
an
is
lit

act
e-
is
ch
no
ill
cy

ck
n
-

od
te
pt

ar
as-
h,
ile
-
e
fly
of
]).
of
the

c-
ut
in

are
ce
ce
n-

Luca Macchiarulo, Shih-Ming Shu and Malgorzata Marek-Sadowska
University of California, Santa Barbara

Wave Steered FSMs
 Abstract
In this paper we address the problem of designing very high
throughput finite state machines (FSMs). The presence of
loops in sequential circuits prevents a straightforward and
generalized application of pipelining techniques, which work
so well for combinational circuits, to increase FSM perfor-
mance. We observe that appropriate extensions of the “wave
steering” technique [17,18] are possible to partially over-
come the problem. Additionally we use FSM decomposition
theory to decouple state variable dependencies. Application
of these two techniques to MCNC benchmarks resulted in a
factor of 3 average throughput increase as compared to a
standard cell implementation, at the expense of factor 3.7
area and less than factor 2 latency penalties.

1. Introduction

Pipelining has always been ranked among the most pow-
erful techniques to enhance performance without resorting to
better technologies. However, in classic literature very few
attempts have been pursued to use this powerful methodol-
ogy in an FSM context.

One of the most lucid accounts on this issue, [16], points
out the main problem of pipelining sequential machines.
Any pipelining scheme will trade off latency for throughput,
but the throughput of a sequential system is inherently lim-
ited by an iteration bound related to the logical behavior of
the system rather than physical constraints. To clarify the
question, let’s take a look of figure 1a, which depicts a typi-
cal sequential system. It has memory of the past, or in other
words, its outputs are not uniquely determined by the pri-
mary inputs alone, but also by some history condensed in the
state variables. If an attempt is made to pipeline this system,
the result looks like figure 1b, where the single stage of the
computation is completed at a very fast rate, but the change
to the next state is bounded by the latency. It is so because
the next primary input vector has to be processed together
with the state bits; therefore no matter how fast the single
phases of computation are executed, the final speed of the
system will be dictated by the overall latencyτ. There have
been different approaches to overcome this obstacle ([11],
[16]), but all of them target particular problems or classes of
problems.

We think, though, that a systematic way of dealing with
the iteration bound exists, and is related to the deep logic
structure of the FSMs. In fact, even if the “black box”
description of an FSM (figure 1a) entails a hard constraint on
iteration bound, it is easy to see that in particular cases the
machine works like the one shown in figure 1c, where not all
the state variables are needed from the first stage of compu-

tation. If such decoupling of complete state knowledge c
be extended far enough, a situation like that in figure 1d
feasible, where the performance-limiting loop has been sp
into smaller loops and local machines are enabled to
much faster. This leads almost naturally to the classical th
ory of machine decomposition as detailed by Hartman
[10]. However, even if such decompositions existed for ea
machine, a second, different problem, arises: there is
guarantee that a system like the one depicted in figure 1d w
always be better (in terms of clock cycle, because the laten
will be degraded as in any pipelined scheme) than its “bla
box” counterpart. In fact, even if there is a rough connectio
between complexity of logic and critical path delay, this rela
tion is not trivial.

The solution we propose here relies on a design meth
for FSMs which guarantees better results if an appropria
decomposition is found. This is in turn related to the conce

of decomposition’s throughput. Given this definition we
can explore the space of “good” decompositions with a cle
cost function. Some good decompositions, including the c
caded one, are detailed. To verify feasibility of our approac
we have applied the classical decomposition theory, wh
more recent developments (like [1], [6], [22]) will be inte
grated in the future. We developed a novel partition lattic
traversal technique to visit the solution space. We also brie
mention implementation issues related to the problem
BDD based encoding and simplification techniques ([12
We finally present experimental results for a subset
MCNC benchmarks and discuss the pros and cons of
proposed method along with possible enhancements.

All this reasoning stands (or falls) on the existence of pra
tical systems which could take advantage of high throughp
machines. According to [16] such systems arise naturally
the field of signal and image processing, and many FSMs
cycle-intensive in a sense that it is less important to redu
the latency between inputs and outputs than it is to redu
the time interval between consecutive legal outputs. In ge

(a) (b)

 (d)(c)

Figure 1. Pipelining FSM.
1

r-
ar
he
s
t-
-
er it
t.

-
v-
ll
he
n
nt

h-
It is
n-
nd
of

top

-

ber
e
ed
SM
ll
as
l

eral our approach will be advantageous to all systems with
relatively loose loops connecting data with control parts, or
FSMs occurring in general data-dominated problems [11].

Previous work related to the problem studied here,
besides [11] and [16], can be found in early papers like [5]
or [8], where the possibility of high throughput FSMs was
clearly addressed, but didn’t find immediate application, we
believe due to the lack of an implementation framework
like the wave steering proposed here. In the present work
we are also indebted to all the papers on machine decompo-
sition, from the classical (and always inspiring) [10] to the
more recent works [1][2][7][14].

The main point that differentiates our work from the pre-
vious is the perspective that sees decomposition as a tool
which can immediately provide performance enhancements
rather than an encoding aid.

2. Wave steering of combinational and sequen-
tial circuits

Recently the Wave Steering Technique has been pro-
posed [17][18] which tremendously increases the through-
put of combinational logic. The idea is to allow several
signal waves to co-exist in combinational circuit. Each
wave contains encoded information about a subset of input
variables. As a particular wave travels through the circuit it
is enhanced by information carried by consecutive variables
of the same input vector.

The idea of wave steering is based on the possibility of
computing a function taking the effect of one variable at a
time to enhance the information carried by the variables
seen so far. This is allowed through the use of a BDD
(Boolean Decision Diagram) scheme of computation. There
are standard ways of mapping BDD representations of a
Boolean functions into Pass Transistor Logic (with minor
variations: see [3][4][19][21]). Each node of a BDD is sub-
stituted by a multiplexer realized by a couple of pass tran-
sistors controlled by the signal corresponding to the
variable and its negation. To achieve a wave steering
scheme it is fundamental to electrically decouple different
BDD levels, by controlling the adjacent levels with alternat-
ing phases of clock signals.

The wave steering principle requires that at any given
clock phase every other level is active, that is, any multi-
plexer connects one of its inputs with the output, while the
other half of the levels are idle (they maintain memory of
the previous computation). In order for this scheme to work
properly the input bits must be applied at the right time,
such that they act on the right wave of partial outputs. This
implies input skewing: the input bits controlling higher lev-
els in the BDD structure have to be delayed with respect to
the one controlling lower levels. This is achieved through
the use of dynamic flip-flops.

Previous works ([17] and [18]) show the good perfo
mance of this methodology with the use of a particul
decision diagram, while more recent results indicate t
feasibility of the approach with regular PTL mapped BDD
(with some modification to account for placement and rou
ing problems), particularly for arithmetic functions. In gen
eral it seems that the approach is advantageous whenev
is acceptable to trade-off area and latency for throughpu

3. Wave steered FSM

As stated in the introduction, the possibility of a pipe
lined FSM is challenged by the iteration bound, but sol
able if the “big loops” could be substituted by many sma
ones. Applying the wave-steering technique detailed in t
previous section directly to the combinational portion of a
FSM may not lead to substantial throughput improveme
because of necessity to feedback the state bits.

We definecombinational latencyof an FSM whose com-
binational portion is implemented in wave steering tec
nique as the time needed to compute the next state bits.
proportional to |input bits|+|state bits|. As an example, co
sider a machine in fig. 2a. Its state is coded into 4 bits a
the combinational part is wave steered. If we fix the order

the variables in such a way that state bits appear on the
of the BDDs (see fig.2b), thesequential latency, that really
limits the throughput by stalling the pipeline, becomes sim
ply dependent on the number of state bits.

Such a scheme, however, is acceptable only if the num
of state bits is relatively small. It is possible to apply th
Wave Steering idea hierarchically to achieve the desir
speedup. The top level wave steering is an appropriate F
decomposition which results in iteration loops with sma
number of bits. The bottom level wave steering works
usual, by accumulating partial information on the loca

Inputs+state bits

Figure 2. Wave-steered FSM.

(a)

(b)
2

ded
ic
he
er
m-
re
e
ut

nt
eric
nd
-
be
a-
g

h
in

ed
n

ll
nd

n
n

BDDs that eventually give partial results on the next state.
The top level wave contains the information about all the
input variables and a partial information about the present
state, that is used to compute the partial information on the
future state, to close the first loop. The information on the
next state is used by the next sub-machine which can pro-
cess it together with a complete information on the input to
refine the knowledge on future state. It is clear that in this
way the next-state output is not the result of a one-shot
computation but rather a progressive refinement of partial
information. This means that the entire next state vector
will be available only after all the machines have closed
their loops. As every machine can act independently, the
overall throughput of the system is no longer limited by the
total number of state bits but rather by the maximum num-
ber of state bits to be processed inside a single machine (see
figure 3).

It is clear that the existence of such a topology is related
to the possibility of finding decompositions of the original
machines. We however have an advantage with respect to
the usual way decomposition theory is applied: while ordi-
nary FSMs have cost functions relating the quality of a
decomposition to the result of a very long and complex pro-
cess (comprising state assignment, logic minimization, and
technology mapping), in our case the quality of decomposi-
tion can be assessed on purely logical grounds, namely by
the number of bits in the critical loops. This brings us to
defining thedecomposition’s throughputas the maximum
number of bits which have to be processed simultaneously
by any machine in the decomposition. With the cost func-
tion given by the throughput, we can proceed to analyze the
feasible decompositions, and build algorithms to identify
them.

4. Decomposed FSMs

4.1 Good decompositions
Here we list some machine decompositions that best fit

the wave-steering scheme. The crucial point is that they
have to reduce the number of bits needed to represent state
information produced and processed in a clock cycle. The

scheme detailed in figure 4a corresponds to the casca
decomposition ([1][10]) and Figure 4b shows a gener
loop-free decomposition. In both of these cases t
throughput gain is directly related to the maximum numb
of state variables of the component machines. A more co
plex situation, where feedback is present, is shown in figu
4 c. In this case the iteration bound is given not only by th
number of state bits computed by the single machine, b
also by the communication complexity between differe
connected machines. The same principle applies to gen
topologies like those of figure 4 d. Even though cases c a
d cannot rely on simplistic figures of merit like the maxi
mum number of bits, nonetheless the performance can
always computed on the basis of purely structural inform
tion, without considering encoding, synthesis, or mappin
data.

In general, we accept any multiway decomposition whic
guarantees the presence of short iteration loops defined
terms of bits to be processed.

4.2 FSM serial decomposition

We have implemented our ideas for FSMs decompos
into cascades. Therefore, from now on, we will focus o
FSM serial decomposition only. In this section we wi
rephrase pertinent definitions, recall theoretical backgrou
from [10],[13] and explain our implementation.

Definition 1: A finite state machine (FSM) is a 5-tupleM =
(S, I, O, δ, λ), whereS is a finite non-empty set of states,I a
finite non-empty set of inputs andO a finite non-empty set
of outputs.δ: S × I → S is called the transition (or next
state) function andλ: S× I → O the output function of M.

The functionsδ andλ are represented by a state transitio
table. Figure 5 shows transition table of machine A, a
example machine used throughout this paper.

Inputs

Figure 3. Wave steered decomposed FSM.

Figure 4. Good FSM decompositions.

(a)
(b)

(c)
(d)
3

the

as
as

he

ed

n

ari-

ld

in

ine

to

a

Definition 2: [10] Let the expression s≡ t (π) mean that
states s and t are in the same block of partitionπ.
Then a partitionπ on the set of states of the machineM is
said to have thesubstitution property(S.P.) if and only if,
for all states s and t,s ≡ t (π) implies thatδ(s, i) ≡ δ(t, i)(π)
for all i in I.

In other words, the partitionπ on Sof M has the substitu-
tion property if and only if each input maps blocks ofπ into
the blocks ofπ. For example,π1 = {0,1,2,5; 3,4} is a S.P.
partition of the machine A.

We denote a partition consisting of a single block asπ(I),
and the partition consisting of blocks each of which has
only one state asπ0. Each machine has only oneπ(I) and
oneπ0.

Since the operation ofM determines unique block to
block transformations on S.P. partitionπ, we can think of
these blocks as the states of a new state machine defined by
π andM.

Let π1, π2 be two partitions onS, and “≤” (equal or

smaller than) denotes the partial order operator, thenπ1≤
π2, if and only if each pair of elements which are in a com-
mon block ofπ1are also in a common block ofπ2.

It has been shown in [10] that ifπ1 andπ2 are S.P. parti-
tions on the set of states of a sequential machine, then so are
the partitionsπ1⋅π2 and π1+ π2, where the two operators
represent appropriate meet and join operations. With partial

ordering, the set of all S.P. partitions (includingπ0 andπ(I))
of a sequential machineM forms a latticeL(M), where each
node in the lattice is a partition and the edge represents
partial ordering between the nodes. Nodeπ1 is drawn on a
lower level than the nodeπ2 wheneverπ1≤ π2.

A serial decomposition of a machineM is a cascade chain
of sub-machinesm1, m2,...,mn, in which the outputs of any
sub-machine with lower index number may be used
inputs to sub-machines with higher index number. [10] h
shown that each path inL(M) starting fromπ(I) and ending
in π0 corresponds to a cascaded decomposition of t
machineM. Every edge inL(M) maps into a sub-machine in
the cascaded decomposition. A sub-machine is deriv
from a partitionτi,j such thatπi⋅τi,j = πj. Figure 6 shows the
Hasse diagram of the latticeL(A) and all S.P. partitions of
the machineA. We will use a possible serial decompositio
of the machineA as an example to illustrate how to build
the cascade machine. The path we choose traversesπ1, π3,
π0. Partition of the first sub-machine,τI,1 = { 0,1,2,5;3,4},
consists of two states, therefore can be realized by one v
abley0. The second sub-machineτ1,3 is {0,1,3;2,4; 5}. It
has three states and needs two variables,y1 y2, to encode
them. The last sub-machineτ1,0 is {0,2,3,4,5;1}, and needs
one variable,y3, to represent its states.

An assignment based on the above partitions will yie
the following functional relationships, where (y0’, y1’,...yn’)
is the encoded next state, (y0, y1,...yn) is the present state,
andz is the output:

y0’= δ1(x,y0)

(y1’ , y2’) = δ2(x,y0,y1,y2)

y3’ = δ3(x,y0,y1,y2,y3)

z = λ(x,y0,y1,y2,y3)

The schematic diagram of this realization is shown
Figure 7.

The number of bits needed to represent the sub-mach
states is labeled on the edges ofL(A) of Figure 6. For a
detailed treatment of theoretical background we refer
[10] and [13].

Next we will show how to get all the S.P. partitions of
machine. Letπsisj be thesmallestnontrival S.P. partition, in
terms of partial order, containing statesi andsj in one block.
We refer to the placing ofsi andsj in one block asidentify-

ing them. To determineπsisj, we first identifysi andsj. This

PS NS / OUT
x = 0 x = 1

0 4/0 1/1
1 4/0 0/1
2 3/0 0/0
3 2/1 5/0
4 5/1 2/0
5 4/0 2/0

Figure 5. The example MachineA

1
2

112

1 1

π(Ι)

π2

π3

π0

π4

π(Ι) = {0,1,2,3,4,5}
π1 = {0,1,2,5; 3,4}
π2 = {0,1; 2; 3; 4,5}
π3 = {0,1; 2; 3; 4; 5}
π4 = {0; 1; 2; 3; 4,5}
π0 = {0; 1; 2; 3; 4; 5}

π1

Figure 6. The latticeL(A) of machineA.

Figure 7. MachineA decomposed into a cascade

δ1
y0

δ2 δ3
y1,y2 y3

x

m1 m2 m3

y1y2y0

y3

λ
z

4

r-

y,

tee

ly
5

m-
es

e
of

y
e

te
he
s
a-
o-
m
d
we
o-

re
nd
es
tly

te
ty
identification implies that we must also identify the succes-
sorsδ(si, ik) and δ(sj, ik), for every inputik in I. The states
δ(si, ik) and δ(sj, ik) are said to beimplied by si and sj.
Whenever a statesi is identified withsj andsk, the transitive
law must be applied so that (si,sj,sk) are placed in the same
block of π. If we repeat the above procedure and find the
smallest closed partitionπsisj for every pair of statessisj, we
obtain a set of partitions which are called thebasic parti-
tions. The partitions in the second lowest level of the lattice
will all be basic partitions, therefore serving as the building
blocks of the whole lattice.

Once we have the complete basic partitions, we then use
the union operation on these basic S.P. partitions to gener-
ate all S.P. partitions of the machine [9], [10]. Finally we
insert them, starting from the partitions with smallest num-
ber of blocks, into the lattice in a depth-first manner.

4.3 Extraction of a good decomposition

A straightforward way to build a serial decomposed
machineA is to pick a path fromL(A) such that the maxi-
mum weight among its edges is minimum among all the
possible paths. For example, we can either pickπ1, π3, π0,
or π2, π3, π0, etc. fromL(A) in Figure 6, which all require
three submachines. This strategy certainly will give us a
cascaded machine with the best possible throughput (in
terms of sequential latency). However, if we look closer, we
find that actually we only need two submachines,ρΙ,2 and
ρ2,0, to realize the original machine. In doing so we literally
decrease the number of sub-machines and still maintain the
highest throughput possible. Thus the problem of finding a
path with minimum sequential latency leads to the problem
of finding a path that has both minimum sequential latency
and minimum number of nodes in the path.

In order to capture this essence we propose the following
algorithm:
1.Build the connected graphG (complete lattice), where

each node represents an S.P. partition ofM, and each partial
order pair nodes are connected with a directed edge.
2.Let w be the number of bits used in distinguishing the

partial order pair nodes inG. Assign each edge the cost of
w.

Figure 8 shows a directed graph for latticeL(A) obtained in
steps 1 and 2. The graphG will give us a complete informa-
tion about the cost of different paths, which will be othe
wise difficult to get from the Hasse diagram alone.
3.Assign the nodeπ(I) a value of 0, and the rest of the

nodes the value of infinity. Letu, v be two nodes inG, and
c(u,v)be the cost fromu(source) tov(target). Do a breadth-
first-traversal onG, starting from π(I). For each visited
node u, assign each connected target nodev a value =
max(min(v value,c(u,v)), u value).
4.Remove all the edges inG that have weight greater than

the node value ofπ0.
5.Useπ(I) and π0 as source and destination respectivel

find the shortest path between them.
This algorithm is exact. Step 3 and 4 together guaran

that the path we found will have the minimum of maximum
bits. This guarantees that we are effectively choosing on
decompositions with the best possible throughput. Step
ensures that the path we found consists of minimum nu
ber of nodes, thus minimizing the number of the machin
in the decomposition.

5. BDD implementation
After extracting the machine, to ensure the feasibility of th
approach, we devised a strategy to address the problem
area minimization. While the performance in terms of dela
is basically fixed during the logic step of the synthesis, th
area is still strictly related to the choice of good sta
assignment and logic minimization has to bear in mind t
different target architecture which is BDD based a
opposed to the traditional standard cell multilevel realiz
tion. As for now we don’t have any encoding scheme appr
priate to the BDD structures, we used a classic algorith
for symbolic encoding (JEDI[15]), starting from the hea
machine and using the results of previous encoding as
proceed towards the tail machine. An outline of the alg
rithm is as follows:
Given any extracted machine:
1. Encode through JEDI
2. Pass it through a BDD package (CUDD [20])
3. Minimize it safely ([12])
4. Do the placement of the BDDs
Step 3 uses a well-known algorithm to simplify a BDD with
don’t care conditions ([12]); in our case, don’t cares a
both external (the machine is not completely specified) a
internal (the encoding for an intermediate machine specifi
only some combinations of bits). This has shown to grea
improve the overall node count of the BDDs.

The last step consists in adding some intermedia
dummy nodes to the BDDs in order to ensure functionali
(those nodes practically act as flip flops).

1
2

112

1 1

π(Ι)

π2

π3

π0

π4

π1 3

1

3

3

2

Figure 8. Complete information about the lattice L(A).
5

ion
der
at
s
s
ept
ly
wn
ue
on
nd
ll
h

ults
te
om
to
e-
ctor
ut
n

e
ut
an
n
ce
6. Results

In this section we detail the experimental results per-
formed on a set of MCNC benchmarks from the 1993 Logic
Synthesis Workshop.

Table1. Cascade decomposition of MCNC benchmarks

Table 1 contains decomposition results for the bench-
marks that have nontrival serial decompositions. “pi” is the
number of primary inputs. “po” is the number of primary
outputs. “s” is the number of states. “bp” is the number of
basic partitions. “tp” is the number of total partitions. “m”
is the number of decomposed sub-machines. “b” is the
maximum number of bits in a submachine, which is directly
related to the throughput of the whole machine. CPU
column gives runtimes in seconds for Sun 4 Sparc
workstation.

Table 2 contains results of BDD implementation for the
benchmarks from Table 1. “jedi” is the area of the FSM
encoded through JEDI. “random” is the area of the FSM
encoded randomly. “S.C.A.” and “S.C.Del.” are the area
and clock cycle of the FSMs after logic minimization and
mapping obtained through SIS with the following script:

state_minimize stamina

state_assign jedi

extract_seq_dc

source script.rugged

source script.delay,

followed by automated placement and routing, together
with a static timing analysis (column “S.C.Del.”) of the cor-
responding standard cell implementation.

Table2. Area and delay comparisons.

Both implementations are in a 0.5µm technology. The
basic cells needed for the wave steering implementat
have been simulated, taking into account parasitics, un
different operating conditions, and proven to be working
a frequency of 625 MHz. This explains why the delay
reported are all multiple of 1.6 ns. Electrical simulation
show that the two phase clocking scheme permits to acc
two state bits without stalling the pipeline; therefore, on
submachines with more than 2 state bits force a slow-do
of the system. One key feature of the new design techniq
is that the performance of the implementation depends
the speed of the elementary cell (buffered multiplexer) a
on the quality of the decomposition, but not on the overa
complexity of the machine. Therefore we hope, throug
different decomposition schemes, to get even better res
for bigger FSMs. In the current implementation the sta
space behavior is considered and optimized separately fr
the output behavior. The results show that, with respect
standard cell realizations, the overall area of the wav
steered implementation increases on the average by a fa
3.7 (4.1 for the random encoding), and the throughp
increases by almost a factor of 3. A different customizatio
of the basic cells is possible that will provide mor
compact implementations. Note also the relatively mild, b
for special cases, degradation in latency. The use of
encoding algorithm results in only minor improvement o
the area. We think this is due to the substantial differen

FSM pi po s bp tp m #b CPU

bbara 4 2 10 5 5 3 2 1

dk27 1 2 7 4 4 3 1 0.06

dk512 1 3 15 13 44 3 3 2

ex1 9 19 20 8 67 2 4 71

ex7 2 2 10 2 2 2 3 0.37

kirkman 12 6 16 3 3 4 1 159

opus 5 6 10 2 2 3 3 0.67

s1 8 6 20 4 8 2 4 51

s208 11 2 18 9 9 5 1 42

s27 4 1 6 4 5 3 1 0.22

s420 19 2 18 9 9 5 1 42

shiftreg 1 1 8 8 28 3 1 0.24

tav 4 4 4 1 1 2 1 0.17

tbk 6 3 32 10 16 3 4 490

train11 2 1 11 8 26 2 3 1

FSM
jedi

103µm2

random
103µm2

S.C.A.
103µm2

Delay
s
ns

Lat.
ns

S.C.Del
ns

bbara 71.6 68.7 10.3 1.6 8.8 5.5

dk27 5.8 5.8 5.38 1.6 4.0 4.1

dk512 26.2 30.7 12.0 3.2 12.8 6.3

ex1 282.7 334.5 64.7 3.2 24.0 9.7

ex7 33.8 37.6 6.21 3.2 12.8 4.3

kirk-
man

117.6 114.6 38.1 1.6 12.8 12.3

opus 60.5 69.0 17.7 3.2 17.6 7.1

s1 251.4 310.3 38.9 3.2 20.8 9.8

s208 44.2 44.2 19.8 1.6 9.6 7.5

s27 15.1 10.7 8.36 1.6 5.6 4.6

s420 44.2 44.2 16.9 1.6 9.6 6.6

shiftre
g

0.7 0.7 3.73 1.6 2.4 3.8

tav 10.8 10.8 6.02 1.6 4.8 3.4

tbk 118.1 117.5 45.6 3.2 19.2 12.6

train11 31.0 31.7 7.15 3.2 12.8 4.2

Total 1113.7 1231.0 300.85 35.2 177.6 101.8
6

f.,

ry
s,

h

:

,

d
w

,

e
its

.I.

s,

e

-
-

e

-

between a standard multi-level optimization, for which
JEDI is well suited, and the BDD representation targeted
here. We believe that an encoding customized for BDDs
may improve the results.

7. Conclusions.

In this work we have demonstrated the feasibility of
wave steering, a novel design technique, in building high-
throughput FSMs. The results on some of the examples in
the MCNC benchmark suite are encouraging. We believe
that the latency and area of wave-steered FSMs can be
decreased and more examples can be handled when
different than just cascade decompositions are considered.
We also expect to improve the results by allowing state
splitting and developing appropriate encoding techniques.
However, for this approach to gain full acceptance, the
system issues caused by the difference between throughput
and latency in the behavior of those machines have to be
solved. We are currently working on these problems.

 Aknowledgements.

This work was supported in part by MARCO/DARPA
GSRC and in part by NSF through grant CCR-9811528.

References:

[1] P. Ashar, S. Devadas and A.R.Newton: Optimum and
Heuristic Algorithm for an Approach to Finite State
Machines Decomposition, IEEE TCAD, March 1991.

[2] L. Benini, E. Macii, M. Poncino, and G. De Micheli:
Telescopic Units: A New Paradigm for Performance Opti-
mization of VLSI Designs, IEEE TCAD vol. 17 no. 3,
March 1998.

[3] V. Bertacco, et al.: Decision Diagrams and Pass Transis-
tor Logic Synthesis, IWLS’97, Lake Tahoe, May 1997.

[4] P. Buch, A. Narayan, A.R. Newton, A. Sangiovanni-
Vincentelli: Logic Synthesis for Large Pass Transistor Cir-
cuits, ICCAD’97, San Jose, November 1997.

[5] C. Chao and H.H. Loomis: High Rate Realization of
Finite-State Machines, IEEE Trans. on Comp. vol. C-24,
July 1975.

[6] G. De Micheli: Synchronous Logic Synthesis: Algo-
rithms for cycle time minimization, IEEE TCAD, Jan 1991.

[7] S. Devadas and A.R.Newton: Decomposition and Fac-
torization of Sequential Finite State Machines, TCAD,
November 1989.

[8] A.D. Friedman: Feedback in Synchronous sequential
Switching Circuits, IEEE Trans. on Comp. vol EC-15, June

1966.

[9] M. Geiger, T. Muller-Wipperfurth: FSM Decomposition
Revisited: Algebraic Structure Theory Applied to MCNC
Benchmark FSMs, Proc. 28th Design Automation Con
San Francisco, 1991, pp. 182-185.

[10] J. Hartmanis, R. E. Sterns: Algebraic Structure Theo
of Sequential Machines, Prentice Hall, Englewood Cliff
1966.

[11] A. Hertwig, H.-J. Wunderlich: Fast Controllers for
Data Dominated Applications, ED&TC 97, Paris, Marc
1997.

[12] Y. Hong, P.S. Beerel, J.R. Burch and K.L. McMillan
Safe BDD Minimization using Don’t Cares, DAC’97, Ana-
heim, June 1997.

[13] Z. Kohavi: Switching and Finite Automata theory
McGraw-Hill, New York, 1970.

[14] K. Lam and S. Devadas: Performance-Oriente
Decomposition of Sequential Machines, ISCAS ‘90, Ne
Orleans, May 1990.

[15] B. Lin and A.R. Newton: Synthesis of Multiple Level
Logic from Symbolic High-Level Description Languages
IFIP Int.l Conf. on VLSI, August 1989.

[16] H.-D. Lin, D.G. Messerschmitt: Finite state machin
has unlimited concurrency. IEEE Transactions on Circu
and Systems, vol.38, (no.5), May 1991.

[17] A. Mukherjee, R. Sudhakar, M. Marek-Sadowska, S
Long: Wave Steering in YADDs: A Novel Non-iterative
Synthesis and Layout Technique, DAC’99, New Orlean
June 1999.

[18] A. Mukherjee, M. Marek-Sadowska, S.I. Long: Wav
Pipelining YADDs, CICC’99, San Diego, 1999.

[19] M. Shamanna, K. Cameron, S.R. Whitaker: Multiple
input, Multiple-output Pass Transistor Logic, Int’l J. Elec
tronics vol. 79 n. 1, July 1995.

[20] F. Somenzi: CUDD: CU Decision Diagram Packag
Release 2.3.0, University of Colorado at Boulder, 1998.

[21] K. Taki: A Survey for Pass-Transistor Logic Technolo
gies, ASP-DAC’98, Yokohama, February 1998.

[22] T. Villa: NOVA: state assignment of finite state
machines for optimal two-level implementation, IEEE
TCAD, Sept. 1990.
7

	Main
	DATE2000
	Front Matter
	Table of Contents
	Session Index
	Author Index

