
An Object Oriented Design Method for Reconfigurable Computing Systems

Martyn Edwards and Peter Green
Department of Computation, UMIST, Manchester, United Kingdom

{M.Edwards, P.Green@co.umist.ac.uk}

Abstract

We present a novel method for developing
reconfigurable systems targeted at embedded system
applications. We show how an existing object oriented
design method (MOOSE) has been adapted and enhanced
to include reconfigurable hardware (FPGAs). Our work
represents a significant advance over current embedded
system design methods in that it integrates the use of
reconfigurable hardware components with a systematic
design method for complete systems. The objective is to
produce an object oriented design methodology where
system objects can be seamlessly implemented in either
software or reconfigurable hardware.

1. Introduction

Embedded systems are proliferating in areas as diverse
as high performance military applications and high
volume consumer products [1]. The problem of managing
design constraints is common to the development of
almost all embedded systems, with factors such as cost,
performance, size, power consumption etc. having a
profound effect on the success of a product. Design
constraints force developers into a detailed consideration
of implementation options, since it is possible to realise
different parts of a system in a variety of ways, each with
different costs and benefits. For example, software may be
written for a microcontroller or DSP, or custom hardware
may be developed. In the hardware domain designers have
the choice of an ASIC solution, or one based on FPGAs.
Field programmable hardware solutions are becoming
increasingly attractive [2] due to recent increases in logic
capacities, and the ability of some devices to be partly or
wholly reconfigured at run-time [3].

Design constraints typically relate to the system as a
whole, and it is necessary to evaluate implementation
options in the context of the complete system. There is,
therefore, a need to represent the system design in an
implementation-independent form to provide a context in
which to evaluate the implementation choices against the
design constraints. It is also crucial that a well-defined

route exists from the implementation-independent model
to the selected implementation technologies.

This paper is concerned with a development method
for embedded systems that provides an implementation-
independent modeling capability, and which facilitates
implementation in any combination of software and
application-specific hardware. The method, MOOSE
(Model-based Object Oriented Systems Engineering) was
initially developed to target software and/or ASIC
implementations, and the primary focus of this paper is to
examine the extensions that are necessary in order to
derive implementations in programmable hardware.

2. Reconfigurable Embedded Systems

The use of FPGAs for the implementation of
reconfigurable computing systems has been the subject of
ongoing research since the early 1990s and a range of
FPGA-based platforms is described in [4]. We are not
concerned here with any particular hardware platform, but
with the provision of methods and tools which allow the
use of reconfigurable platforms to be integrated into a
manageable embedded system development process.

At present, there is little, if any, previous work on
design methods that are specifically targeted at supporting
the development of systems containing reconfigurable
hardware. Current reported methods tend to advocate the
separate design and implementation of software and
reconfigurable hardware, together with some form of run-
time support [5, 6]. A key problem is that whilst software
and hardware development are reasonably well
understood, there is little work that applies to systems as a
whole, especially when considering the integration of
software and hardware, reconfigurable or otherwise.

Nevertheless, ‘whole system’ approaches have been
proposed, including those that seek to integrate existing
analysis and design methods to provide a seamless
approach to the development of complete systems [7, 8].
Alternative paradigms devise homogenous methods and
tools that provide an integrated route to system
development [9, 10].

The MOOSE method adopts a homogenous approach
based on object oriented (OO) principles. The arguments

supporting the use of OO techniques for software are well
known [11] and MOOSE extends classical OO principles
to apply to hardware as well as software. Previous work
[9], and that of others [12, 13] has shown that OO
principles may be applied with advantage to both
complete systems, and to fixed function hardware alone.
Hence it is a natural step to extend MOOSE to model
system elements containing reconfigurable hardware.

3. The MOOSE Method

The approach starts with an Informal Product
Specification, which is formalised into a complete
specification through the development of the Behavioural
Model (BM). This model is a graphical, hierarchical
representation of the system objects, showing how they
collaborate to satisfy the functional requirements.
Complex objects are decomposed into sets of simpler
objects until its ‘primitive’ objects are identified. At this
stage objects are uncommitted to either hardware or
software implementations.

Primitive object behaviour is specified in the next
phase, both graphically and by adding C++ code. This
renders the model executable so that its behaviour can be
validated against the functional requirements. This
Executable Model (EM) is tested against a number of
scenarios [9], and when its behaviour is satisfactory, it
represents a validated architecture that satisfies functional
constraints.

The implementation technology for each object is
identified, via a 'Transformational Codesign' process,
using 'time-aware' model execution that supports limited
timing/performance analysis. Additionally, the external
interface of a system is completed, the numbers and types
of processors are determined, and concurrent threads are
analysed. The resulting Committed Model (CM) satisfies
the system functional requirements and the design
constraints. Additional hardware and software objects, for
example interrupt controllers and operating system
components, are normally required to support the
operation of a system. A Platform Model (PM) is then
developed which incorporates these additional objects.

In the final stage, source code is synthesised from the
Committed and Platform Models. C++ code is produced
for each software object, and VHDL component
specifications are developed [13] for hardware objects

4. Hardware Objects and Run-Time Support

The concept of an object as an entity encapsulating
behaviour and state [11] is as applicable to reconfigurable
hardware as it is to software. This is also true of the notion
of class as an abstraction defining the behaviour and state
shared by a set of objects. In terms of reconfigurable

hardware, behaviour is provided by the configuration, and
state is held either within the configuration (for example
in registers), or in external memory. A class definition is
simply a description of the configuration, along with the
definition of a scheme for storing object state. Basic
inheritance may, therefore, be implemented in a
straightforward fashion. Dynamic object creation and
destruction can, in principle, be catered for by dynamic
reconfiguration of a programmable array. The
implementation of polymorphism is rather more difficult
and requires significant software support. However, whilst
the realisation of advanced OO concepts in reconfigurable
hardware continues to be of research interest, a relatively
straightforward view of objects exhibiting behaviour and
containing state is initially sufficient in MOOSE.

The significant differences between software and
hardware objects are most obvious in connection with
communications mechanisms, since the usual OO software
message passing communication does not normally
provide a satisfactory abstraction of communication
between hardware elements [9]. More general
communications mechanisms must be introduced that seek
to model hardware as well as software. This is recognised
in MOOSE where a number of mechanisms are already
provided for modeling hardware communications [9].

If reconfigurable hardware is to be exploited in
embedded systems, run-time software support must be
provided. We envisage an FPGA run-time support system
(RTSS), which runs on a conventional processor, and is
responsible for configuring the array, supporting advanced
OO facilities, and scheduling object execution.

5. Extending MOOSE for Reconfigurable
Systems

The BM and EM are independent of technology, and
so no changes are needed at the early stages of the
MOOSE method. In the development of the CM, a
notation must be provided for specifying which objects
are to be implemented in reconfigurable hardware, the
identity of the FPGA on which they will run, and the
processor to which the FPGA is interfaced. The structure
of the PM must be modified to include facilities for the
scheduling of hardware objects on to the FPGAs. It must
also provide for communications between objects running
on the FPGAs and the rest of the system.

The extensions to the MOOSE method are illustrated
by an example. The application is a Video Surveillance
System (VSS) [15], which is designed for use in buildings
and consists of a set of Embedded Video Controllers
(EVCs) and a single Supervisor Control Centre (SCS).
The EVCs are distributed in a building for capturing,
compressing, buffering, and transmitting images over a
network to the SCS for decompression and display.

5.1. MOOSE Committed Model

The complete CM is too complex to be described here
in detail, hence only a small relevant portion is presented
which concentrates on the EVC alone. Figure 1 shows a
simplified refinement of a higher level EVC object, with
three software objects (Camera Manager, Frame
Manager, and Compressed Images) sharing an ARM
processor, and one hardware object (Compressor)
running on FPGA1 interfaced to the ARM processor. The
EVC operates in a number of different modes under the
control of the Frame Manager, which receives
commands from the SCS. Full details of the MOOSE
notation are given in [9], but see also Figure 2.

Figure 1. EVC: committed model

Figure 2 shows the refinement of the Compressor
object as a set of hardware objects, the design being
adapted from the “Versatility” benchmark in [15].

5.2. The MOOSE Platform Model

A MOOSE PM represents a system’s execution
environment, including the system software and hardware.
At the highest level, the platform is represented as a single
object that interfaces with external objects, which
represent hardware devices that are outside the system.
There is also an external object for each processor in the
CM which represents the applications software associated
with that processor. Communications between these
objects and the platform represent the services that the
platform performs on behalf of the application software.

A PM is itself composed of three objects:
communications view (CV); software interface view

(SIV); and hardware view (HV). The CV provides a high-
level communications interface between objects running
on different processors. The SIV provides a software
scheduling mechanism together with details of the
hardware/software interface, whereas the HV describes
the platform hardware.

Figure 2. Compressor: committed model

In extending MOOSE to handle reconfigurable
hardware, we distinguish between an object (hardware
configuration) and the device on which it runs - analogous
to the relationship between software and the processor that
executes it. Hence, an external object is inserted into the
PM for each FPGA in the system, representing the
hardware objects that are configured to run on the FPGA.

5.2.1. The Communications View

The CV supports communication between objects
running on different processors. The CM shows
communications between such objects as logical
connections (Figure 1). The purpose of the CV object is to
map logical communications from the CM to the
communications mechanisms provided by the platform.
The 'internals' of the object then make use of the low-level
platform software, in the SIV, to perform the actual
communication.

The CV typically contains a number of simpler objects,
which act as proxies [16] for the remote objects. To
facilitate communication between FPGA objects and
software, and to retain the approach to platform modelling
a communication object is added to the CV to service
FPGA objects. This will execute on the FPGA, and will
receive internal "calls" from its resident configurations
and map them to the hardware communications
mechanisms provided by the platform. Note that it is

Compressor
(FPGA1,

ARM)

Camera
Manager
(ARM)

Frame
Manager
(ARM)

Compressed
Images
(ARM)

Get
Image

Get
Compressed

Image

Frame
Ready

Compress

Compress
Complete

:
Wavelet

Transformed
Image

{FPGA1,
ARM}

:
Quantised

Image
{FPGA1,

ARM}

:
Entropy
Coded
Image

{FPGA1,
ARM}

:
Run-Length

Encoded
Image

{FPGA1,
ARM}

start

start

start

TRANSFORMED
IMAGE

PARAMETERS QUANTISED
TRANSFORMED

IMAGE
PARAMETERS

RUN-LENGTH
PARAMETERS

Get
Image

Compress

Get
Compressed

Image

Compress
Complete

Frame
Ready

Event
(asynchronous
communication)

Time continuous
flow (asynchronous
communication)

Interaction
(synchronous
communication)

possible to synthesise this object’s interface automatically.
Figure 1 also shows logical communications between

FPGA objects and software (the Frame Ready and
Compress Complete events). These are intended to trigger
activity in the related software objects, for example,
Frame Ready, causes the Compressed Images object to
load a compressed image into an internal queue. This
event is raised by a child of Compressor (Entropy Coded
Image), and is sent to the FPGA communications object
in the CV. This maps the event to an interrupt for the
ARM processor via the FPGA output interface. The
associated interrupt handling software invokes an
operation within the Compressed Images object that
results in the call Get Compressed Image being issued.

Software-to-FPGA object communication must also be
handled. For example, consider the Compress interaction
issued by Frame Manager in Figure 1. This call causes
Wavelet Transformed Image to read and compress a
new image. Depending on the status of the actual
implementation, this object may not be resident on the
FPGA at that instant, and if this is the case, the FPGA
must be reconfigured to contain this object. Software-to-
FPGA object communications of this kind fit neatly into
the MOOSE platform modelling framework, whereby
calls from software objects to FPGA objects are directed
to the CV. The appropriate part of the CV then maps the
application-specific call to low level communications
encapsulated within the Software Interface View object.
Figure 3 shows a simplified version of the of the ARM
platform, where this mapping is indicted by the bundle (a
bundle aggregates a number of related communications)
RTSS COMMUNICATIONS SERVICES. The FPGA
RTSS would be invoked to reconfigure the FPGA to
contain the new object. The other bundle, RTOS
COMMUNICATIONS SERVICES, allows communication
between software objects on different processors.

Figure 3. ARM platform: high-level view

5.2.2 The Software Interface View (SIV)

The SIV (Figure 4) contains software objects that
control hardware, including a scheduler for concurrent
software and hardware device driver objects - a real time
operating system (RTOS) may be used here. For systems
with reconfigurable components this software is

supplemented with a RTSS that manages the FPGAs.
The Virtual RTOS object provides an abstraction

layer between the application software and the RTOS
itself. The RTOS and RTSS are shown as non-primitive
objects that contain scheduling mechanisms and interface
objects. The interfacing of software to fixed-function
hardware is performed by interface objects [9], which
appear in the refinement of RTOS. The RTSS contains
analogous configuration drivers to facilitate the
communication between software and the FPGA.

Figure 4. Software interface view

Requests for communication between software and
FPGA objects are routed through the appropriate
communications object, which interacts with the RTSS to
check whether communication is possible (for example, to
confirm that Wavelet Transformed Image is currently
active). If so, the RTSS allows the call, via a
configuration driver, and interacts with the FPGA across
the bus. If the target FPGA object is not resident, the call
from software is normally suspended by the RTOS and
resumed when the RTSS object has reconfigured the array
to allow the target object to be executed.

FPGA objects will typically communicate with
software objects via interrupts. For example, the Frame
Ready event generated by the Compressor (Figure 1)
would typically be implemented as an interrupt (mapped
to part of HW EVENTS) handled by a service routine in
the RTOS. The routine would invoke the Frame Ready
operation within Compressed Images. An
implementation would utilise a thread within this object
which would be suspended during compression, but
resumed by the Frame Ready interrupt handler. The
thread reads the image, via the Get Compressed Image
interaction, utilising the above platform mechanisms.

5.2.3. The Hardware View (HV)

The HV defines the hardware topology of the system.

HW

RECONFIG
COMMANDS

RTOS
COMMUNICATIONS

SERVICES

RTSS
COMMUNICATIONS

SERVICES

Hardware View
Software
Interface

View

Communications
View

RTOS Virtual
RTOS

RTSS

RTOS
COMMUNICATIONS

SERVICES

HW
EVENTS

RTOS API CALLS

SYSTEM SERVICES:
ARM

RTSS
COMMUNICATIONS

SERVICES

The initial form of the HV can be synthesised from the
CM [13] and consists of the processor and any fixed-
function hardware objects that are interfaced to it, plus
any FPGAs. This initial model is developed further, via
the addition of physical interconnections between devices
(typically one or more buses), and supporting hardware
objects such as an interrupt controller and bus arbiter. A
full system implementation may be developed through the
addition of further detail [13] using standard hardware
design techniques, including synthesis from VHDL
descriptions of hardware objects. One version of the
platform model for the VSS is shown in Figure 5 and
includes the FPGA1 and its Configuration Store. Device
reconfiguration is controlled by the RTSS software via the
bundle RECONFIG COMMANDS.

Figure 7. Hardware view

6. Conclusions

We have presented an approach (MOOSE) to the
development of complete embedded systems containing
software, fixed-function hardware, and dynamically
reconfigurable FPGA components. The uniform
framework provides a context in which to evaluate
different implementation options on the basis of design
constraints imposed on a project. Clear and well-defined
routes into implementation are provided, which are
supported by synthesis and the potential to reuse existing
objects. The method also provides a way of reasoning
about the behaviour of the execution environment and the
interaction between the application-specific part of the
system and the platform.

Further enhancements to MOOSE will include
consideration of reactive systems where reconfigurable
hardware-based objects can be scheduled in response to
events from a system’s external environment. In many

respects this is analogous to a RTOS that manages
prioritised tasks or threads and includes the idea of ‘object
pre-emption’ which involves saving/restoring the state of
pre-empted hardware-based objects.

Finally, we believe that our unified approach to system
development will permit the further use of OO methods
for embedded systems. Designers will be able to use such
techniques without being specifically concerned with
whether an object is implemented in hardware or software
– a situation that is not true with many currently available
methods and tools.

7. References

[1] Osterberg, L, "Standards in real-time systems: enabling
market growth", in Business and work in the information
society: new technologies and applications, IOS Press, 1999.
[2] M.D. Edwards and J. Forrest, "Software acceleration using
programmable hardware devices", IEE Proceedings - Computers
and Digital Techniques, 1996, 143 (1) pp.55–63.
[3] "Virtex 2.5V FPGA series (XCV00)", Xilinx Inc, 1998.
[4] M.D. Edwards, D.G. Evans, and P.N. Green, "Platforms for
reconfigurable computing", Workshop on Reconfigurable
Computing, PACT ’98, October 1998, Paris, France, pp. 17-21.
[5] J. Fleischmann, K. Buchenrieder, and R. Kress, "A
hardware/software prototyping environment for dynamically
reconfigurable embedded systems", 6th International Workshop
on Hardware/Software Codesign, March 1998, Seattle, USA, pp.
105-109.
[6] P.I. Mackinlay, P.Y. Cheung, W. Luk, and R. Sandiford,
"Riley-2: a flexible platform for codesign and dynamic
reconfigurable computing research", 7th International Workshop
on Field-Programmable Logic and Applications, September
1997, London, England, pp. 91-100.
[7] Kronloff, K., Method integration: concepts and case studies,
John Wiley & Sons, Chichester, 1993.
[8] Thome, B., Systems engineering: principles and practice of
computer-based systems engineering, John Wiley & Sons,
Chichester, 1993.
[9] Morris D., D.G. Evans, P.N. Green, and C.J. Theaker,
Object oriented computer system engineering, Springer Verlag,
Berlin,1996.
[10] N.S. Woo, A.E. Dunlop, and W. Wolf, "Codesign from
cospecification", IEEE Computer, 1994, 27 (1) pp 42-47.
[11] Booch, G., Object oriented design and analysis,
Benjamin/Cummings, 1994.
[12 W. Wolf, "Object oriented co-specification for embedded
systems", Microprocessors and Microsystems, 1996, 20 (3) pp.
141-147.
[13] D.G. Evans, P.N. Green, D. Morris, and P.B. James-Roxby,
"A systems approach to embedded system development", in
Embedded microprocessor systems, IOS Press, 1996.
[14] P.N. Green, "MOOSE models of the video surveillance
system", ESPRIT Project 20.592 (OMI/MODES), Deliverable
TR6.2.5, October 1998.
[15] "Benchmarking tools and assessment environment for
configurable computing: benchmark specification document –
versatility stressmark", Honeywell Technology Center, 1997.
[16] Douglass, B.P, Real time UML, Addison-Wesley, 1998.

:
FPGA1

RECONFIG
COMMANDS

:
Configuration

Store

CONFIGREQUEST
CONFIG

:
Interrupt

Controller

INTERRUPTS

:
ARM

Processor

:
Application

Data

:
Application

Code

:
Bus Arbiter

Bus

	Main
	DATE2000
	Front Matter
	Table of Contents
	Session Index
	Author Index

