
Fast and Accurate Estimation of Floorplans in
Logic/High-level Synthesis

Kiarash Bazargan Abhishek Ranjan

Department of Electrical and
Computer Engineering

Northwestern University
Evanston, IL 60208-3118
fkiarash,abhi,majidg@ece.nwu.edu

Majid Sarrafzadeh

ABSTRACT
In many applications such as high-level synthesis (HLS) and logic
synthesis and possibly engineering change order (ECO) we would
like to get fast and accurate estimations of different performance
measures of the chip, namely area, delay and power consumption.
These measures cannot be estimated with high accuracy unless a
fairly detailed layout of the chip, including the floorplan and rout-
ing is available, which in turn are very costly processes in terms of
running time. As we have entered the deep sub-micron era, we have
to deal with designs which contain million gates and up. Not only
we should consider the area occupied by the modules, but we also
have to consider the wiring congestion. In this paper we propose a
cost function that is, in addition to other parameters, a function of
the wiring area. We also propose a method, to avoid running the
floorplanning process aftereverychange in the design, by consid-
ering the possible changes in advance and generating a floorplan
which is tolerant to these modifications, i.e., the changes in the
netlist does not dramatically change the performance measures of
the chip. Experiments are done in the high-level synthesis domain,
but the method can be applied to logic synthesis and ECO as well.
We gain speedups of 184% on the average over the traditional esti-
mation methods used in HLS.

1. INTRODUCTION
Floorplanning is the highest level of the physical design process
without which we cannot get estimations of different performance
and cost measures of the design accurately. However, it is a very
costly process in terms of running time. As we enter the deep-
submicron (DSM) era, the designs get larger and interconnections
become dominant in both the area and delay of the chip. These
changes make the floorplanning a very difficult task. On the other
hand, to make design decisions in the early phases of the design
process, one must generate a floorplan to be able to estimate differ-
ent measures of the chip.
An example of such early phases of the design is the logic syn-

thesis process. In logic synthesis, operations such as restructuring,
logic cloning and buffer insertion is applied to the design. Each
of these operations might change the netlist dramatically, which in
turn changes the layout significantly. We should have a fast and
accurate way of assessing how the logic synthesis operations af-
fect the layout. Another example of the early stages of the design
which need floorplanning is the scheduling/binding phase in the
high-level synthesis process. After each binding move the netlist
might change and so would the congestion area and delay in the
final layout.

In this paper we propose a method which generates atolerantfloor-
plan for a design. The area or delay of atolerant floorplan would
not change significantly with the changes in the netlist, because
netlist changes were anticipated when generating the floorplan. By
considering which blocks are likely to undergo logic synthesis changes
(e.g., blocks located in a highly congested area or blocks in a path
where timing constraints are not met) in advance, we can come up
with a floorplan which is reasonably good for most likely moves.
By taking into consideration the possible bindings of the opera-
tions to different resources (in high-level synthesis), we can weight
the potential connections between any two resources based on the
likelihood that such a connection is used in the final design, and
do the floorplanning in a way that the nets with more probability
end up having smaller length. Another example where the tolerant
floorplans can be useful is the handling of the engineering change
orders (ECO) which usually happens after we have done most of
the design cycle. When an ECO, which is usually minor changes
in the netlist, comes in we would like to change as little parts of the
design as possible. If we had anticipated which units were more
likely to have ECOs (units that were recently designed as opposed
to IPs) when we were doing the floorplanning, then the generated
floorplan most likely does not need many changes.

Throughout the paper, we have focused on the application of tol-
erant floorplans in high-level synthesis. Although we have only
shown results in this field, our method can be used in other scenar-
ios, some of which were discussed above. For example, our work
can be directly used in [10].

High level synthesis, or HLS, has been the subject of many research
studies in the area of VLSI CAD in the past decade, e.g., see [2; 4;
7]. Since it deals with the design in the algorithmic level, which
is the highest level of the design process, it has the most profound
impact on the final product’s area and performance measures.

In deep submicron (DSM) design, parameters such as interconnect
structure become dominant in the performance of the chip. A state-
of-the-art CAD tool should be able to estimate layout parameters

such as area, delay and power early in the design process (schedul-
ing, allocation and binding).
However, these measures cannot be estimated with high accuracy
unless a fairly detailed layout of the chip, including the floorplan
and routing is available. For this reason, some research studies have
considered simultaneous floorplanning and scheduling/binding, e.g.,
[2; 6; 7]. Not all of them directly consider the contribution of the
wires to the floorplan area.
Another HLS system which generates a floorplan during binding
and scheduling processes is BINET [7]. Although BINET is fast,
it has two drawbacks: (a) It generates floorplans only after binding
the operations to resources at each time step. (b) Uses the method
in [12] to estimate the wire area. [12] estimates the wiring area
using statistical models or by comparing the design to those from
previous projects which are fully routed. Obviously, these methods
will not yield an accurate estimation of the wiring area.
[2] combines binding and floorplanning. It uses [11] as its floor-
planner which does not directly consider area needed for wires.
Instead, it uses a linear function of floorplan area (without wires)
and the total wire length. Using this method, one cannot estimate
the area taken by the wires connecting modules together.
The methods in [6] and [9] use force-directed floorplanners [5].
Calls to [5] are made after every scheduling, allocation or binding
move. Simulated annealing methods are proved to generate more
compact floorplans than force-directed ones. But as designs are
getting more complex, it is less affordable to spend so much time,
i.e. call the floorplanning process, for each HLS move.
In this work, we have proposed an estimation method for the area
and other design parameters of the chip. We have also proposed
a more accurate method for area estimation of the chip by con-
sidering the area contribution of the netlist more realistically. By
considering the netlist prior to binding the nodes of the Data Flow
Graph (DFG) to functional units, and the possible binding options,
our system generates a tolerant floorplan. In this way, we can avoid
running the floorplanning process after every HLS move. Since we
know that the area does not change dramatically with a new move,
we keep updating the floorplan area until it is more than x% the ini-
tial area, or y number of HLS moves have been done. (x and y will
be determined experimentally.) Experimental results show that our
method is 184% the speed of a traditional method on the average.

2. PROBLEM FORMULATION
Input to HLS is defined by a DFG (data flow graph)GDFG =
(V;EDFG) whereV = fviji = 1; 2; : : : ; nopsg is the set of op-
erations andEDFG is the set of directed edges which defines the
dependencies between operations.

EDFG = f(vi; vj) j the output of operationvi is an

input to operationvjg

An example of a DFG can be found in Figure 1.

+ +

*

+a1

m1

a2 a3

* m3

* m2

Figure 1: An example of a Data Flow Graph (DFG).

Let k be the number of operation “types” in the DFG. We define
functionT : V ! f1; 2; : : : ; kg to be the type of operations. Sup-
pose we have decided to use at mostai (i = 1; 2; : : : ; k) instances
of resource typei on the chip. The chip can be represented byre-
source connection graphGchip = (R;Echip) whereR is the set
of resource instances on the chip,

R = fr1;1; : : : ; r1;a1 ; r2;1; : : : ; r2;a2 ; : : : ; rk;1; : : : ; rk;akg

and

Echip = f(rt1;i; rt2;j) j there is a net on the chip

connecting resourcesrt1;i and rt2;jg

An example ofGchip is shown in Figure 2b.
Operationv and resourcert;i are said to be “compatible” iffT (v) =
t, i.e.,v can be implemented onrt;i.

Definition 1. The Binding GraphGbind is a bipartite graph
(V;R;Ebind) where

Ebind = f(vi; rt;j) j T (vi) = t and operationvi is

scheduled to be performed on resourcert;jg

A binding graph corresponding to the DFG in Figure 1 is shown
in Figure 2a. Two adders and two multipliers are used. (R1;1 =
Add1 R1;2 = Add2 R2;1 = Mul1 R2;2 = Mul2).

a3

m1

m2

m3

a2

a1

Add2

Mul1

Mul2

Add1 Add1

Add2Mul1

Mul2

(a) (b)

Figure 2: (a) A binding of the operations to resources. Two
adders and two multipliers are used. (R1;1 = Add1 R1;2 =
Add2 R2;1 = Mul1 R2;2 = Mul2). (b) The resource connection
graphGchip which corresponds to the binding shown on left, and
the DFG in Figure 1.

Lemma 1. The number of edges inGbind is exactlynops. If
(vi; rt1;m1) 2 Ebind and (vj ; rt2;m2) 2 Ebind and (vi; vj) 2
EDFG, then there must be an edge(rt1;m1 ; rt2;m2) 2 Echip.

The thick edges in Figures 1 and 2 show an example of the Lemma
1.

Definition 2. Let functionM : EDFG ! Echip be themap-
pingfunction of DFG edges to resource connections.M((vi; vj)) =
(rT (vi);m1

; rT (vj);m2
) iff (vi; vj) 2 EDFG and(vi; rT (vi);m1

) 2
Ebind and(vj ; rT (vj);m2

) 2 Ebind.

More than one DFG edge might be mapped to a resource connec-
tion. For example, both edges (a1,m1) and (a2,m1) in Figure 1 are
mapped to resource connection (Add1,Mul1).
Assuming there is no preference in binding operations to resources,
the probability of an operationv to be bounded to resourcerT (v);i

is 1
aT (v)

. In other words,

p
�
(vi; rT (vi);j) 2 Ebind

�
=

1

aT (v)

(1)

The probability that a DFG edge be mapped to a resource connec-
tion edge can be derived from Equation 1 as follows:

p
�
M((vi; vj)) = (rT (vi);m1

; rT (vj);m2
)
�
=

1

aT (vi)aT (vj)

(2)

Lemma 2. The probability that there is no connection between
two resources inGchip is equal to the probability that no two adja-
cent operations inGDFG are scheduled to be performed on them.

Using this lemma, we can calculate the probability that a net exists
between resourcesRt1;m1 andRt2;m2 using Eq. 2.

p
�
(Rt1;m1 ; Rt2;m2) 2 Echip

�
=

1�
Y

T (vi) = t1 ;
T (vj) = t2

�
1 � p

�
M
�
(vi; vj)

�
= (Rt1;m1 ; Rt2;m2)

��
(3)

3. TOLERANT FLOORPLANS
In Section 3.1 we present an approximation for the area of a floor-
plan which considers the contribution of wires connecting resources
as well as the area of the resources.
In Section 3.2 we show how we use probabilities calculated by
Equation 3 to generate a floorplan which is tolerant to changes in
the binding graph.

3.1 Area Contribution of Netlist
To estimate the area of a floorplan more accurately, we try to find
the area contribution of the connections as well as the modules’
area. We have used a method similar to what was used in [1] to
estimate the area taken by wires.
Throughout the paper, we have focused only on slicing floorplans[11].
Furthermore, we have only considered simulated annealing as the
process of floorplanning[11], because it has proved to be the best
among all other floorplanning methods.
Typically, a net is routed within the rectangle whose bottom-left
and upper-right corners are the centers of resources which are con-
nected by the net. We call this rectangle “bounding box” of a net:
B(net)1. The dashed rectangle in Figure 3 is the bounding box of
the net (3,5).

5

63

42
1 Terminals

Figure 3: Bounding box of a net.

Also, we can safely assume that when the routing path of a net
passes through the boundary of a resource, its area contribution to
the chip can be estimated by increasing the width or height of the
resource by 1. For example, if a40 � 30 resource is enclosed in a
40�40 block and a bus with width 6 is routed horizontally through
the block, then we consider the area contribution of the bus to the
resource to be40�6, which updates the dimensions of the resource
to 40 � 36. In this case, the routing did not change the enclosing
box of the resource.

1If resources are the same (e.g., the result of an adder is to be fed
back to a register at its input), thenB(net) is set to be the bounding
box of the resource.

Since we don’t know which blocks will be selected to route differ-
ent nets, we have to use probabilistic methods to guess what the
path of a net would be. There are several models which can be
used. Figure 3 shows the bounding box of a net. We assume that
the routing is done within the bounding box. To formulate different
probabilistic models for the routing path we have to define a few
terms first.

Definition 3. Assume that a gridGgrid = (Vgrid; Egrid) is su-
perimposed on the floorplan. The edges connecting the grid points
are calledsegments. The set of possible routing segments of a net
through a module’s bounding box is:

S
�
(rt1;m1 ; rt2;m2) ; rt3;m1

�
=
n
(v1; v2) 2 Egrid

���
v1 and v2 2 B

�
(rt1;m1 ; rt2;m2)

�\
BBox(rt3;m1)

o
(4)

whereBBox(rt;m) is the bounding box of the resourcert;m. The
bounding box of a resource is the rectangle in the hierarchical slic-
ing blocks which contains only that resource. The width/height
of the bounding box of a resource is greater than or equal to the
width/height of the resource.

There are several probability distributions that we can use to esti-
mate whether a segment is used in routing a net or not. Three of
them are shown in Figure 4. Figure 4-a shows a uniform distri-
bution. This model assumes that the probability that the routing
passes any of the segments is constant and a function of the area
of the intersection of the bonding boxes of the net and the module.
Figure 4-b shows a better model. In this model it is more likely for
the net to be routed using segments near the border of the bounding
box than using those near the center. Figure 4-c shows a more real-
istic model which assumes that all routings are done using at most
two bends.

(a) (c)(b)
Terminals

Routing
region

Figure 4: Different routing distribution functions. (a) uniform (b)
near the net boundry routing, (c) two-bend routing.

The distribution in Figure 4-c can be calculated by considering all
possible ways of routing the net using L-shaped or Z-shaped rout-
ings, and dividing number of different routes passing through a seg-
ment by the total number of routes.
Assuming that we are using any of the distribution functions in
Figure 4, the area contribution of a net to a module is defined as:

Definition 4. Letp(s) be the probability that a segment is used
in routing of a net. Also, letSh andSv be the set of horizontal
and vertical segments inS respectively. The area contribution of
a net (with width 1) to a resource’s area is defined as functions
Aw : Echip �R! [0; 1] andAh : Echip �R! [0; 1]

Aw
�
(rt1;m1 ; rt2;m2) ; rt3;m1

�
=

X
s2Sv((rt1;m1 ;rt2;m2) ;rt3;m1)

p(s) (5)

Ah
�
(rt1;m1 ; rt2;m2) ; rt3;m1

�
=

X
s2Sh((rt1;m1 ;rt2;m2) ;rt3;m1)

p(s) (6)

Calculation of functionsAw andAh for each net and resource pair
can be done in constant time, because one only needs to know the
dimensions of the intersection of their bonding boxes, and if the
intersection is on the boundary of the net bounding box.

The area of a floorplan can be estimated by updating the width and
height of every resourcert;m as:

width(rt;m) width(rt;m) +X
(rt1;m1 ;rt2;m2)2Echip

A
�
(rt1;m1 ; rt2;m2) ; rt;m

�
(7)

height(rt;m) height(rt;m) +X
(rt1;m1 ;rt2;m2)2Echip

A
�
(rt1;m1 ; rt2;m2) ; rt;m

�
(8)

To update the area of a floorplan after insertion or deletion of a
net, one can add or subtract the area contribution of the net to each
resource on the chip, and then use floorplan sizing to find the chip
area.

Although this updating process takes linear time (in terms of num-
ber of resources on the chip), it is fairly fast. The reason is that the
number of resources on the chip is small at scheduling and bind-
ing phases of the design. Furthermore, we can use this updating
process after each floorplanning move, because each floorplanning
move calls floorplan sizing to calculate the area. By updating the
area contribution of the nets, we are not slowing down the floor-
planning process.

We have compared our method of estimation of the wiring area
with traditional methods in Section 4.1.

3.2 Generating Tolerant Floorplans

Consider the hierarchy of blocks which represent a slicing floor-
plan. (For a definition of a slicing floorplan, refer to [11].) Each
resource, or module, is bounded to a rectangular area, or bin. Di-
mensions of the bin are more than or equal to the resource dimen-
sions. If a net passes this bin, we estimate its area contribution by
increasing width and height of the resource by the amount defined
in Definition 4. If the inflated resource still fits in the bin, then
the area of the floorplan does not change because of this part of the
routing. We refer to this situation as “hiding of a net by a resource”.
We have tried to generate a floorplan which “hides” as many rout-
ings as possible. Such a floorplan will most probably have the same
area if we insert or delete some nets.

By anticipating which resources are likely to be connected, we can
generate a probabilistic netlist which contains information about
the nets, and how likely it is that each net is used. Such a proba-
bilistic netlist is generated using Equation 3.

Using the probabilistic netlist, we run a simulated annealing floor-
planning process. To calculate the area of the chip during the floor-
planning, we use a combination of Equations 7 and 8 and 3:

width(rt;m) width(rt;m) +X
(rt1;m1 ;rt2;m2)2Echip

h
p
�
(Rt1;m1 ; Rt2;m2) 2 Echip

�
�

A
�
(rt1;m1 ; rt2;m2) ; rt;m

�i
(9)

height(rt;m) height(rt;m) +X
(rt1;m1 ;rt2;m2)2Echip

h
p
�
(Rt1;m1 ; Rt2;m2) 2 Echip

�
�

A
�
(rt1;m1 ; rt2;m2) ; rt;m

�i
(10)

It is possible though, that one uses a combination of Equation 3 and
other methods to calculate the wiring cost. For example, to mod-
ify the Wong-Liu algorithm [11] to handle probabilistic netlists,
all we have to do is to multiply the half-perimeter length of the
wires’ bounding box to their probabilities and use the sum of all
such terms as part of the cost function.
The result of the floorplanning process is calledFP0. Intuitively,
this floorplan has minimum area for the most probable cases. This
floorplan is likely to be “tolerant” to changes in the netlist, meaning
that changes in the routing will most probably not change its area.
After FP0 is generated, our system translates each binding move
to a list of insertion and deletion of nets. Examples of binding
moves are swapping two operations of two resources, or moving
an operation from one resource to another one. It is possible that a
binding move introduces zero or more insertions, and zero or more
deletions, depending on current netlist.
Each binding move is applied to the floorplan by inserting or delet-
ing corresponding nets and calculating the floorplan area using Equa-
tion 7 and 8 (andNOT Equation 9 and 10). It is possible that a
binding move isolates a resource from the rest of the chip. This sit-
uation happens when only one operation is assigned to a resource,
and the binding move assigns the operation to a different resource.
The first resource has no operation to perform, and hence it can be
removed from the chip. Conversely, it is possible that a binding
move reinserts a previously removed resource to the chip by mov-
ing an operation from another resource to it. In both cases, a new
call to floorplanning process should take place. Otherwise, if the
difference between area of the new floorplan andFP0’s area is less
than�% (we chose� = 2 in the experiments.) ofFP0’s area, we
do not need to perform a new floorplanning. This intuitively means
that the floorplan is still consistent with the initial prediction of the
netlist.
Before running the floorplanning process again, we have to update
the probabilities of the netlist so that the new floorplan is different
with FP0. This can be easily done by “biasing” the probabilities of
edges in the binding graph. Instead of using equal probabilities for
the assignment of operations to resources (as in Equation 1), we can
update the probabilities of assignment of operations to resources
such that it is more likely that an operation is assigned to a resource
which it is currently assigned to (in the last floorplan, just before
redoing the floorplanning).
We have run experiments to compare this method with other tradi-
tional methods. The result of these experiments is shown in Section
4.2.

4. EXPERIMENTAL RESULTS
This section, which consists of two subsections, shows the result of
our experiments. Section 4.1 shows the result of experiments com-
paring our model for area contribution of the wires to the traditional

Data Set A B C
Data1 106.37% 101.17% 93.78%
Data2 125.87% 107.44% 100.11%
Data3 170.93% 106.21% 107.24%
Data4 165.67% 101.95% 99.49%

Table 1: Ratio of the areas of floorplans generated by different
methods. All the area comparisons are based on what TimberWolf
reports after global routing. Please refer to Section 4.1 for descrip-
tion of different columns.

methods. Section 4.2 compares the speed of an HLS system using
“tolerant” floorplans to one which uses traditional floorplanners.
We have compared tolerant floorplans to two traditional methods.
The two methods are called “Simple” and “Wong-Liu”[11]. The
Simple method does not consider netlist at all, and just tries to ar-
range the resources in a way that the area is minimized. The Wong
method uses sum of wire length of nets as part of the cost function
used in simulated annealing process. By including a term corre-
sponding to wire lengths to the cost function, Wong-Liu method
tries to place highly connected resources closer to avoid running
wires all over the chip.

4.1 Wiring Area Estimation
To compare our model for the wiring area to the traditional models,
we implemented the Wong-Liu’s simulated annealing floorplan-
ner, but used three different cost functions: one consisting of only
area (“Simple”), another one consisting both of area and the wire
lenght (“Wong-Liu”) and finally, one which combines the area of
the modules and the area contribution of the wires as formulated
in Equations 9 and 10 (“Tolerant”). Then we ran TimberWolf’s
global router on the floorplans generated by each of the methods
and compared the final area. We allowed TimberWolf to do com-
paction before routing.
The area of these floorplans are shown in Table 1. We have done ex-
periments on high-level synthesis benchmarks (see Section 4.2 for
a description of them); however, since they are small, we have used
our own circuits for the purpose of area comparison. The circuits
contain about 30 modules with varying number of nets, ranging
from 20 to 50.
Column “A” shows the ratio of the area of the simple method to
the area of the tolerant floorplan, both after global routing is done
using TimberWolf.
Column “B” shows the ratio of the area of the Wong-Liu method to
the area of the tolerant floorplan, both after global routing is done
using TimberWolf.
Column “C” shows the ratio of the estimated area (estimated by
Equations 9 and 10) to the actual area reported by TimberWolf after
global routing. It shows that on the average, the tolerant floorplan-
ner can estimate the wire area with 2% error.

4.2 Tolerant Floorplans
To compare our method with the traditional methods, we have used
three behavioral model HLS benchmarks, “diffeq”[8], “FIR”[2]
and “ellipf”[3]. For resource dimensions, we have used two sets
of libraries[2] for the resources. The libraries are shown in Table 2.
Note that in Table 2, the unit of area is reported in square micron.
“Diffeq” is the hardware description for an algorithm which tries to
numerically solve the differential equationy00 + 3xy0 + 3y = 0.
The DFG of this model is shown in Figure 5. Two adders and two
multipliers are used to schedule the algorithm. The FIR filter is
scheduled with 3 adders and 4 multiplier units. Its DFG is shown
in Figure 6.

Library 1
Fab Tech 16-bit Adder 16-bit Multiplier

1.6�m 746875 8711250
1.2�m 420000 4900000

Library 2
Fab Tech 8-bit Adder 8-bit Multiplier

1.2�m 46875 564375
1.0�m 21250 261875

Table 2: Area of different library modules. Numbers reported in
the table are measured in square micron.

* *

*

** +

*

-

-

+

Figure 5: The DFG of diffeq benchmark.

Five adders and two multipliers were used for the elliptic filter. The
DFG of “ellipf” is shown in Figure 7.
To compare different methods of floorplanning, we let the floor-
planning algorithm generate an initial floorplanFP0. The area of
FP0 is computed using Equations 7 and 8. Then we start apply-
ing binding moves to the floorplan and compute the area using the
same equations, until the new area is�% (We used� = 2 in our
experiments.) more than the area ofFP0.
We report the number of binding moves applied to the floorplan
as a measure of speed of the method. The greater the number of
moves, the less we need to call the floorplanning process and hence
the overall HLS process will be faster.
The result of the experiments can be found in Table 3. We have not
reported the “Diffeq” results because none of the methods stopped
after 500 moves, meaning that the circuit is too small for the wiring
to change the are significantly.

5. CONCLUSION AND FUTURE WORK
We have proposed a floorplanning method which generates tolerant
floorplans for a set of possible binding moves. The results show that
anticipating such binding moves is very effective. An improvement
to our method is the formulation of the scheduling constraints into
binding probabilities. By considering time constraints, the prob-
abilities would be more exact and hence the generated floorplans
will be more reliable for area and other parameters.

6. ACKNOWLEDGMENTS
This research has been sponsored in part by a grant from the De-
fense Advanced Research Projects Agency under contract number

*

+

*

+

+

*

+

+

*

+

*

+

+ +

*

+

+

*

+

+

*

+

+

Figure 6: The DFG of FIR benchmark.

Benchmark Simple Wong Tolerant

ellipf lib1 1.6� 16 3 71
ellipf lib2 1.0� 3 4 4
fir23 lib1 1.6� 46 62 152
fir23 lib2 1.0� 6 3 3
fir34 lib1 1.6� 44 212 327
fir34 lib2 1.0� 9 6 13
fir74 lib1 1.6� 140 137 238
fir74 lib2 1.0� 13 22 20
Average 34.63 56.13 103.50

Ratio 299% 184% 100%

Table 3: Number of binding moves to apply to different floorplans
so that the area exceeds by 2% the initial area. FirXY is the FIR
filter implemented with X adders and Y multipliers.

+x16

+x20

+x2

+x1

+x3

+x4

+x5

*x6 *x7

+x8 +x9

+x10 +x11 +x12

*x13 +x14

+x24

*x28

+x32

+x29

*x25

+x21

+x17

*x15

+x19+x18

*x22 +x23

+x26
*x27

+x30
+x31

+x33

+x34

Figure 7: The DFG of ellipf benchmark.

DABT63-97-C-0035, and the National Science Foundation under
grant 9527389.

7. REFERENCES

[1] W. E. Donath, R. J. Norman, B. K. Agrawal, and S. E. Bello.
“Timing Driven Placement Using Complete Path Delays”. In
Design Automation Conference, pages 84–89. IEEE/ACM,
1990.

[2] Y. Fang and D. F. Wong. “Simultaneous Functional-Unit
Binding and Floorplanning”. InInternational Conference on
Computer-Aided Design, pages 317–321, 1994.

[3] I. G. Harris and A. Orailoglu. “Microarchitectural Synthesis
of VLSI Designs with High Test Concurrency”. InDesign Au-
tomation Conference, pages 206–211, 1994.

[4] H. Jang and B. M. Pangrle. “A Grid-Based Approach for Con-
nectivity Binding with Geometric Costs”. InInternational
Conference on Computer-Aided Design, pages 94–99. IEEE,
1993.

[5] Y. Mori, V. Moshnyaga, H. Onodera, and K. Tamaru. “A
Performance-Driven Macro-Block Placer for Architectural
Evaluation of ASIC Designs”. InProceedings fo the 8th An-
nual IEEE International ASIC Conference and Exhibit, 1995.

[6] V. G. Moshnyaga and K. Tamaru. “A Placement Driven
Methodology for High-Level Synthesis of Sub-Micron
ASIC’s”. In International Symposium on Circuits and Sys-
tems, pages 572–575. IEEE, 1996.

[7] A. Mujumdar, M. Rim, R. Jain, and R. De Leone. “BITNET:
An Algorithm for Solving the Binding Problem”.7th Interna-
tional Conference on VLSI Design, pages 163–168, 1994.

[8] P. G. Paulin, J. P. Knight, and E. F. Girczyc. “HAL: A Multi-
Paradigm Approach to Automatic Data Path Synthesis”. In
Design Automation Conference, pages 263–270, 1986.

[9] P. Prabhakaran, J. Crenshaw, P. Banerjee, and M. Sarrafzadeh.
“Simultaneous Scheduling, Binding and Floorplanning for
Interconnect Power Optimization”. pages 428–434, January
1999. Proceedings of 1999 VLSI Design Conference, India.

[10] A. H. Salek, J. Lou, and M. Pedram. “A DSM Design
Flow: Putting Floorplanning, Technology-Mapping and Gate-
Placement Together”. InDesign Automation Conference,
pages 128–133. IEEE/ACM, 1998.

[11] D. F. Wong and C. L. Liu. “A New Algorithm for Floorplan
Design”. InDesign Automation Conference, pages 101–107,
1986.

[12] G. Zimmerman. “A New Area and Shape Function Estimation
Technique for VLSI Layouts”. InDesign Automation Confer-
ence, pages 60–65. IEEE/ACM, 1988.

	Main Page
	GLSVLSI'00
	Front Matter
	Table of Contents
	Session Index
	Author Index

