
A Methodologyfor Verifying Memory AccessProtocolsin Behavioral Synthesis

GernotKoch
�

TaewhanKim � ReinerGenevriere
�

�
SynopsysInc. � Dept.of ElectricalEngineering& ComputerScience

700E. MiddlefieldRd. andAdvancedInformationTechnologyResearchCenter
MountainView, CA 94043USA KAIST, Taejon,305-701KOREA

Abstract— Memory is oneof the most important components
to be optimized in the several phasesof the synthesisprocess.
In behavioral synthesis,a memory is viewed as an abstract
construct which hidesthe detail implementationsof the mem-
ory. Consequently, for a vendor’s memory, behavioral syn-
thesis should create a clean model of the memory wrapper
which abstracts the properties of the memory that are re-
quir ed to interface to the rest of the circuit. However, this
wrapping processinvariably demandsthe verification prob-
lem of the memory accessprotocolsin order to besafelyused
in behavioral synthesisenvir onment. In this paper, we pro-
posea systematicmethodology of verifying the correctness
of the memory wrapper. Specifically, we analyze the com-
plexity of the problem,and derivean effectivesolution which
is not only practically efficient but also highly reliable. For
designerswho usememoriesasdesigncomponentsin behav-
ioral synthesis,automating our solution shortensthe verifica-
tion time significantly in contrast of simulating memory ac-
cessesin the context of full design,which is a quite complex
and time-consumingprocess,especiallyfor designswith many
memory accessoperations.

1 Intr oduction
Asthedesigncomplexity isgrowingveryrapidly, usingbe-
havioral synthesis[1,2] startingfrom a high-level abstrac-
tion of designdescriptionis becominginevitablefor more
andmoredesignprojects.Moreover, high-throughputon-
chip memoriesarewidely usedin designingchipstoday.
This trendturnsout thatoneof thestrongestargumentsfor
behavioral synthesisis theeaseof incorporatingmemories
into adesign.

Memoryaccessesaresimplyspecifiedasaccessesto an
arrayvariablein theHDL sourcecode.Thebehavioralsyn-
thesisthentakescareof thedetailsof thememoryaccess
protocolsand,if desired,evenoptimizestheorderof mem-
ory accesses,exploiting possibilitiesfor pipelinedaccesses
or parallelaccessesof multi-portmemories.To enablethe
synthesisto infer memoriesfor arrayvariables,it requires
anexistenceof anHDL wrapper(encapsulator)which in-
stantiatesthememoryandtakescareof thesetupandhold
time requirementsof thememory. In addition,thesynthe-
sis requiresseparateinformationaboutthecycle-by-cycle

protocolof thiswrapper.
Until recently, this informationandthewrapperhadto

becreatedmanuallyby thedesigner[2].Consequently, au-
tomatingthis processcan save a considerabledesignef-
fort in behavioral synthesisand increasethe productivity
further. Theautomationrequiresa wrappingutility which
usesmemorypropertiesenteredby thedesignerto gener-
atememorywrappersto be usedin behavioral synthesis.
However, this memorywrappinginvariablely inducesthe
verificationproblemof thememoryaccessprotocols.That
is, thecorrectnessof everythingthe wrappingutility gen-
eratesdependsdirectlyon thecorrectnessof theproperties
enteredby the designer. Earlier, with the hand-generated
memorywrappers,userswould createa small behavioral
designsolely to verify thesewrappers.As memoriesare
not visible in thepre-synthesissimulation,this designhad
to besynthesizedandapost-synthesissimulationhadto be
performedto verify boththeHDL wrapperandtheproto-
col information. Sincetherearemany possibleconfigura-
tionsof parallelandinter-leavedmemoryaccesses,e.g.for
multi-port memories,creatinga sampledesignanda test-
benchthatperformacompletecheckratherthanjustasan-
ity checkis very tedious,but very important.Fortunately,
asthewrappingutility containsall theinformationit needs
to generatea memorywrapper, it is in an ideal position
to generateeverythingnecessaryto verify the wrapperas
well.

In this paper, we proposea systematicapproachto the
problemof (1) generatinga samplebehavioral design,(2)
a synthesisscript constrainingthedesignappropriatelyto
pushit throughthesynthesisand(3) a self-checkingsim-
ulation testbenchto verify the correctnessof the memory
wrapper. More specifically, we analyzethecomplexity of
the problemof generatingthe sampledesign,script and
testbenchfor a full coverageof verifying thememoryac-
cessprotocolsin thememorywrapper, andproposeanef-
ficientandhighly reliablesolutionto theproblem.

2 Behavioral-level Memory Verification
2.1 Verification Structur e
Testing the correctnessof the memory wrapper in the
context of behavioral synthesisrequiresa samplebehav-

ioral designwhichmustbedesignedcarefullyto fully test
any combinationof thepipeline/parallelmemoryaccesses.
Oncea sampledesignis generated,a behavioral synthesis
scriptfile whichcontrolsthescheduleof thememoryoper-
ationsin thedesignis needed.In addition,wearerequired
to generatea self-checkingtestbench file to simulatethe
sampledesignbeforeandafterscheduling.

Figure1 shows the designhierarchy for testingmem-
ory wrapper. The memorywrapperencapsulatesthe im-
plementationof thememory. Behavioral synthesisusesthe
informationin the memorywrapperfor schedulingmem-
ory operationsin thesampledesign.Thecorrectnessof the
memorywrapperis verified by executingthreetasks: (a)
simulatingthe pre-scheduledbehavioral-level samplede-
sign, (b) scheduling/allocatingthe sampledesignaccord-
ing to thescheduleconstraints,and(c) simulatingthepost-
scheduledRTL design. Completingtask(a) confirmsthe
correctbehavior of thesampledesign,andis not relatedto
thememorywrapperitself. Task(b) indicatesthat thebe-
havioral synthesistool followstheprotocolsof thememory
providedby thememorywrapper. Finally, task(c) shows
that the memorywrapperin the RTL designproducedby
thebehavioral synthesistool functionscorrectly. Here,the
confidenceof thecorrectnessof thememorywrapperis es-
tablishedby creatinga sampledesignandschedulingthe
memoryoperationsin the designin many differentways,
whichis themainsubjectof thispaper. Notethatthemem-
ory wrapperswe areconsideringarealwayssynchronous.
This meansthat memoryprotocolswith asynchronousor
combinationalbehavior of memoryoperationsaremadeto
appearsynchronousby thememorywrapper, e.g. by reg-
isteringinputsignalsin thewrapper.

Test bench

Sample design

Test bench

Sample design

Memory

Memory wrapper

(post-scheduled)(pre-scheduled)

Memory

Memory wrapper
Behavioral Synthesis

Script

(schedule constraints)

Figure 1: Designhierarchy of behavioral-level memory
wrappertesting

2.2 Preliminaries
We first clarify someterms usedin our presentationto
avoid any confusion.

Logical port: A memoryis connectedto theoutsideworld
throughphysicalports (e.g.,addressport, dataport, write
enableport etc.). The throughputof the memoryis char-
acterizedby the timing synchronizationamongthe wave-
forms passedto the ports, which determinesthe logical

ports of the memory, i.e., read-writeport, read-onlyport,
and write-only port. With this context, we call the read
andwritememoryoperationslogical port operationsof the
memory.

Regular pipeline: A pipelinewith initiation interval � and
latency � is regular if givenanoperationstartingat cycle �
anotheroverlappingoperationcanonly startto executeat
cycles ����� , ���	�
� , ���
� , ��������� where� is anintegersuch
that ������������������� �!��� .
Irregular pipeline: A pipeline which is not a regular
pipeline, but still allows overlappedexecutionof opera-
tions,is irr egular.

Conflictflag andConflictvector: We definea conflictflag,"$#&% ' �(��� , to denotethe feasibility of pipelining memory
operation) to memoryoperation* with initiation inter-
val � . "+#&% ' �(�
� becomes1 if sucha pipelinecausesa re-
sourcecontention,andbecomes0 otherwise. We collec-
tively represent

"+#&% ' �(��� , � = 1, 2, ���
� , ��,�� where � is the
latency of * asavectorform, calledconflictvector,

"�-.#&% '
= / "+#&% ' �0� ��12�����31 "+#&% ' ���4,5� �76 .

A memoryoperationcanhave differentcycle-by-cycle
input/outputconnectionsandresourcerequirementsof the
overlappingexecutionsamongoperations.We canrepre-
sent the cycle-by-cycle connectionsof a memoryopera-
tion usinga conceptsimilar to behavioral templatesin [3].
For example,Figure2(b)showsmodelingof 3-cyclemem-
ory write operationfrom the RT-level timing relationsof
the signalsfor the write operationshown in Figure2(a).
The address,dataandwrite enableinputsarede-coupled
in termsof when and how long eachinput must be sta-
ble. We thenextract the feasibility of overlappingexecu-
tion of memoryoperationsfrom thetemplatemodelingof
the cycle-by-cycle connections.For example,2 memory
write operationson the left handof Figure2(c) cannotbe
pipelinedwith initiation interval 1 onthesamelogicalport
becausetheaddr connectionconflicts,but pipeliningwith
initiation interval 2 is possibleasshown on theright hand
of Figure2(c). In summary, from Figure2(c)

"+#&% ' �0� ��89�
and

"+#&% ' �7�:�:8<; . Thatis,
"�-.#&% '

= [0, 1].

y

x

y

x

w0

w1

w2

xyC (1) = 1

(a)

clock

addr

data

we

w0

w1

w2

data

addr
we

(b)

w0

w1

w2 w0

w1

w2
xyC (2) = 0

w0

w1

w2

(c)

Figure2: (a) An RT-level timing relationof signalsfor 3-
cyclememorywrite; (b) Thecycle-by-cycletemplatemod-
elingof (a); (c) Derivationof conflictflagsfor two memory
write operations* and)

Sincetheverificationof memorywrapperis tightly re-
lated to the type of the memoryand how the behavioral
synthesistool modelsthememory, we first introducea set
of assumptionsthatareminimally requiredby ourverifica-
tion solution:

(a) Memory hasat leastoneport supportingreadaccess,
andalsohasat leastoneportsupportingwrite access.That
is, we do not performany self-checkingfor the memory
wrappersof read-onlymemoriesandwrite-onlymemories.

(b) All readaccessesof amemoryhave thesameprotocol.
This appliesto all write accessesaswell. This assump-
tionsimplifiesthecomputationof conflictvectors.Weonly
needto determinethe four conflict vectors,

"$=$% =
,
"$>?% >

,"+=@% >
, and

"$>?% =
where A and B representany readand

write memoryoperations.We extract the conflict vectors
of thememorywrapperfrom thewaveforms(protocols)of
thememoryoperations.

(c) Thedesignerhasnocontrolof bindingamemoryoper-
ationto a particularport of memory. Thetaskof memory
port bindingis automaticallydoneby thesynthesistool in
away to optimizetheoveralldesign.

(d) The synthesistool canconstrainschedulingof mem-
ory operationsrelativeto theotheroperations.Specifically,
whenwedenotesch(x) to thecyclestepatwhichoperation* startsthe execution,the schedulersupportsa schedule-
constrainingcommand,fix cyc(c, x, y), which constrains
sch(y) - sch(x) = c.

Thememoryinformationthatthememorywrappercon-
tainsis usedto link the memorycell to the datapathand
to schedulememoryoperations.Thecorrectnessof thein-
formationcan,in fact,beverifiedby simulatingthesched-
uled RTL designof the samplebehavioral designthat is
createdby our methodologyof memorywrappertesting.
The memoryinformationnecessaryfor testingin behav-
ioral synthesisis (1) bit-widthsof addressanddatabusses,
(2) numberof eachlogicalport (i.e., read-only, write-only,
read-write),(3) controlpinsusedfor eachlogical port op-
eration(read,write), and(4) latency andrequiredcontrol
pin settingsfor eachlogicalportoperation.

3 Complexity Analysis
We couldwrite any samplebehavioral designwhich con-
tains memory operations,scheduleit and simulate the
scheduledRTL designtogetherwith the vendorprovided
simulationmodelof theusedmemory. Our goal is, how-
ever, to achieve a highly reliablememorywrappertesting
systematically. To do this, we could createa samplede-
signwith schedulingconstraintsandasimulationtestbench
which coversall thepossiblepipelinesandparallelismsof
memoryoperations.However, thiswouldrequireanexces-
siveamountof designeffort andrun time in scheduling.

For example,consideramemorywith C read/write(log-
ical) ports. Whenwe assumethat the latency of eachof

readandwrite operationsfor every logical port is � anda
pairof any two operationscanbepipelinedwith any value
of initiation interval, thenumberof possiblecombinations
of pipelinesexecutedover the C logical portsis �EDGFIHJ�
�EK
sincethereare up to �EDGFIH different patternsof pipelines
usingany of readandwrite operationson a singlelogical
port andthereare C logical ports. Thus,the total number
of memoryoperationsin asampledesignfor testingall the
pipelinesbecomes�:LMDGFIHGN7OPKQ�R�P�SC sinceup to � memory
operationsareinvolvedin a pipelineon a logical port. We
mightalsotakeinto accountthenumberof possiblecombi-
nationsof parallelaccessesamongdifferent(logical)ports,
which is �EK . However, thishasalreadybeencountedwhen
thecombinationsof pipelineswereconsidered.Thesolid
curve in Figure3 showsthechangeof thenumberof mem-
ory operationsrequiredwith the changeof the valuesof
thelatency, � , andthenumberof (logical)ports,C . For ex-
ample,to fully testa memorywith 2 read/writeportsand
latency 3, a total of 96 memoryoperationsareneeded.In
contrast,thedottedcurve in Figure3 shows thenumberof
memoryoperationsrequiredby our testingmethodology. H
It reducesthetestingcomplexity significantly, but achieves
a highly reliableandsystematictesting.Thedetailsof our
proposedtestingmethodologyaredescribedin Sec.4.

l: latency
n: #. of logical ports

#. of memory ops.

(1,1) (1,2) (2,1) (2,2) (1,3) (3,1) (2,3) (3,2) (3,3)
(n, l)

300

100

 50 our testing

exhaustive testing

Figure3: The complexity of memorywrappertestingin
termsof thenumberof operations

4 Behavioral-level Memory Verification
The scopeof our memorywrapperverification is purely
functional.Wegeneratea samplebehavioral designwhich
containsmemoryaccesses,scheduleit andsavethesched-
uledRTL designin VHDL or Verilog. This makesit tech-
nologyindependentandallowsfor amoregeneraltesting.T

We accomplishthe verification by carrying out two
classesof memoryoperations,namely, checkingfor intra-
port accesses, i.e., pipelinedmemoryaccess,andcheck-
ing for inter-port accesses, i.e., parallelmemoryaccesses.U

The numberof operationsis expressedas V3W�XZY:[\W , W^]�_ andY:]Q_ wherethefirst andsecondtermscorrespondto thatin checkingsin
Sec.4.1andthatin Sec.4.2,respectively.`

While the sampledesignmay also be usedas a startingpoint for
staticor dynamictiming verification,we excludethis from thescopeof
thispaper.

Thesechecksensurethat theprotocolsof logical port op-
erationsspecifiedin the memorywrapperarecorrectand
the memorycanbe operatedwith the maximumthrough-
put accordingto thenumberandtypeof logical ports,the
latenciesandpipelines. (Eachof the checksdescribedin
the following is assumedto startat cycle 0. This is to be
understoodasbeing relative to the start of the particular
check.As thesechecksareperformedoneby onesequen-
tially, therealcyclenumberatwhichacertaincheckstarts
dependson thepreviouslyperformedchecks.)
4.1 Intra-port checkings
For eachlogicalportof memory, everypipeline(read-read,
write-write,read-write,write-read)is filled soasto achieve
a maximal throughput. Sinceby the third assumptionin
Sec.2.2, thereis no way to constrainthesynthesistool to
usea certainlogical port for a certainmemoryoperation,
for eachmemoryoperationall the ports that supportthis
operationhave to be accessedat the sametime to ensure
thatthepipelineof eachport is actuallyfilled. Our testing
consistsof four typesof pipeline.

(1) Read-Readpipeline: Given a memorywith C logi-
cal portssupportingreadoperations,eachwith a regular
pipelinewith initiation interval � andlatency � , thesched-
ule of readoperationsof thepipelineis shown in Figure4
where� is anintegersuchthat �a�0�J�<�!�����a�b� �:�c� . This
correspondsto thecasethat

"$=$% = �(���:8 "+=@% = �7�
�
�:8d�
���e8"+=@% = ���2�
�:8<; and
"+=@% = �(fg� = 1, f�h8��Z10�
�31
���
�31��
� .

cycle-ki

cycle-i

cycle-0

port-1 port-2 port-n

Figure4: Expectedschedulefor testinga regularpipeline
of readoperations

To illustrate when and how an irregular read-read
pipeline is tested,let us considera memorywhoseread
latency is 5 with its condition vector

"�-.=$% =
= [0, 0, 1,

0]. To effectively test the pipeline at eachlogical read
port we attemptto maximizethe overlappingof the exe-
cutionsamongthe memoryoperations.Consequently, in
Figure5(a),operationi � is pipelinedto operationi:� with
initiation interval 1 becausethereis no accessconflict be-
tweenthem(i.e.,

"$j H % j T �0� � = 0), resultingin the pipeline
in Figure5(b)which is thenoverlappingwith operationi k
with initiation interval 1 since

"+j H % j�l �7�:� =
"+j T % jml �0� � = 0

as shown in Figure 5(c). However, overlappingi n withi k with initiation interval 1 is not possiblebecausethere
is an accessconflict by

"+j H % j�o �7k:�) = 1 as indicatedby a

block box in Figure5(d). Furthermore,i n cannotoverlap
with i k with initiation interval 2 asshownFigure5(e)since"$j T % jmo �7k:� = 1. Consequently, the pipelinewe have found
sofar is theonein Figure5(c).

r1
r2

: nonconflict with operation of dotted box

: conflict with operation of dotted box

r1
r2

r3

(d)

r2
r1

r3

(b) (c)(a)

r1
r2

r3

r1
r2

r3

r4

r4

(e) (f)

pipeline 2

pipeline 1

Figure 5: An example of showing the generationof
pipelines;(a) checkpipeliningwith i � ; (b) checkpipelin-
ing with i k ; (c) pipelinewith threeoperations;(d) access
conflictingwhenpipeliningi n with initiation interval 1; (e)
accessconflictingwhenpipelining i n with initiation inter-
val 2; (f) anotherpipelinederivedfrom (e)

To exploreanotherpossibilityof pipeliningwhich is to-
tally differentfrom the previously generatedone,we uti-
lize theconflict informationproducedbefore.Specifically,
if weexaminethefailureof overlappingi n with i:� in Fig-
ure 5(e), it is dueto the conflict with i � , not becauseof
thatwith i:� . This meansthatwe canstartto createa new
pipelinewith i:� andi n suchthat i n is overlappedwith i:�
with initiation interval 4 asshown in Figure5(f). If there
weremore thanonecycle stepat which suchconflicting
occurs,a new pipeline,for eachconflicting cycle step,is
generatedwith theinitiation interval startingwith thecycle
step. In thefollowing, we summarizethe ideaof generat-
ing pipelinedesignswith a constructive procedure,which
works for irregularpipelinesaswell asregularones.It is
recursiveandstartsby callingGen RR Pipelines(1, 0).

Gen RR Pipelines(� , p): Generateread-readpipelines

(1) q Setr = s2t ; /* conflictingoperations*/
(2) q Setu = s
t ; /* scheduledoperations*/
(3) q Scheduleanoperation(sayv w) to cyclestepx ;
(4) For eachy = xdz|{ , }Z}�} , andxdz|{�z|~:���@s
(5) if (������� �m�2��y��\x�� =1) continue;/* conflictwith vSw */
(6) elseif (thereis an v2� in u suchthat � ���Z� � �
��y��\� � =1) s
(7) /* conflictwith someof theremainingscheduledops*/
(8) q�r = r + smv2�3t ;
(9) q continue;
(10) t else s /* non-conflicting*/
(11) q Schedulev � to cycle y ;
(12) q�u = u + smv
�3t ;
(13) q last cstep= y ;

(14) t
(15) t /* endfor*/
(16) /* Generatenew pipelinesrecursively */
(17) q start cstep= x +last cstep+l; /* � : definedin Sec.4.3*/
(18) q Gen RR Pipelines(y , start cstep);

Note that eachof the pipelinesgeneratedis replicated
to the numberof readandread-writelogical portsof the
memory, whicharethenconstrainedto beexecutedin par-
allel to ensurethat the schedulerof behavioral synthesis
producesthesepipelines. For example, in Figure 5 two
typesof pipelinewereextractedto test. Supposethat the
correspondingmemoryhas1 read/writeport and1 read-
only port. Then,eachtypeof pipelineis duplicatedto be
performedin parallel,oneon theread-writeport, theother
on theread-onlyport.
(2) Write-Write pipeline: This pipelinesare treatedex-
actly the sameasthatof Read-Readpipelinesexceptthat
all thereadoperationsusedin Gen RR Pipelines arere-
placedwith write operations.Theconflict vectorsandla-
tency arechangedaccordingly. Eachtypeof pipelinespro-
ducedfrom Gen WW Pipelines(1, 0) is replicatedto the
numberof read/writeand write-only logical ports of the
memory, andscheduledthemin parallel.

(3) Read-Write pipeline: This is to verify that themem-
ory indeedsupportsoverlappingreadandwrite operations
on thesameread-writelogicalport correctlyaswasspeci-
fied in thememorywrapper. To do this,a readoperationis
scheduledatcycle0, andateachcycle � (= 1, ���
� , ��,��), a
write operationis startedunlessthereis aconflict. A Read-
Write pipelinegenerationroutine,Gen RW Pipelines, is
constructedfrom Gen RR Pipelines by modifying that
all readoperationsexceptoperationiS� mustbe replaced
with write operations.Specifically, the conflict checking
in line 5 is replacedwith

"+j � % � � ����,�p��:8�� sinceit is to
checkthatawriteoperationcanbepipelinedto areadoper-
ationwith initiation interval (��,|p), andalsothechecking
in line 6 is replacedwith

"$� � % � � ���?,�fR�P8�� sinceit is to
checkthata write operationcanbepipelinedwith another
write operationwith initiation interval (��,�f).

For eachtypeof pipelineobtained,its readoperationis
replicatedto the numberof ports supportingreadopera-
tion, andthey arescheduledin parallel. In thesameway,
eachof the write operationis replicatedto the numberof
portssupportingwrite operation,andthey arescheduledin
parallel. This ensuresthat the schedulerindeedgenerates
thedesiredpipeline.

(4) Write-Read pipeline: Thischeckis performedaccord-
ing to theRead-Writecheckwith theexchangedrolesfor
readandwrite operations.
4.2 Inter -port checkings
The inter-port checkverifiesthe integrity of the memory
modelspecifiedin thememorywrapperin thecaseof par-

allel executionof operationson differentports.Dueto the
natureof the intra-portchecks,the casesof parallel read
operationsandparallelwrite operationshave alreadybeen
takencareof. Not yet takencareof is only theexecution
of write andreadoperationsscheduledat thesamecycle.

Becauseof the assumptionof the inability of the be-
havioral synthesisto assignanoperationto a certainport,
intra-portcheckcannotbe performedselectively for each
pair of ports. Therefore,only one check is performed
where one read operationand one write operationare
scheduledat thesamecycle. To dothis,for amemorywithC j read-onlyports,C � write-onlyportsandC jc� read-write
ports,we schedule(C j +�) readoperationsand(C � +C j0� -�) write operationswhere��8�� K4�� T

¡
at thesamecycle.

This causesa maximumparallelismof a mixture of read
andwrite operationsandtheschedulerwill mapthemonto
differentports. The resultof this checkis assumedto be
projectableto eachpairof memoryports.

4.3 Pre-and Post-Processing
Testsof theintra-portandinter-portaccessesareperformed
sequentially, onefor eachtypeof pipelinesandparallelac-
cesses.For eachtest, we are requiredto have pre- and
post-processingstepsto make it work.

Pre-processing: For eachtest, the sampledesignmust
readall thevaluesfrom atestbenchto beusedin themem-
ory write operations.Readingthesevaluesis guardedwith
a controlsignaltelling the testbenchwhenit shouldwrite
values. Then,all the memoryaddressesusedin the read
operationsmustbe initialized prior to the test. This ini-
tialization canalreadybe part of the checks,e.g.,during
Write/Writepipelinechecking.

Post-processing: After executingthemaintestof pipelin-
ing or parallelaccesses,all theaddressesusedin thewrite
operationsmustberetrivedwith memoryreadoperations.
A partof thesereadoperationscanbeexecutedduringthe
checksalready. After the valueshave beenretrived from
the memory, they mustbe written back to the testbench,
which is alsoguardedby acontrolsignal.

All the operationsin the pre- andpost-processingsare
constrainedto be scheduledso that one operationstarts
to executeonly whenthe executionof the previous oper-
ation is completed. The valueof scheduleinterval ¢ in
line 17 of Gen RR Pipelines() betweentheschedulesof
two pipelinesis thesumof thenumberof cyclesrequired
by the operationsin the pre-processingof the proceeding
pipelineandthenumberof cyclesby theoperationsin the
post-processingof thesucceedingpipeline.

4.4 TestExample
Wehaveimplementedautility program,calledMemWrap,
for generatinga memorywrapperandtestingthewrapper
in the environmentof the SynopsysBehavioral Compiler
[4]. From the memoryinformationprovided by the user,

MemWrap createsa memorywrapperto be usedby the
Behavioral Compiler. To validatethe correctnessof the
memorywrapper, MemWrap alsogeneratesa samplede-
signwith schedulingconstraintsandits testbenchautomat-
ically accordingto ourproposedtestingmethodology. The
sampledesignandtestbencharewrittenin eitherVHDL or
Verilog.

w0

clock

addr

re

(a) (b)

clock

addr

we

addr
data_in

we

w0

w1

w2

re

data_out

addr

data_out data_in

Figure 6: RT-level accesstiming relations of memory
mem test1 andtemplatemodelings

Considertestingmemorymem test1 with two read-
write ports. The RT-level timing relationsof the read
and write accessoperationsand the correspondingtem-
platemodelingsareshown in Figures6(a) and(b). From
the accesstemplates,we derive the conflict vectors.That
is,

"�-4=$% =
=

"�-.=$% >
= [0, 0], and

"�-.>?% >
=

"�-4>£% =
= []. Consequently, we derive read-readand read-write
pipelines,andaparallelaccessesof 1 readand1 write. The
read-readpipelineof testsampledesignwritten in Verilog
is shown below.

forever begin : test loop
//// Design for read-read pipeline with initiation interval 1
// (i) Get values for testing the pipeline
ready ¤ = 1;
dat0 = data in; // line label rr in0
@(posedge clk); ready ¤ = 0;
dat1 = data in; // line label rr in1
@(posedge clk);
....
ready ¤ = 1;
dat4 = data in; // line label rr in4
@(posedge clk); ready ¤ = 0;
dat5 = data in; // line label rr in5
// (ii) Initialize memory for testing
cell[0] = dat0; // line label rr write in0;
....
cell[5] = dat5; // line label rr write in5;
// (iii) Testing read-read pipeline
out0 = cell[0]; // line label rr read0
....
out1 = cell[5]; // line label rr read5
// (iv) Send out values for comparison
done ¤ = 1;
data out ¤ = out0; // line label rr out0
@(posedge clk); done ¤ = 0;
data out ¤ = out1; // line label rr out1
@(posedge clk);

....
done ¤ = 1;
data out ¤ = out4; // line label rr out5
@(posedge clk); done ¤ = 0;
data out ¤ = out5; // line label rr out5
//// Design for read-write pipeline with initiation interval 1
....

end // test loop

It consistsof four parts. All labeledstatementsin the
partsexceptstep(iii) areexecutedsequentially. To do this,
fix cyc schedulingconstraintis used.Thesynthesisorders
the executionsof the operationsas constrained[5]. The
pipelinedmemoryaccessesin step(iii) aregeneratedby
constrainingas

fix cyc(0, rr read0, rr read1); fix cyc(0, rr read2, rr read3);
fix cyc(0, rr read4, rr read5); fix cyc(1, rr read0, rr read2);
fix cyc(2, rr read0, rr read4);

wherethe constraintsof the first line ensurethat for each
pair of operationsrr read0 and rr read1, rr read2 and
rr read3, and rr read4 andrr read5, the two operations
start to executeon different ports at the sametime, and
the constraintsof the secondline ensurethat rr read2
is pipelined to rr read0 with initiation interval 1, and
rr read4 is pipelinedto rr read0 with initiation interval
2.

5 Conclusions
In this paper, we have proposeda systematicapproachto
the problemof verifying the memoryaccessprotocolsin
behavioral synthesis.As the designcomplexity is grow-
ing very rapidly, using behavioral synthesisas the first
stepof thesynthesisprocessis becomingincreasinglyim-
portantto meetthe productivity needs,andfurther, high-
performanceon-chipmemoriesarewidely usedtoday in
industry. In thatcontext, we proposeda highly reliableas
well aspracticallyefficient solutionto the verificationof
the correctnessof the memoryaccessprotocolsin behav-
ioral synthesis.

Acknowledgment: This work was supportedby Synop-
sysInc., andthework of TaewhanKim waspartially sup-
portedby the KoreaScienceandEngineeringFoundation
(KOSEF)throughthe AdvancedInformationTechnology
ResearchCenter(AITrc).

References
[1] D. Gajski,N. Dutt, A. Wu, S.Lin, High-Level Synthesis:Introduc-

tion to ChipandSystemDesign, Kluwer AcademicPublisher, 1992.

[2] D. W. Knapp,Behavioral Synthesis, PrenticeHall, 1996.

[3] T. Ly, D. Knapp,R. Miller, D. MacMillen, “SchedulingusingBe-
havioral Templates,” DAC, 1995.

[4] Behavioral CompilerUserGuide, SynopsysInc.,1998.

[5] D. Knapp,T. Ly, D. MacMillen, R. Miller, “Behavioral Synthesis
Methodologyfor HDL-BasedSpecificationandValidation,” DAC,
1995.

	Main Page
	ICCAD2000
	Front Matter
	Table of Contents
	Session Index
	Author Index
	Call for Papers

