performedn parallel,oneontheread-writeport, the other
ontheread-onlyport.
(2) Write-Write pipeline: This pipelinesare treatedex-
actly the sameasthat of Read-Reagbipelinesexceptthat
all thereadoperationsisedin Gen_RR_Pipelines arere-
placedwith write operations.The conflict vectorsandla-
teng arechangediccordingly Eachtype of pipelinespro-
ducedfrom Gen_WW _Pipelines(1, 0) is replicatedo the
numberof read/writeand write-only logical ports of the
memory andscheduledhemin parallel.

(3) Read-Write pipeline: Thisis to verify thatthe mem-
ory indeedsupportsoverlappingreadandwrite operations
onthesameread-writelogical port correctlyaswasspeci-
fiedin thememorywrapper To dothis, areadoperations
scheduleatcycle 0, andateachcyclek (=1,---,1—1),a
write operationis startedunlesghereis aconflict. A Read-
Write pipelinegeneratiorroutine, Gen_RW _Pipelines, is
constructedrom Gen_RR_Pipelines by modifying that
all readoperationsexceptoperationr g mustbe replaced
with write operations. Specifically the conflict checking
in line 5is replacedvith C,. .. ., (k— K) = 1 sinceit is to
checkthatawrite operatiorcanbepipelinedto areadoper
ationwith initiation intenval (¢ — K), andalsothechecking
in line 6 is replacedwith C; ., (k — j) = 1 sinceit is to
checkthata write operationcanbe pipelinedwith another
write operatiorwith initiation internval (k — 7).

For eachtype of pipelineobtainedjts readoperationis
replicatedto the numberof ports supportingread opera-
tion, andthey arescheduledn parallel. In the sameway;,
eachof the write operationis replicatedto the numberof
portssupportingwrite operationandthey arescheduledn
parallel. This ensureghatthe scheduleindeedgenerates
thedesiredpipeline.

(4) Write-Read pipeline: Thischeckis performedaccord-
ing to the Read-Writecheckwith the exchangedolesfor

readandwrite operations.

4.2 Inter-port checkings

The interport checkverifiesthe integrity of the memory
modelspecifiedn the memorywrappetrin the caseof par

allel executionof operationgon differentports. Dueto the
natureof the intra-portchecks,the casesf parallelread
operationsandparallelwrite operationhave alreadybeen
taken careof. Not yettaken careof is only the execution
of write andreadoperationscheduledtthe samecycle.

Becauseof the assumptiorof the inability of the be-
havioral synthesido assignan operationto a certainport,
intra-portcheckcannotbe performedselectvely for each
pair of ports. Therefore,only one checkis performed
where one read operationand one write operationare
schedulectthesamecycle. To dothis, for amemorywith
n,. read-onlyports,n,, write-only portsandn,.,, read-write
ports,we scheduldn,.+m) readoperationand (1., +1,.,-
m) write operationsvherem = [#5=] atthesamecycle.
This causesa maximumparallelismof a mixture of read
andwrite operationsandtheschedulewill mapthemonto
differentports. The resultof this checkis assumedo be
projectableto eachpair of memoryports.

4.3 Pre-and Post-Processing

Testsof theintra-portandinter-portaccesseareperformed
sequentiallyonefor eachtypeof pipelinesandparallelac-
cesses. For eachtest, we are requiredto have pre- and
post-processingtepsto make it work.

Pre-processing For eachtest, the sampledesign must
readall thevaluesfrom atestbencho beusedin themem-
ory write operationsReadinghesevaluesis guardedvith
a control signaltelling the testbenctwhenit shouldwrite
values. Then, all the memoryaddressesisedin the read
operationgnust be initialized prior to the test. This ini-
tialization can alreadybe part of the checks,e.g.,during
Write/Write pipelinechecking.

Post-processing After executingthe maintestof pipelin-
ing or parallelaccessesll the addresseasedin thewrite
operationgnustbe retrived with memoryreadoperations.
A partof thesereadoperationcanbe executedduringthe
checksalready After the valueshave beenretrived from
the memory they mustbe written backto the testbench,
whichis alsoguardecdby a controlsignal.

All the operationsn the pre-andpost-processingare
constrainedo be scheduledso that one operationstarts
to executeonly whenthe executionof the previous oper
ation is completed. The value of schedulenterval D in
line 17 of Gen_RR_Pipelines() betweerthe schedule®f
two pipelinesis the sumof the numberof cyclesrequired
by the operationdn the pre-processingf the proceeding
pipelineandthe numberof cyclesby the operationsn the
post-processingf thesucceedingipeline.

4.4 TestExample

We have implementeda utility program calledMemWap,
for generatinga memorywrapperandtestingthe wrapper
in the erwvironmentof the SynopsysBehavioral Compiler
[4]. Fromthe memoryinformationprovided by the user

MemWap createsa memorywrapperto be usedby the
Behavioral Compiler To validatethe correctnes®f the
memorywrapper MemWap also generates samplede-
signwith schedulingconstraintsandits testbenclautomat-
ically accordingo our proposedestingmethodologyThe
sampledesignandtestbenctarewrittenin eitherVHDL or
Verilog.

! ! ! I're addr _)—_“—
clock I clock
P A I a— AN
@ i T we addr
data_inf7X____ X7, [

! !
e I L1 we [L

data_out
(a) (b)

Figure 6: RT-level accesstiming relations of memory
mem_testl andtemplatemodelings

Considertestingmemory mem_testl with two read-
write ports. The RT-level timing relationsof the read
and write accessoperationsand the correspondingem-
plate modelingsare shawvn in Figures6(a) and(b). From
the accesgemplateswe derive the conflict vectors. That
is, CV&R = CV&W = [O, 0], and CVWW = CVW,R
=[]. Consequentlywe derve read-reacand read-write
pipelinesandaparallelaccessesf 1 readandl write. The
read-reagipelineof testsampledesignwrittenin Verilog
is shavn below.

forever begin : test_loop
[/l Design for read-read pipeline with initiation interval 1
/I (i) Get values for testing the pipeline
ready <=1,
dat0 = data_in; // line_label rr_in0
@ (posedge clk); ready <= 0;
datl = data_in; // line_label rr_in1
@ (posedge clk);

ready <=1,

dat4 = data_in; // line_label rr_in4

@ (posedge clk); ready <= 0;

dat5 = data_in; // line_label rr_in5

/1 (i) Initialize memory for testing
cell[0] = datO; // line_label rr_write_in0O;

cell[5] = dat5; // line_label rr_write_in5;
/1 (iii) Testing read-read pipeline
out0 = cell[0]; // line_label rr_read0

outl = cell[5]; // line_label rr_read5

/I (iv) Send out values for comparison
done <=1,

data_out <= outO; // line_label rr_outO
@ (posedge clk); done <= 0;
data_out <= outl; // line_label rr_outl
@ (posedge clk);

done <=1,

data_out <= out4; // line_label rr_out5

@(posedge clk); done <= 0;

data_out <= out5; // line_label rr_out5

/Il Design for read-write pipeline with initiation interval 1

end // test_loop

It consistsof four parts. All labeledstatementsn the
partsexceptstep(iii) areexecutedsequentiallyTo dothis,
fix_cyc schedulingconstrainis used.The synthesisorders
the executionsof the operationsas constrained[5]. The
pipelinedmemoryaccesse step(iii) are generatedy
constrainingas

fix_cyc(0, rr_readO, rr_readl); fix_cyc(0, rr_read2, rr_read3);
fix_cyc(0, rr_read4, rr_read5); fix_cyc(1, rr_readO, rr_read2);
fix_cyc(2, rr_readO, rr_read4);

wherethe constraintof thefirst line ensurethat for each
pair of operationsrr_read0 andrr_readl, rr_read2 and
rr_read3, andrr_read4 andrr_read5, the two operations
startto executeon different ports at the sametime, and
the constraintsof the secondline ensurethat rr_read2

is pipelinedto rr_read0 with initiation intenval 1, and
rr_read4 is pipelinedto rr_readO with initiation interval

2.

5 Conclusions

In this paper we have proposeda systematicapproacho
the problemof verifying the memoryaccessprotocolsin
behaioral synthesis. As the designcompleity is grow-
ing very rapidly, using behaioral synthesisas the first
stepof the synthesigprocesds becomingncreasinglyim-
portantto meetthe productvity needsandfurther, high-
performanceon-chipmemoriesare widely usedtodayin
industry In thatcontext, we proposeda highly reliableas
well aspractically efficient solutionto the verification of
the correctnes®f the memoryaccesgrotocolsin beha-
ioral synthesis.

Acknowledgment: This work was supportecby Synop-
sysinc., andthe work of TaevhanKim waspartially sup-
portedby the KoreaScienceand Engineeringroundation
(KOSEF)throughthe Advancedinformation Technology
ResearcliCenter(AITrc).

References
[1] D. Gajski,N. Dutt, A. Wu, S.Lin, High-Level Synthesisintroduc-
tionto ChipandSystenbesign Kluwer AcademidPublisher1992.

[2] D.W. Knapp,Behavioal SynthesisPrenticeHall, 1996.

[3] T.Ly, D.Knapp,R. Miller, D. MacMillen, “Schedulingusing Be-
havioral Template$, DAC, 1995.

[4] Behavioal CompilerUserGuide Synopsydnc.,1998.

[5] D. Knapp,T. Ly, D. MacMillen, R. Miller, “Behavioral Synthesis
Methodologyfor HDL-BasedSpecificationand Validation; DAC,
1995.

	Main Page
	ICCAD2000
	Front Matter
	Table of Contents
	Session Index
	Author Index
	Call for Papers

