A Sensitivity Based Placer for Standard Cells

Bill Halpin
Design Technology, Intel
2200 Mission College SC12-606
Santa Clara, CA 95054

1 408 765 9867
william.halpin@intel.com

ABSTRACT

We present a new timing driven method for global placement.
Our method is based on the observation that similar net length
reductions in the different nets that make up a path may not
impact the path delay in the same way. For each net in the
design, we compute the net sensitivity, or the path delay
reduction as a result of net length improvements. We use very
accurate delay models that include the impact of waveform slope
and driver loading effects. Our new timing driven algorithm
uses the sensitivity information to focus on nets that have the
greatest impact on improving the worst circuit paths. Our
method significantly improves the worst path delay over existing
published work on industry circuits.

1. INTRODUCTION

The timing driven placement problem has been the focus of
much research. The objective of standard cell placement is to
find non-overlapping locations for each of the standard cell
modules that meet the timing constraints while minimizing
design area.

Process technology advances have scaled gates more rapidly
than interdo not alow the chip designer to use placement
algorithms where wire length minimization is the only objective.
Interconnect capacitance, or load, often exceeds the receiver pin
capacitance and wire resistance can now be on par with the
driver output resistance. This is important as logic synthesis
does not have information about cell locations and uses a
statistical wire load model to estimate the resistance and
capacitance. These estimates may differ significantly from the
parasitics derived from the placed design. This mismatch forces
the designer to iterate between logic synthesis and placement to
achieve a design that meets the timing goal. These iterations are
very time consuming since they involve full routing, extraction,
and timing stages. The time for each re-synthesis iteration can be
an order of magnitude greater than the placement stage itself.

Recently this problem has grown as the capacitive loading of the

net dramatically impacts the gate delay and slope. The delay of a

gate can no longer be considered as an unchanging ‘“intrinsic”
value. When interconnect capacitance of a net increases, the
output slope degrades. This poor slope increases the delay of the
gates further down in the path.

Current state of the art placement algorithms [1,2] use an
“intrinsic” gate delay; estimated net routing; the Elmore delay

C.Y. Roger Chen
Syracuse University

Department of EE&CS
Syracuse, NY 13244
1315443 4179

crchen@syr.edu

-5 b

Naresh Sehgal
Design Technology, Intel

2200 Mission College SC12-606
Santa Clara, CA 95054

1408 765 4179
naresh.sehgal@intel.com

model and static path timing analysis to achieve improved
timing results.

There has been extensive work on the timing driven placement
problem. We classify work on the timing driven placement
according to three factors: the circuit parasitics model, the path
delay calculation, and how delay and parasitic information is
used in placement. In [1], an iterative net weighting approach
biases the placement and the Elmore model is used to calculate
net delay. The half perimeter of the net pins is used to estimate
the net topology. The net weight is uniformly increased for the
3% most critical nets. In [2] a powerful simulated annealing
path based algorithm is presented which is able to handle large
designs. A constant driver resistance is assumed and the half
perimeter bounding box of the net pins is used to model
interconnect. Net delay is calculated as the product of the driver
resistance and net capacitance. The driver delay is constant and
does not vary with capacitive load. Timing is incorporated into
the simulated annealing by adding to the cost function the
difference between the required time and the actual timing for
all critical paths. Neither paper accounts for the effects of
waveform slope nor sensitivity of the path delay to net topology
changes.

2. PROPOSED MODELSFOR TIMING
IMPROVEMENT
2.1 Proposed Delay Modd for Placement

Referring to Figure 1, We define the following terms: A cell, or
gate, g implements some logic function and is the basic

O1 (07} Os

Ny Ny N3 Ny
i. Os

Figure 1. Apath with itsgates and nets

placement unit. Ahough our work handles gates with multiple
outputs, for simplicity we denote the net driven hyag n We
refer to the output of;@gs g and the m inputs as.g.., gm A k-
pin net, R connects the output of gith the k-1 input pins of
n’s receiver gates FM), FO,(n),..., FQ..(n). We define a
path, p as an ordered list of gate pins and interconnectsn{g
O, o, ..., Gy @and the set of nets on path, gs N(p.

@ @ =)
® S =
I @ &
o ® o
o = &
1S) S o
=1 =1 =1

Ctotal in pico farads
Figure 2. How the gate delay varies with capacitive load

0.108769

0.055736(Cmax) 1

0.12

011
0.08 —////

fe

S 0.06 +
0.04 +

0.02 +

0 + t t
0.026 0.05 0.1 0.2 0.4

slope in nano seconds

Figure 3. How the delay varies with slope

Previous placement work has assumed that the delay of the
driving gate is constant, or intrinsic, for the transistor. As
shown in Figures 2 and 3, the delay is not constant and varies
significantly with the loading capacitance and input slope. In
our work, we calculate delay based on an accurate driver and net
model which includes the impact of waveform slope and the
capacitive loading effects. The delay of agateis afunction of its
input slope and its total load capacitance. The capacitance of
input pin, g;, is C(g;) and the total receiver pin capacitance of n,

k-1
Coin(n) is ZC(FOJ- (n;)). The load capacitance of driver g;,
=

Ciota(ny), is composed of two parts: Cpyy(n) and the net
capacitance, C.«(n;).We define the input sope as the time it
takes the voltage at the input pin of g; to go from its 20% vaue
to its 80% vaue. We define gate delay as the time it takes from
the 50% change in the input voltage to the 50% change in the
output voltage. The gate delay isthen

D(g) = f,(input slope, Cy,) and the output slopeis
Slope(g;) = f,(inputslope, Cyoy) -

The functions f, and f, can be determined from Spice

simulations. Current placement algorithms assume that D(g) is
fixed. This assumgption is invaid since placement changes
affect C(N) and therefore f, (input slope, Cyy) - In Figure 2

we show how the gate delay varies with changes in Cyyy for a
given slope. In Figure 3 we show how the gate delay varies with
input slope. We define the delay of a path, p;, as D(p;). We use
the above gate delay model and AWE[6] to calculate the wire
delay.

Referring to Figure 1, the net, n, is composed of the wires {wy,
Wa,...,W7}. The resistance of wis R(w) and the capacitance as
C(wy). We determine the values of R(w) and C(w) values from
the actual placement using a minimum spanning tree. We say
that the wire parasitics are scaled by the factor, s, 0<s<1, if their
parasitic values are multiplied by s. We defibg .(p;) as the

path delay of pwhen the parasitics of netia scaled by s. Since

we are interested in the impact of a net in its path context, we
define net delay, D{np) as the difference between the path
delay D(p) with and without the parasitics of the net, The
delay of the path without the parasitics ofis1 achieved by
scaling the parasitics of, to 0, or D}, ((p;) where s=0. The

delay of iy in path p is thenD(n;, p;) =D(p;) - D', o(P;) -

By defining net delay in such a way, we include the increase in
the gate delay that is caused by the capacitive loading of the
interconnect. Our definition also includes the impact of
waveform slope on gate delay. In the case of a heavily loaded
gate, the rise-time of the output, as defined by CV/I, will be very
slow, since the C is large relative to the current that can be
provided by the gate. This slow slope will significantly increase
the gate delay of the receivers.

A change in g4(n) not only affects the delay of, dput also the
output slope of gAs shown in Figure 3, this slope will have a
second order impact on the delay ¢$ neceiver gates and their
slopes. These second order effects continue until gaahra
clocked element at the end of a path. These second order effects
are accounted for in the computation of D).

2.2 Computing Path based Net Sensitivity

The goal of the path based net sensitivity metric is to focus the
net improvement on nets which have the biggest effect on
timing. In previous work[1,2,4,6], all nets on a critical path were
given the same weight. Focusing placement improvement within
a path is paramount in timing driven apement because
decreasing the length of one net usually means increasing the
length of other nets. Referring to Figure 1, assume thét g

very weak driver(high output resistance) and thailsg strong
driver(low output resistance)D(g,) will be very sensitive to

changes in its wire load, ,§n;), while D(g,) will not be as

sensitive to the same load change i(6). In this case the
path delay can be reduced if the length pfimreduced even
though B will be increased. We exploit this net sensitivity to
improve our placement result.

Net sensitivity quantifies the change that would occur in a path’s
timing due to a placement change affecting the apblbgy.
Given two nets on critical paths, if we separately reduce each of
them by the same amount, we will typically get different results
due to differences in gate, loading and slope behavior.

We define the delay bound on a path, Bgs the required time
of the path. B(p is defined by the desired operating frequency
of the circuit.

We define, S(), the slack of jpas the difference between B(p

- D(p). If S(p) is negative, the path is said to have negative
slack, meaning that it is not meeting the timing requirement. Let
P(n) be the set containing all the paths which traverseWwe
define R/(n) as the path, in P{nwith the worst, or lowest,
slack.

We calculate sensitivity after we have globally placed and
extracted design parasitics. We use sensitivity information to
improve the circuit performance through iterative placement
changes. Since we are interested in maximizing design
performance we focus on a net’s impact on its most critical path,
P,(n;). We then determine the sensitivity of that path response to
changes in the net parasitics.

We compute the raw sensitivity, RS(n;,s) of n; to a placement
change as the change in delay of P,(n;) in response to scaling al
of the wires of n; by afactor of s, where 0<s<1. RS(n;,s) = D(py)
- D}, «(p) Where p= Ry(n). We are only scaling the parasitics

of the net and not actually moving the cells, so determining the
sensitivity involves only recomputing the timing for the path and
does not require adjusting the cell placements of opEtlogy.

We would expect that for any scaling factor 0<s<1 that R$(n
would be positive, i.e. that the slack would improve. To
compute RS(s), we must compute the path response and
cannot simply scale D{nby s. This is due to the slope effects
discussed in Section 2.1.

Since we are interested in improving the path delay , we form
the net sensitivity by computing the delay changes in all of the
other nets N(p. The sensitivity of n Sen(r), is computed based
on the raw sensitivities of all of the nets in Pyv(iBen(r) is

Rs(ni , E) j
Z RSIn; s
n; 0P, (ny) '

Sen(r) varies with the different values of s. In our results below,
we set s=0.7.

3. New Placement Techniques

3.1 Placement Flow

The goal of this placement work is to improve timing
performance by exploiting the sensitivity of the nets to
placement changes. We build on tip®pular Gordian
placement[5] technique. We use iterative timing analysis and the
sensitivity information from Section 2 to improve the timing
performance.

The first stage in timing optimization is to obtain an initial
global placement of the circuit. We chose Gordian for this task,
since it is fast, well known and produces excellent wirelength
results. We then use minimum spanning tree estimates of
interconnect topologies and process parameters to estimate the
resistance and capacitance of the net wires. We use the paths
constraints produced by logic synthesis, which are expressed in
the Standard Delay Format(SDF). We compute all of the path
slacks using the SDF constraints and compute the path delay
using AWE[3] for the wire delay and the gate delay models of
Section 2.1. We defingdas the worst slack over all of the paths

in the design. As we iterate through the placements, we select a
placement if the,t of this placement is better than the best
previously encountered,d We then compute the new net
sensitivities according to the Section 2.2 or 2.3. We use the net
sensitivity and slack to compute the net weights for the next
iteration according to section, 3.3. We continue iterating until
tws> 0 or until no delay improvement is observed. We generally
observe a convergence, but this is an area for further study.

3.2 Net weights

Gordian uses quadratic programming to minimize the total
wirelength. For each net;,, with p pins, there are p(p-1)/2 edges
with weight 1/p connecting each vertex in ihe weighted
squared Euclidean distance between two movable gates, i and j

is W ((xi ~x P+ - yj)z). This is expressed as a quadratic

objective function where the objective function is to minimize
the sum of the squared wirelength:

S W X((xi - X)2 +(yi -y,)2) In order to improve the timing,
we bias the placement by the
contributionsy, ; , of each net.

changing weight

3.3 Computing Net Weights

Since our goal is to improve the circuit timing, we want the nets
that are on critical paths to get higher weights. For example, if
path, g, is the most critical path then we would like to increase
the net weights for the netbl(p;) to reduce the parasitics of

these nets and improv®(p;). Previous work [1,2,4,6] has
treated all of the nets ilN(p;) equally ignoring that the nets

have different sensitivity to placement changes. Thisas-
optimal, since decreasing some nets will increase the length of
others. We use the sensitivity and slack information to generate
new net weights. We would like to decrease the length of those
nets which are most sensitive to length changes in order to have
the maximum delay improvement.

In general we would like the net weight in timing iteration j,
W;(n;) to vary inversely with the net's worst slack,(R), and

directly with the sensitivity, S{n In other words as the net slack

is more positive the weight on that net should decrease. Our
experiments showed that basing the weight only on these factors
caused the weights to oscillate, resulting in poor overall
placement. For this reason we base the new weight not only on
P,(n), but also on previous weights. Our weighting function,
therefor combines all 3 of these elementg(np, S(n), and
Wj_l(ni) . These details follow.

3.3.1 Computing Sack based weights.

We compare the sensitivity based algorithm to a baseline
algorithm which uses only the net slack for computing net
weights. This model is similar to ones used in prior timing
driven placement work. In this model all of the nets on the most
critical path get the same weight increase, or criticality. The
criticality of a net is based on the slack, 5¢f the most critical
path which traverses the net, $@ S(R,(n)). We consider a
net to be critical if its slack is negative.

3.3.2 Computing Sensitivity based weights.

Our sensitivity metric tells us relatively how much delay
improvement we can get by decreasing the length of each net in
the path. The net slack information tells us which nets are most
critical. In the sensitivity based model, we combine this
information to focus the new net weights on the most sensitive
nets. If a net is very sensitive and on a critical path then it will
get a high criticality.

In our experiments we found the sensitivity is prone to
oscillations from iteration to iteration. A high criticality in
iteration j would dramatically decrease the sensitivity in iteration
j+1, which in turn would produce a high sensitivity in j+2.

The sensitivity based weight builds on the slack based model
with two new factors, the sensitivity, Sep(n and additional
damping to prevent the weight on critical nets from decreasing
too rapidly. This damping is required because the sensitivity
itself is highly impacted by the weight, i.e. for a net with high
sensitivity, Sen(f), a high weight, Wh;,) usually results in a

low sensitivity for the net in iteration j+1, which results in
oscillations.

4. Experimental Results

Tablel: Benchmarks: wirelengths
Circuit | #cells| #nets| #rows| Slack| Sensitivity| Ratio
Intell | 1945 2571 36| 2890 3029 1.05
Intel2 | 2236| 2964 43| 3423 3600 1.05
Intel3 | 1794 2205 31| 2039 2114 1.04
Intel4 | 2669] 2901 36| 3648 3540 0.97
Intel5 990 119 24| 1024 1115 1.09

4.1 Industry Timingresults

We used a set of industry circuits for comparison. Table 1
shows the number of cells, nets and rows for these circuits. On
the industry test cases we compare our Sensitivity results to the
Slack moddl given in section 3.3.1. This Slack model is similar
to the model used in [1]. Table 1 gives the total wirelengths for
each of the circuits, measured as the sum of the half perimeters
of each net. Our sensitivity wirelengths are range from 3% better
to 9% worse than the slack only model.

optimization exploitation is 60% compared to 33% for Slack
model. On average our timing improvement is 47%.

Table3 Non timing and optimization results

lower Gordian Slack] Sensitivity
Circuit | bound[ns] | nontiming| exploitation| exploitation
Intell -0.028 -0.262 0% 43%
Intel2 -0.142 -04 73% 88%
Intel3 -0.029 -0.231 24% 64%
Intel4 -0.036 -0.583 58% 49%
Intel5 -0.078 -0.227 10% 56%
avg 33% 60%

5. Conclusions

In this paper we have presented a new timing driven placement
algorithm which significantly improves the optimization
exploitation. By combining the interconnect parasitics with
improved device modeling, we enable future designs at higher
performance with fewer logic synthesis iterations, thereby
improving productivity. Net sensitivity allows us to predict the
impact of net topology changes on circuit timing and exploit this
to improve global placement. In use at Intel, our algorithm has
demonstrated excellent results by improving the optimization
exploitation for Intel designs by 60% on average versus 33% for

Table 2: Worst negative slack and improvement over density
Gordian Slack Sensitivity

Circuit | nontiming| worst slack improve worst lack improve]
Intell -0.262 -0.262 0% -0.162 38%
Intel2 -0.400 -0.211 47% -0.174 57%
Intel3 -0.231 -0.182 21% -0.102 56%
Intel4 -0.583 -0.265 55% -0.316 46%
Intel5 -0.227 -0.212 7% -0.143 37%)
avg 26% A47%

Table 2 gives the timing results for Gordian with no timing-
driven, the slack only timing driven version of Gordian
discusses in section 3.3.1 and the sensitivity results. For the
slack and sensitivity results we give the improvement over the
non-timing driven Gordian.

We measure our results using the paths generated by logic
synthesis. The results presented are for a 0.25 micron process.

We use two measurements to evaluate our timing results, the
worst dack and the optimization potential as defined in [1]. The
optimization potential is defined in the following manner. We
compute the lower bound by setting all of the interconnect
parasitics to 0 and computing al of the path slacks to find the
worst slack. We then calculate the non-timing driven path slacks
and find its worst slack. The difference between the worst non-
timing driven path slack and the lower bound dlack is defined as
the optimization potential. The optimization exploitation is the
percentage of the optimization potential that is realized by the
timing driven placement algorithm. This optimization gives a
relative metric of the improvement over the non-timing driven
results.

Table 3 gives the optimization exploitations for each of the
circuits for the slack and sensitivity algorithms. On average, our

the previous approach.

6. ACKNOWLEDGMENTS

Our thanks to Frank Johannes of TUM for allowing us to work
with the Gordian source code.

1.
(1]

(2]

(3]

(4]

(5]

(6]

References

H. Eisenmann and F. M. Johannes, “Generic Global
Placement and Floorplanning,” ACM/IEEE DAC,
1998.

William Swartz and Carl Sechen, “Timing Driven
Placement for Large Standard Cell Circuits,” DAC,
pp. 211-215, 1995.

Lawrence T Pillage and Ronald A Rohrer,
“Asymptotic Waveform Evaluation for Timing
Analysis,” IEEE Transactions on Computer-Aided
Design, pp. 352-366, 1990.

A. Srinivasan, A K. Chaudhary, E. S. Kuh,
“RITUAL: Performance Driven Placement Algorithm
for Small Cell ICs,” ICCAD, pp. 48-51, Nov. 1991.

Jurgen M. Kleinhans, Georg Sigl, Frank M. Johannes,
and Kurt Antreich, “"GORDIAN: VLSI Placement by
Quadratic Programming and Slicing Optimization,”
IEEE Transactions on Computer Aided Design,
Volume 10, No. 3 pp. 356-365, 1991.

Bernhard M. Riess and Gisela G. Ellelt, “SPEED:
Fast and Efficient Timing Driven Placement,” pp.
377-380, 1995.

	Main Page
	GLSVLSI'00
	Front Matter
	Table of Contents
	Session Index
	Author Index

