
Modeling and Simulation of Real Defects

Using Fuzzy Logic

Amir Attarha
Dept. of EE

The Univ. of Texas at Dallas
Richardson, TX 75083

attarha@utdallas.edu

Mehrdad Nourani
Dept. of EE

The Univ. of Texas at Dallas
Richardson, TX 75083

nourani@utdallas.edu

Caro Lucas
Dept. of ECE

The Univ. of Tehran
Tehran 14399, IRAN

lucas@karun.ipm.ir

Abstract
Real defects (e.g. stuck-at or bridging faults) in the VLSI circuits
cause intermediate voltages and can not be modeled as ideal shorts.
In this paper we first show that the traditional zero-resistance model
is not sufficient. Then, we present a resistive fault model for real
defects and use fuzzy logic techniques for fault simulation and test
pattern generation at the gate-level. Our method produces more re-
alistic fault coverage compared to the conventional methods. The
experimental results include the fault coverage and test pattern sta-
tistics for the ISCAS85 benchmarks.

1. INTRODUCTION
CMOS fabrication of digital integrated circuits includes defects
that can not be represented using conventional idealistic stuck-at
or bridging fault models. Unfortunately, such defects represent a
significant fraction of faults in complex digital circuits [1] [2]. As
transistor size shrinks, such resistive defects influence the fault de-
tection even more [3] and thus it is vital to investigate their pres-
ence, effects, and detectability.

A fault occurs when two nodes are unintentionally connected to-
gether. We call faults (e.g. stuck-at or bridge) with zero resistance
ideal faults. In reality, parasitic resistance (R), capacitance (C), and
inductance (L) are always associated with the defects in the VLSI
chips [4] [5]. The resistance value (specific or a statistical range),
which is the most noticeable one, highly depends on the logic style,
technology and the fabrication process. The faults with their asso-
ciated resistances are calledreal faults in this paper.

Real stuck-at or bridging faults produce resistive paths between
power supply and ground leading to intermediate voltages in the
circuit nodes. The actual voltage values depend on the resistances
of the networks that connect the signal to the power supply and
ground. The interpretation and propagation of the intermediate
voltages depend on many factors including the threshold voltages
of the driver and driven gates, the nonlinear behavior of transistors
and even asymmetry of the logic gates.

z

(a)

R=100

0.0/1.92
c

a

b
0.0/3.12

3.3
3.3

(b)

z

R=4k

0.0/1.02
c

a

b
3.3

3.3 0.0/0.13

Figure 1: Voltage values for stuck-at-1 at pointc

R=100

3.3
3.3

0
3.3

a

z

b 3.3/0.38

0.0/0.33
c
d

3.3
3.3

3.3
0

R=5K

a

z

b

c

d

3.3/1.39

0.0/0.37

(a) (b)

3.3/3.23.3/0.13

Figure 2: Voltage values for a bridging fault

1.1 Motivating Examples
Accurate modeling of real faults in the VLSI chips requires con-
sidering the parasitic R, C, and L associated with the faults. In this
paper we consider only the resistance value which is the most influ-
ential one among the three in terms of affecting the node voltages
and thus the fault detection.

� Example 1: Stuck-at Fault
Figure 1 shows SPICE simulation [6] results for a real stuck-at fault
in a small circuit using a cell library withVdd= 3:3 volt. Pattern
ab= 11 can be applied to detect ideal s-a-1 at pointc. However,
real s-a-1 at pointc may or may not be detected with this pattern.
Figure 1(a) shows that ifR� 100 Ohm, the fault-free and faulty
voltage values onz correspond to logic 0 and 1, respectively; and
thus the fault will be detected. However, ifR� 4 K Ohm it won’t be
detected as shown in Figure 1(b). In actual testing, a test equipment
that uses the same pattern to test the circuit, depending on the value
of Rmay or may not see it.

� Example 2: Bridging Fault
Figure 2 shows SPICE simulation [6] results for a real (resistive)
bridging fault using the same cell library as in the first example.
Patternabcd= 1101 can detect resistive fault whenR� 100 Ohm
but will fail if R� 5 K Ohm as shown in Figure 2 (a) and (b),
respectively.

� Example 3: The Effect of Gate Asymmetry
Figure 3 shows internal transistors of a CMOS AND gate (NAND
followed by a NOT) and the result of SPICE simulation [6] for a

Permission to make digital/hardcopy of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage, the copyright notice, the title of the
publication and its date appear, and notice is given that copying is by permission of
ACM, Inc. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.
DAC 2000, Los Angeles, California
(c) 2000 ACM 1-58113-188-7/00/0006..$5.00

��

��

��

��

Power Supply : 3.3 V
Process: CMOS 0.5 µ m
Threshold voltage NMOS: 0.66 V
Threshold voltage PMOS: -0.92 V

1.3

2.3

R=1.5K

0.38V1.337

A

B

0

0

3.3

3.3

1.3

2.3

R=1.5K

B

0.713

A

0

3.3

3.3

0

3.01V

NANDNOTNAND NOT

(b)(a)

Figure 3: The effect of gate internal asymmetry

small circuit. In 3 (a), the inputs A and B are driven by a 2-input
AND gate and a 2-input OR gate, respectively. The bridging fault
R, between the outputs of the AND and the OR gates, produces two
intermediate voltages at its two ends. Based on SPICE simulation
these intermediate voltages force output of the NOT gate to 0.38
volt, that is logic ’0’. On the other hand, if the inputs of NAND gate
are swapped, as shown in 3 (b), then, the output of circuit is 3.01
volt, that is logic ’1’. Because of the asymmetry of the NAND gate,
with respect to its internal transistors, different orientations for a
gate lead to different interpretations for the same input voltages
after passing only two level of primitive gates.

These three examples clearly show that the conventional fault simu-
lation is not sufficient and the fault simulation of real faults require
accurate voltage analysis. Using transistor level simulators, such as
SPICE, is not practical for large circuits. Moreover, these simula-
tors often generate other information (e.g. timing behavior) which
are not used in fault simulation. This motivated us to propose a
fault simulator with high accuracy for voltage computation. Such
simulator considers resistive faults and generates only the voltage
levels for circuit nodes that are crucial in fault simulation process.

We acknowledge that some of the real defects (e.g. a very large
resistive stuck-at fault) may not harm the functionality of a circuit.
However, there are various reasons why detecting such faults is still
important. They may create signal skew [7], cause excessive power
consumption [8] or indicate problems to come in future, e.g. mi-
gration of metal to the surrounding areas over time and shortening
the life and reliability of a chip [2].

1.2 Related Works
Most methods tried to improve the accuracy of their fault modeling
by using an approximation method at the gate level such as a voting
model [9] [10]. Although these methods are very fast, their accura-
cies are not acceptable, because they only analyze the bridge out-
put voltages without carefully considering how the faults propagate
[11]. The performance of the switch level tools such as SWITEST
[12] or the analog simulators like SPICE [6] are not always accept-
able, especially if large VLSI circuits have to be analyzed [13]. A
different family of methods using mixed level or multi-level simu-
lation techniques have been proposed in [14] [15]. These methods
switch from logic simulation to transistor level simulation when-
ever an unconventional fault is encountered. These methods are
relatively accurate but for large circuits they do not run efficiently
as discussed in [11].

The above shortcomings motivated us to employ the fuzzy logic
theory to model and simulate real faults. Fuzzy logic with the abil-
ity to model any nonlinear system provides a powerful tool to deal
with uncertainties and complexities inherent in a practical problem

[16]. It further enables us to utilize human experience in form of
ad-hoc rules in the design or analysis process which eliminates the
need to identify complicated mathematical representations. Such
rules can be usually optimized using empirical data [21].

1.3 Contribution and Paper Organization
Our fault model assigns a non-zero resistance, randomly selected in
a predefined range[Rmin;Rmax], to the stuck-at and bridging faults
in general. Ideal (zero resistance) faults will be a special case
in our modeling, whereRmin = Rmax = 0. We first model logic
components as fuzzy blocks by extracting the information of non-
embedded logic gates from results reported by SPICE. This feature
makes our method fully adaptable by new libraries and technolo-
gies. Then, we use fuzzy logic to develop an accurate (for voltage
calculation) fault simulator to analyze real faults in digital circuits
at the gate level for the purpose of fault grading. Our fault simu-
lator will report a true fault coverage by considering the real faults
and thus improves the yield factor when chips are actually tested
by the test equipments.

Feltham and Maly [17] demonstrated that many defects in mod-
ern CMOS technologies cause changes in the circuit description
that result in electrical shorts and implied that many failures can
be modeled by bridging faults. What differentiates our model from
[17] or similar approach such as [11] and [18] is in: a) considering
resistive stuck-at faults in addition to bridging faults, b) using an
analytical fuzzy-based analysis instead of lookup tables for accu-
rate voltage computation, and c) generating test patterns using the
resistance value of faults.

The rest of the paper is organized as follows. Our fault model
is explained in Section 2. Section 3 describes how an individual
(non-embedded) logic gate is modeled as a fuzzy block. Section 4
explains the fault simulation algorithm. In Section 5, we comment
on how our simulator can be used to generate test patterns for real
faults. The experimental results are discussed in Section 6. Finally,
the concluding remarks are in Section 7.

2. FAULT MODEL
Our fault model assumes a single resistive bridging fault (Rbridge)
exists in a circuit as shown in Figure 4. A stuck-at fault is a bridging
fault, occurred between specific node andVdd or Gnd through a
resistance. This resistance is zero for ideal and takes a non-zero
value for real faults.

In CMOS, each node is driven by a resistive path from the power
supply or ground. To analyze the behavior of bridging faults in the
circuit, the voltages of the two nodes of the bridge must be deter-
mined first. These voltages, then, should be propagated accurately
across the circuit. These two issues are addressed next.

2.1 Voltage Calculation
As presented by [20], [2], and [1] the resistance of the realistic de-
fects may vary between several Ohms to several Kilo Ohms de-
pending strongly on layout details, technologies and fabrication
process. For example, authors in [2] and [1] reported defect re-
sistance between 200 Ohm to 30K Ohm for register cell structures
and 0 Ohm to 5K Ohm for bridge defects, respectively. Empiri-
cally, however, the resistance of 0.5K to 2K provided satisfactory
results in test of digital circuits[20]. In our work we allow user
define a range (e.g.[Rmin;Rmax]) and the simulator will select a
random resistance, i.e.Rbridge in this range.

��

��(a)

Rbridge

�� (b)

V1

Rpullup

Rpulldown

V2

V1

Rbridge

V2

Figure 4: A resistive path for a bridging fault.

Connection of two nodes via a bridging defect makes a resistive
path between power supply and ground as shown in Figure 4. Typ-
ical pull up and pull down resistors are often given in data sheets
of cell libraries [4] and therefore two nodes of the fault can be ana-
lyzed by voltage division:

8><
>:

V1 =
Rbridge+Rpulldown

Rpullup+Rbridge+Rpulldown
�Vdd

V2 =
Rpulldown

Rpullup+Rbridge+Rpulldown
�Vdd

(1)

2.2 Voltage Propagation
The second factor that determines the accuracy of a real fault model
is the propagation of the voltages at the nodes on two sides of the
fault (i.e. generalized as a bridge). This step traces the voltages
accurately through the circuit using input voltages, thresholds of
logic gates and their asymmetry. We have developed a fuzzy fault
simulator, with SPICE precision for voltage computation, to carry
out this step. The fuzzy fault simulator will be discussed exten-
sively in the next section. Here, we just point out that to achieve
a reasonable run time we can take advantage of logic voltage mar-
gins inherent in digital gates. Specifically, in CMOS technology,
any voltage in the range of[0;0:3Vdd] is recognized as LOW, in
the range of[0:3Vdd;0:7Vdd] is recognized as HIGH and between
these two is considered MED (abnormal) [22].

Note that these margins at 0:3Vdd and 0:7Vdd are not crisp and
may differ for each technology, library or even logic gate. Also,
these margins may change based on the factors that can influence
threshold voltage such as temperature. This vagueness is an impor-
tant indication why fuzzy system can be used to approximate logic
gates behavior [16].

3. MODELING LOGIC COMPONENTS
For each logic gate in the target library a fuzzy block is designed,
which approximates the desired behavior in response to different
level of voltages. This approximation should be accurate enough
to reflect the behavior of real resistive faults and their effects when
propagated through the circuit. We construct such a database for
all logic gates used in the circuit through the following three steps
that are quite standard in developing a fuzzy system [16].

3.1 Fuzzy System Development
Step 1: Find the Input-Output Behavior

We simulate all logic components in the library by SPICE with de-
sired accuracy (e.g. 0.01 volt). Note that SPICE simulation is done
once and the input-output data obtained will be used to construct
the fuzzy block corresponding to each logic component. To build a

database for our fuzzy blocks the whole range of input voltages (the
universe of discourse in fuzzy terminology) have to be covered.

Step 2: Initial Structure and Parameters
There are basically two approaches to construct fuzzy systems from
input-output pairs of data [16]. In the first approach, fuzzy IF-
THEN rules are first generated from input-output pairs, and the
fuzzy system is constructed from these rules according to certain
choices of fuzzy inference engine, fuzzifier, and defuzzifier. In the
second approach, the structure of fuzzy system is pre-designed with
some free parameters. Then, these free parameters are optimized
according to the input-output pairs. In this work, we adopt the sec-
ond approach.

We select the first order Sugeno model [16] as the basic structure of
the fuzzy blocks. The output of the Sugeno model is a linear func-
tion of input variables, therefore, the Sugeno fuzzy system can be
viewed as a somewhat piece-wise linear function, where the change
from one piece to the other is smooth rather than abrupt [21]. Based
on this model the fuzzy systemf (X), X = [x1;x2; :::;xn] is of the
following form:

f (X) =
∑M

l=1

�
Zl (X):Wl (X)

�

∑M
l=1Wl (X)

(2)

whereM is the number of IF-THEN rules; andZl (X) (output of the
l th rule) andWl (X) (excitation weight of thel th rule) are defined
as follows: 8><

>:

Zl (X) = ∑n
i=1 kl

i xi +cl
i

Wl (X) = ∏n
i=1 exp

�
�

xi�µl
i

σl
i

�2

where the superscriptl refers to thel th rule,n is the number of in-
puts,µi andσi denote average and standard deviation of the mem-
bership functions, respectively. Finally,ki andci represent a factor
and a constant associated with the polynomial defined in the first-
order Sugeno model, respectively. Note thatµi , σi , andki are free
parameters, which need to be optimized (tuned) to complete the
fuzzy system.

Each rule comprises IF-THEN condition and has the following form:

Rule(l) : IF ((x1 is Al
1) & � � � & (xn is Al

n)) THEN

Zl (X) = ∑n
i=1kl

i xi +cl
i

whereAl
i ’s are fuzzy sets in the antecedent, andZl (X) is a crisp

first-order polynomial function in the consequent [16]. To initialize
the system, we must first determine initial rules and initial values
of µi andσi . These initial parameters are determined empirically
using linear approximation. We partition the input universe of dis-
course to three spaces, “LOW”, “MED” and “HIGH”, where LOW,
MED and HIGH refer to three Gaussian membership functions with
initial [σi ;µi] values ofLOW = [0:35;0:60], MED= [0:8;1:8], and
HIGH = [0:75;2:8], respectively.

Figure 5 shows the SPICE output and fuzzy output for a NOT gate
after these initial settings, where the output behaves imprecisely
in some ranges. To improve our model, an optimization technique
(see Step 3) is used to determine the free parameters i.e.µi , σi , and
ki , more precisely.

Step 3: Optimize the Free Parameters
We use nonlinear least square method to optimize the free para-
meters. This method plays a prominent role in the framework of

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

0 0.5 1 1.5 2 2.5 3 3.5

O
ut

pu
t [

V
ol

t]

Input [Volt]

SPICE
Fuzzy

Figure 5: SPICE vs. fuzzy for NOT gate after initial setting

soft computing, and the sum of squared errors is frequently cho-
sen as the objective function to be minimized [21]. This method
is commonly used in data fitting and regression [21] and is briefly
described below.

Consider ann-input, single output model withm free parameters:
y= f (X;Θ) wherey is the model’s scalar output,X = [x1; :::;xn] is
the input vector of sizen, andΘ = [θ1;θ2; :::;θm]

T is the parameter
vector. In designing the fuzzy system, we focus on minimizing the
error functionE(Θ), that is the sum of squared error. Finding a
parameter vectorΘ� that minimizesE(Θ) is of primary concern:

E(Θ) =
m

∑
p=1

�
tp�yp

�2
=

m

∑
p=1

�
tp� f (Xp;Θ)

�2

=
m

∑
p=1

rp(Θ)2 = rT(Θ)r(Θ)

wheretp and yp are the desired output (e.g. SPICE results) and
the approximation result (e.g. by the fuzzy simulator) for the same
input Xp, respectively; andr(Θ) = [r1(θ); :::; rm(θ)].

SinceE(Θ) is nonlinear, to minimize it we use the iterative descend
method [16], in which the next pointΘnext is determined by a step
down from the current pointΘnow in a direction vectorg(Θ):

Θnext= Θnow+η(Θ)g(Θ)

g(Θ) is the straight downhill direction andη(Θ) is a positive step
size regulating to what extent to proceed in that direction. In this
work, we utilized the nonlinear Levenberg-Marquart method [21]
to determineg(Θ) andη(Θ).

3.2 Fuzzy Logic Versus SPICE
In our formulation,Θ= [µi ;σi ;ki] is the parameter vector. After op-
timizing Θ the fuzzy model for NOT gate shows very high accuracy
compared to the SPICE, as shown in Figure 6. The cell is selected
from a library using 0:5µmtechnology andVdd= 3:3 Volt.

Figure 6(a) and (b) show the outputs of SPICE versus fuzzy simula-
tion and absolute error for each of the 200 input patterns (voltages)
in the range of[0;3:3V]. Figure 7 (a) and (b) show the result of
fuzzy simulator and absolute error for a two input AND gate, re-
spectively. The behavior of AND gate is approximated accurately,
such that the maximum error for all input combinations is less than
0.03 Volt as shown in Figure 7 (b) and mean square error is less
than 0.04. Note that this figure only shows the result of 350 pat-
terns to generate the input voltages between 1V to 2.5V (abnormal
region) which is a critical part of analysis in real fault simulation.
In modeling a logic circuit using fuzzy logic, the small error ob-
served in the intermediate levels (e.g. 0.03 V in above example)

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

0 0.5 1 1.5 2 2.5 3 3.5

O
ut

pu
t [

V
ol

t]

Input [Volt]

SPICE
Fuzzy

-0.004
-0.003
-0.002
-0.001

0
0.001
0.002
0.003
0.004
0.005
0.006

0 20 40 60 80 100 120 140 160 180 200

E
rr

or
 [

V
ol

t]

Number of input patterns

(a) Output (b) Absolute Error

Figure 6: SPICE vs. fuzzy for NOT gate

1 1.2 1.4 1.6 1.8 2 2.2 2.4
Input 1 [Volt] 1

1.2
1.4

1.6
1.8

2
2.2

2.4

Input 2 [Volt]

-0.5
0

0.5
1

1.5
2

2.5
3

3.5

Output [Volt]

1 1.2 1.4 1.6 1.8 2 2.2 2.4Input 1 [Volt] 1
1.2

1.4
1.6

1.8
2

2.2
2.4

Input 2 [Volt]

-0.03
-0.02
-0.01

0
0.01
0.02
0.03

Error [Volt]

(a) Output (b) Absolute Error

Figure 7: SPICE vs. fuzzy for 2-input AND gate

does not accumulate in the process and thus could be ignored, be-
cause the intermediate voltages reach toVddor Gndafter few lev-
els anyway.

The whole practical point about our fuzzy simulator is that a real
(stuck-at or bridging) fault that cause abnormal level of voltages in
the circuit can be traced carefully toward the output(s). This is a
fundamental necessity for real fault detection. It is worth mention-
ing that once we model all logic gates as fuzzy blocks the fuzzy
simulator is quite fast.

4. FUZZY FAULT SIMULATION
Having all the logic gates as fuzzy blocks, we can carry out circuit
simulation with high accuracy in terms of computing voltages in
various nodes. Such pseudo analog simulation working at the gate
level is the most important feature in our approach as it presents
high precision (even comparable to the SPICE) to catch real faults.

Our fuzzy fault simulator operates at the gate level and at present is
limited to the combinational circuits. The simulator works similar
to a traditional single fault propagation scheme. First, the fault-free
circuit is simulated for an input vector. Then, the fault is inserted
and the faulty circuit is analyzed and the result is compared to the
fault-free value. The computation of faulty values starts at the site
of the fault and continues until all faulty values become identical
to the fault-free values or the fault observed at one of the primary
outputs [5].

Figure 8 details the fuzzy engine in fault simulation process. The
resistance of the real fault (stuck-at or bridge) is selected randomly
from the range predefined by user. In practice, such range is de-
termined by empirical and statistical data and varies for different
styles, technologies and even fabrication plants [23][2]. The volt-
age of two sides of the resistive fault is calculated using Equa-
tion 1. If the voltage is within normal range (i.e.[0;0:3Vdd] for

minR < < maxRR

level l?
abnormality in

Cause yesno

created by f

Determine voltages

Select R randomly

(V1,V2)

using fuzzy blocks
Propagate abnormality

Propagate the effects

of fault f as 0/1

Reached output?

yes

no
l=l+1

Test vector v Fault f

Circuit output OUT_f

Figure 8: The Fuzzy Engine in fault simulation

logic “0” and [0:7Vdd;Vdd] for logic “1”), the simulator just prop-
agates the effect of those faults through the circuits as logic “0” or
“1”. However, if the voltages are within the abnormal range, i.e.
[0:3Vdd;0:7Vdd], there are two cases:

� Case 1: The abnormal voltage is changed to normal by the
“controlling input” (e.g. 0 for AND and 1 for OR). Obvi-
ously, such controlling input masks the effect of abnormal
voltage and thus we continue normal functional simulation
as if no abnormality happened.

� Case 2: The abnormal voltage is not masked by other in-
puts. We, therefore, employ the fuzzy block behavior for
those gates which see abnormality and trace the effect care-
fully through that level (l). This process is repeated until
we reach the output. This mechanism allows us to optimize
the running time of the fuzzy simulator. The fuzzy block
evaluation is invoked only when an abnormality is identified.
This is especially important since depending on the abnormal
voltages, after a few levels (e.g. 2, 3, or 4) the voltages en-
ter normal range and we can continue simulation with higher
speed by not entering the fuzzy computations.

5. TEST PATTERN GENERATION
Although test pattern generation for resistive faults is not the focus
of this paper, we would like to briefly comment on the key question
of how test patterns can be generated for real faults. We believe our
fuzzy engine can be also used to generate patterns, which overall
have better chance to detect real faults and so the fault coverage
can be enhanced. To do this, our basic strategy is to first use a
conventional test pattern generation algorithm (e.g. PODEM [24])
to generate test vectors and then ask the fuzzy simulator to evaluate
different choices for their potential in detecting real faults in a given
resistance range. By doing so, our pattern selection mechanism is
geared toward detecting the real faults. However, we may select
more patterns to cover a wider range of resistances associated with
real faults.

When we deal with the real stuck-at faults, we just ask PODEM to

a3
a2
a1

ak

...
a3
a2
a1

ak

...
z

K-input

Logic Gate

(a)

s-a-0
z

(K-1)-input

Logic Gate

(b)

Figure 9: XOR replacement for bridging faults

Circuits Number of Number of Number of
gates stuck-at faults bridging faults

C432 162 602 311
C880 449 1435 325
C1355 562 1934 588
C1908 781 2207 634
C2670 1078 3397 1045
C3540 1773 4819 1655
C5315 2338 7060 2452
C7552 3499 9861 2787

Table 1: Benchmark circuits used for experiments

generate the patterns. For the bridging faults We limit ourselves to
the faults between two inputs of a gate. For such faults, an appro-
priate test pattern forces two sides of bridge to take opposite logic
values (0 and 1), because it activates the fault in a way that two
voltages take different values and we can later use fuzzy simulator
to propagate it. Figure 9 shows that by a simple trick we can use
PODEM to generate the test pattern. To do this, we insert a 2-input
XOR gate in the location of the bridging fault and ask PODEM
to generate a pattern to detect stuck-at-0 at the output of XOR. To
activate the fault, PODEM forces output of XOR to be one which
means it selects pattern(s) to create 01 or 10 in the XOR inputs.
That is exactly what fuzzy simulator wants to see (i.e. two differ-
ent voltages on two sides of the fault) to proceed. Note carefully
that appropriate (non-controlling) values for propagation for other
inputs before and after XOR replacement remain unchanged.

After finding some candidates, the fuzzy simulator verifies if the
test vector(s) generated by PODEM actually detects the real fault
in the original circuit. Currently, our procedure takes a conservative
strategy and selects more patterns than PODEM to catch wide range
of resistive faults.

6. EXPERIMENTAL RESULTS
We implemented our method in C running on SPARC ULTRA 1
workstations. The running time of the fuzzy simulator for the IS-
CAS85 benchmarks varies from 0.6 second to 39.9 seconds. Ta-
ble 1 summarizes the specification of the benchmarks. The bridg-
ing faults are assumed only among the inputs of gates. Table 2
and 3 show the fault simulation results by conventional (third col-
umn shown asR= 0) and fuzzy (fourth column shown asR 6= 0)
simulators, for stuck-at and bridging faults, respectively. Num-
ber of patterns (Npat) given in the second column of these two ta-
bles are based on PODEM. The fuzzy simulator reports lower fault
coverage (FC%) because it considers the real faults in the range
of (R2 [0:5K;2K]) and predicts accurately the situation that test
equipment will experience in the actual testing. A conventional
fault simulator considers only ideal faults (R= 0) and its report on
fault coverage is simply too optimistic.
By using our fuzzy test pattern generation (FTPG) procedure de-
tecting real faults will be improved with the cost of more time to

Circuits Npat FC% FC% FTPG
R= 0 R 6= 0 Npat FC%

C432 77 99.4 78.3 108 85.7
C880 103 100 87.3 112 94.3
C1355 102 100 82.9 143 91.7
C1908 149 100 89.1 201 100
C2670 153 98.8 77.5 178 94.5
C3540 278 98.4 88.3 329 88.3
C5315 248 99.5 89.6 302 100
C7552 348 98.7 84.1 417 93.9

Table 2: Test results for stuck-at faults
Circuits Npat FC% FC% FTPG

R= 0 R 6= 0 Npat FC%

C432 121 87.9 67.3 169 73.2
C880 149 99.3 75.1 287 87.9
C1355 217 95.3 65.5 293 71.9
C1908 193 96.4 78.3 281 89.5
C2670 183 88.6 74.9 401 83.1
C3540 292 93.3 73.7 483 81.2
C5315 312 98.9 79.9 378 87.2
C7552 373 91.4 72.7 545 79.8

Table 3: Test results for bridging fault

apply. This is reflected in the last two columns in Table 2 and 3.
Our test pattern generation strategy uses 10 to 50 percent more pat-
terns to be able to detect a wide range ([0:5K � 2K]) of resistive
faults. Assuming that the statistical analysis of fabrication process
allows us to narrow down this range to[1K�1:5K], we observed
that the overhead for number of patterns is reduced to 4 to 18%
while the fault coverage increases by 6% on the average for the
bridging faults, compared to those reported in Table 3.

7. CONCLUSION
Detecting real defects in the VLSI circuits needs accurate analy-
sis of the circuit by considering at least the resistance associated
with those defects. We proposed a fuzzy based engine to accurately
compute and propagate the voltage values through a gate level cir-
cuit for stuck-at and bridging faults. The fault coverage reported
by our fuzzy simulator is realistic, often lower than the optimistic
coverage reported by a conventional fault simulator, for the same
set of test patterns. The realistic view of the fuzzy engine can be
used to search for a more complete set of test patterns that have a
better chance to detect real faults.

8. REFERENCES
[1] F. Hawkins, J. Soden, A. Righter and F. Ferguson, “Defect

Classes – An Overdue Paradigm for CMOS IC Testing,”
Proc. Int. Test Conf., pp. 413-425, Oct. 1994.

[2] R. Aitken, “Finding Defects With Fault Models,”Proc. Int.
Test Conf., pp. 498-505, Oct. 1995.

[3] H. Vierhaus, W. Meyer and U. Glaser, “CMOS Bridges and
Resistive Transistor FaultsIDDQ versus Delay Effects,”
Proc. Int. Test Conf., pp. 83-91, Oct. 1993.

[4] N. Weste and K. Eshraghian,Principles of CMOS VLSI
Design, Addison-Wesley, 1993.

[5] Abramovici, M. Breuer and A. Friedman,Digital Systems
Testing and Testable Design, Computer Science Press, 1990.

[6] TI SPICE3 User’s and reference manual,1994 Texas
Instrument Incorporation.,

[7] S. Sparmann, D. Luzenburger, K. Cheng and S. Reddy, “Fast
Identification of Robust Dependent Path Delay Faults,”Proc.
of the 32nd Design Automation Conf., pp. 119-125, June
1995.

[8] M. Nourani, J. Carletta and C. Papachristou, “A Scheme for
Integrated Controller-Datapath Fault Testing,”Proc. of the
34th Design Automation Conf., pp. 546-551, June 1997.

[9] M. Acken and S. Millman, “Fault Model Evolution for
Diagnosis: Accuracy vs. Precision,”Proc. of IEEE Custom
Integrated Circuits Conf., pp. 13.4.1-13.4.4, 1992.

[10] Chess and T. Larrbee, “Bridge Fault Simulation Strategies
for CMOS Integrated Circuits,”Proc. of Design Automation
Conf., pp. 1503-1507, 1993.

[11] Di and J. Jess, “An Efficient CMOS Bridging Fault
Simulator: with Spice Accuracy,”IEEE Trans. on Computer
Aided Design, vol. 15, no. 9, pp. 1071-1080, Sept. 1996.

[12] J. Lee, C. Njinda and M. Breuer, “SWITEST: A Switch Level
Test Generation System for CMOS Combinational Circuits,”
Proc. of Design Automation Conf., pp. 26-29, June 1992.

[13] Mahlstedt and J. Alt, “Simulation of non-classical Faults on
the Gate Level: The Fault Simulator COMSIM ,”Proc. of
Int. Test Conf., pp. 883-892, 1993.

[14] Rearick and J. Patel, “Fast and Accurate CMOS Bridging
Fault Simulation,”Proc. of Int. Test Conf., pp. 54-62, 1993.

[15] S. Greenstein and J. Patel, “E-PROOFS: A CMOS Bridging
Fault Simulator,”Proc. of Int. Conf. Computer Aided Design,
1992.

[16] X. Wang,A Course in Fuzzy Systems and Control,
Prentice-Hall, 1997.

[17] D. Felthaam and W. Maly, “Physically Realistic Fault
Models for Analog CMOS Neural Networks,”IEEE Journal
of Solid-State Circuits, vol. 26, pp. 1223-1229, Sept. 1991.

[18] V. Sar-Dessai and D. Walker, “Resistive Bridge Fault
Modeling, Simulation and Test Generation,”Proc. Int. Test
Conf., pp. 596-605, Oct. 1999.

[19] D. Lavo, B. Chess, T. Larrabee and F. Ferguson, “Diagnosing
Realistic Bridging Faults with Single Stuck-at Information,”
IEEE Trans. on Computer Aided Design, vol. 17, no. 3,
March 1998.

[20] Dalpasso, M. Favalli, P. Olivo and B. Ricco, “Fault
Simulation of Parametric Bridging Faults in CMOS IC’s,”
IEEE Trans. on Computer Aided Design, vol. 12 , no. 9, pp.
1403-1410, Sept. 1993.

[21] Jang, C. Sun, and E. Mizutani,Neuro-Fuzzy and Soft
Computing, Prentice-Hall, 1997.

[22] J. Wakerly,Digital Design Principles and Practices,
Prentice-Hall, 1990.

[23] A. Miller, “IDDQ Testing in Deep Submicron Integrated
Circuits,” Proc. of Int. Test Conf., pp. 724-729, 1999.

[24] P. Goel and B. Rosales, “PODEM-X: An Automatic Test
Generation System for VLSI Logic Structures,”Proc. of
Design Automation Conf., pp. 260-268, June 1981.

	Main
	DAC00
	Front Matter
	Table of Contents
	Session Index
	Author Index

