Efficient Building Block Based RTL Code Generation from
Synchronous Data Flow Graphs

Jens Horstmannshoff Heinrich Meyr
Integrated Signal Processing Systems Integrated Signal Processing Systems
RWTH Aachen, Germany RWTH Aachen, Germany
ABSTRACT 2. PREVIOUS WORK

This paper presents a RTL-HDL code generation from synchronous Several approaches of generating hardware from synchronous data
data-flow graphs which supports the building block based design of flow graphs are known to date. In [8], portions of the data flow
data-flow oriented ASIC systems. Here, additional interfacing and graph are grouped into hardware execution units for which asyn-
controlling hardware is generated to adapt non-matching interfac- chronous communication is generated. Here, the granularity of the
ing properties. In order to reduce interface register cost, a retiming actors is restricted, so the desired combination of complex building
approach is taken to schedule optimum building block activation blocks is not supported.

times. The code generation methodology is compared to an exist-In [9], a library based HDL code generation method is presented

ing approach using different case studies. that enables the integration of more complex building blocks. This
approach, however, is strongly restricted concerning the 1/O prop-
1. INTRODUCTION erties of the building blocks. Each block is assumed to read and

As the complexity of todays application specific integrated circuits Write samplesquidistantly meaning that a fixed number of clock
steadily increases, a building block based design methodology iscycles elapses between each sample being read or written. This
established in order to meet aggressive time-to-market constraintsassumption is not valid for a vast number of building-block archi-
[2]. Here, the design is partitioned into several functional units tectures which are integrated in todays communication systems.
called building blocks. Each functional building block is indepen- The code generation approach presented in this paper is based on
dently implemented using different paths to implementation. Even- the work discussed in [1], where the building blocks are allowed
tually, all blocks are combined into the desired system architec- to have arbitrary periodic port access patterns. Here, a straightfor-
ture. Due to the increasing block reuse the I/O properties of con- Ward approach is taken to generate the additional interfacing and
nected building blocks might be non-matching, requiring the sys- controlling hardware, which can lead to a high overhead in inter-
tem designer to create additional interfacing hardware to combine facing registers. In this paper we will present a code generation
all blocks into an operable system. approach that tremendously reduces this overhead.

A very efficient way, of automating the seamless development of

building-block based data-path oriented ASIC designs is RTL-HDL synchronous Data-Flow Graph
code generation from synchronous data-flow graphs as depicted in) B 1
figure 1. Synchronous data-flow graphs [4] are widely used for 1 2| E: E |, 1
algorithm design of data flow oriented designs like wireless digi- X A K E, . C .
tal receiver structures [6]. At this level of specification, no notion |*

of time is present which enables fast algorithmic simulation. In
the course of the code generation, the purely functional data-flow L E,
actors are mapped to complex RTL building blocks that are taken

G HDL Code Generation

from a library. Due to the possibly non-matching interfacing prop-
erties of the blocks, additional interfacing and controlling hardware
has to be generated to compose all blocks into an operable system. RTL System Architecture RTL
Here, the interfaces contain FIFO queues to adapt non-matching B
data-transfer pattern and provide initial values in the system startup —., SIG, siG
phase. The controller provides independent enable signals for each A : ? C
building block. o C)—

In this paper, we present an RTL-HDL code generation from syn-
chronous data-flow graphs that supports the building block based
design of data-flow oriented ASIC systems. Here, a retiming ap-
proach is used to schedule building block activations which leads (Comro”er)
to a tremendous reduction in interface register area compared to

previous work [1].)) _ Figure 1: Code Generation Scenario
The paper is organized as follows: Section 2 summarizes the exist-

ing HDL code generation approaches from synchronous data flow

representations. In section 3, the input specifications for our HDL 3. INPUT SPECIFICATION

code generation are presented. Section 4 discusses the algorithm3,1 Synchronous Data-flow Graphs

involved in the code generation . Finally, some experimental results At the algorithmic level, the system is represented by a synchronous

are shown in section 5. data-flow graph [4][7]GS°F = (AP, £5PF), which serves as an in-
put specification for our code generation. In data-flow, a system is
represented as a directed graph, in which the set of n@¢&s
stands for computations, while the set of edg&S* represents
FIFO channels. These channels queue data values, encapsulated in
objects called tokens, which are passed from the output of one com-

. - , putation to the input of another. To clarify our terminology, figure 2
Permi ssion to make d|g|ta|/h_ardcopy of all or part of th|s_work for personal or depicts two nodeNSoF andNS°F which are connected via edEDF.
classroom use is granted without fee provided that copies are not made or ! J

distributed for profit or commercial advantage, the copyright notice, thetitle of the Each nodeN**" has a number of input port?';‘” (N°°F) and output
publication and its date appear, and noticeisgiven that copying is by permission of

ACM, Inc. To copy otherwise, to republish, to post on serversor to redistribute to

lists, requires prior specific permission and/or afee.

DAC 2000, Los Angeles, California

(c) 2000 ACM 1-58113-188-7/00/0006..$5.00

L——

0,(E)

S Ni(E) n,® /
Figure 2: Definition of graph terms

ports P]-OL‘(NEDF). So, edgeES™ in figure 2 canbe representedy
anorderedpair of ports ESPF = (PPU(NSPF), Piln(NjSDF)), wherethe
input port of this edgeis given by oM (ESPF) = POU(NSPF) andthe
outputport by g®*(E**F) = PI"(N5°"). To denotethe nodeswith
respecto aconnecteadgewe introducetheinput nodeof edgeE
asnin(E®™) = NP andits outputnodeasnou (E*) = Nj*".
In synchronouslata-flav, eachcomponentonsumegsndproduces
afixednumberof samplestits portseachtimeit is activated. This
numberis referredto asthe port's datarater (P(N°%)). Thenum-
ber of initial values{(E®®) on edgeE*"" denoteshe numberof
datatokensthatarewrittento the edgeoutputport o, (ES"F) before
thefirst datatokenis producedby theedgeinput port oo (ES®F).

3.2 Building Block I/O Model
Thesynchronouslata-flav modelof the systemcontainsno notion
of time. Whenthe purely functionaldata-flav actorsare mapped
to RTL architecture$rom abuilding block library, we have to map
the block communicatiorto a clock cycle true timescale.This en-
ablesusto performthecommunicatioranalysisnecessarfor HDL
codegeneration.

Thebuilding blocksareassumedo accessheirportsin porttiming-
patterns A porttiming patternconsistsf a periodicsequencef
time steps(specifiedin multiples of clock cycles) at which data
samplesare consumedbr producedat this port. Figure 3 depicts
theportaccessvaveformsof aresourceshareddovnsamplingFIR
filter architecturefrom which the port timing patternscanbe de-
rived.

The durationof onepatternperiodis given by the bloc iteration
periodandis denotedy I o4 (N°°F). In figure3 theiterationperiod
is given by loge(DFIR2) = 7. During oneblock iteration-period,
the RTL building block consumesandwrites the samenumberof
dataitemsat its ports as specifiedby the data-rateof the corre-
spondingsynchronouslataflow model.Inorderto mapthesedata
itemsto the clock cycle true scheduleof the RTL model, we in-
troducea port time mappingvectorfi(P) for every dataport P to
specify in which clock cycle within the iteration periodit is ac-
cessed.The j-th elementof fi(P) representshe clock cycle index
of thefirst valid accesso port port P afterblockinitialization. The
DFIR2 block in figure 3, consumes (INPUT) = 4 datasamples
andproduces (OUTPUT) = 1 datasamplegerblockiterationpe-
riod. Thewaveformsof the INPUT andOUTPUT portsin figure
3 aremarked by the index of the currentlytransmitteddatatoken
within the block iterationperiod. So the port mappingvectorsare
givenby

I(INPUT) = (0456)7 [(OUTPUT) = (4))

In thefollowing, we will graphicallyrepresenthe porttiming pat-
ternsby aline of boxes,whereeachbox standdor aclock cyclein
the processingf the /O scheduleof the correspondingort. Fig-
ure 4 c) shaws this representatiofor the waveformsdisplayedin
figure3. A shadedoximpliesa portaccessn the corresponding
cycle. Differentbox shadingsareusedto differentiatebetweerthe
productionor consuptionof separatelatatokenson a singledata
port.

4. ALGORITHMS

In this sectionwe discusghealgorithmsthatarenecessaryo cal-
culateall parameterdor the efficient generationof the the addi-
tionaltop level gluehardwareasshavn in figure 1. Thisincludesa
controllerthat suppliesindependeninitialization andpausingsig-
nalsfor eachbuilding block. Furthermorejnterfaceshave to be

fqydce': loiriziasiaisie)7zisioitoinniteis

crock UL UUnUUdue

RESET | Li

INPUT
[}

HEHE o B B PO S B e T S
outPuTh————(C ¢ loi ¢ 1 3 o
I e e e

)

Iteration Period

Figure 3: Waveforms of DFIR2 Filter Architecture
generatedhat containFIFO registersfor mismatchediming pat-
ternsand unbalancedneging paths. If a data-flav edgecontains
initial values,the correspondingnterfacesalso have to provide
thesevaluesheforethefirst valid outputsampleof thefeedingblock
is available.

All algorithmic stepsare demonstratedising the simple example
systemwhosesynchronouslataflow graphmodelis depictedin
figure 4 a). This systemcontainstwo dovnsamplingfilter blocks
DFIR1andDFIR2. Thel/O schedule®f thearchitectureshatare
usedto implementthe data-flav actorsaredepictedin figure 4 b)
and4 c). Thel/O scheduleof block DFIR2 hasalreadybeendis-
cussedn section3.2.

a) Synchronous Data-flow Graph of Example System

SIG_1
[—— DFIR1 =~

1 4

— >

DFIR2

N
[any

TL

RTL R
b) I/O Schedule DFIR1 c) /0 Schedule DFIR2

01 2 01 23 456
wu N2+ oo N T AN
Output .&. e Outputl I I I I I- .

Figure4: Example System
4.1 Block Pausing

The first stepin analyzingthe RTL systemcommunications to

determinghe minimumsysteniteration periodandthe numberof

clock cycles eachbuilding block hasto be pausedn this period.
Theminimumsystemiterationperiod Ig‘,'sn describeshe minimum
numberof clock cyclesthe RTL systemrequiresfor one system
iteration. This value also marksthe upperthroughputbound of

the RTL systemarchitecturewith the given building blocks. To

caIcuIateIQ;,'S“, we first have to determinethe numberof iteration
periodseachblock goesthroughduring onesystemiteration. This

informationcanbeextractedirom thesynchronouslata-flav graph
[4].

Let qysor denotethe numberof timesnodeN:" is activated per
systemiterationperiod,thenwe have to determinevaluesfor Onsor

whichfulfil thesetof equationgyivenby

rqg=0 @

where0 is avectorfull of zeros g is therepetitionvectorandr is
the topolagy matrix of the synchronouslataflow graph. Now we
areableto calculatethe minimumsystemiterationperiod
min SDF .

lsys = VN?D??N (Inode(N?™) ai) (3
Pleasenotethatary systemiterationperiodcanbe choserdepend-
ing onthesystenthroughputequirementsslongastheminimum
systemiterationintenal is not violated. If the numberof cycles
anodeN?P™ requiresfor ¢ actvationsis smallerthanthe system
iterationperiod,thecomponenhasto be pausedor

PINFP) = Isys — 1(NF) Onysor 4)

cyclesin eachsystemiteration. This measurehasto betakenin
orderto achieve a globalperiodicity consistency

In the examplesystemdepictedn figure 4, block DFIR1 hasto be
activatedthreetimeseachsystemniterationwhile DFIR2 only needs
to beactivatedonce. This leadsto aminimumsystemiterationpe-
riod of IQQ,'S” = 12. Whenchoosingthe minimum systemiteration

period,block DFIR2 hasto be pausedor 5 clock cycleseachsys-
temiteration.

4.2 Schedulingby Retiming

For the generatiorof the controller we have to schedulehe build-
ing block activations. This involvesthe determinatiorof the blodk
initialization timetyo(NS°F), which denoteshenumberof clock cy-
clesthatelapsebetweersysteminitialization andtheinitialization
of the building block thatimplementsdata-flav actor N°F. Fur
thermore we have to determinea mappingfor the p(Ns°F) pause
cyclesto the I/O scheduleof the building block. In this paper we
usearetimingapproach5] to performthis schedulingask.

In the following, we will demonstratéow to constructa directed
retiminggraph GRE™ from the dataflow input systemspecification
thatrepresentshe periodiccommunicatiorof the system.On this
graphrepresentationetimingwill be performed.

4.2.1 PhasePartitioning

TheretiminggraphG~&™ = (AR, £7¥") is adirectedgraph,where
eachnodeN~®T standsor a phaseof ablock I/O schedulghathas
to bescheduledSothefirst stepin constructingheretiminggraph
is to find a phasepartitioningfor eachbuilding block that reflects
the schedulingpossibilitiesfor this block. Here,we have to differ
betweertwo cases

¢ Unpauseduilding Blocks p(N*°F) = 0
The 1/0 scheduleof theseblocks only consistsof one phase,
since only the block initialization time hasto be determined.
Thisis thecasefor block DFIR1in figure4.

Cycle g 0 11 21 3% 4i 5! 6: 0
Index H H H

Input

Output

Phase

Figure 5: PhasePartitioning of Block DFIR2

e PausedBuilding Blocks p(NS°F) # 0
In thesecaseswehaveto determineapausemappindn addition
to theblockinitializationtime. Soa phasepartitioninghasto be
foundthatreflectsall possiblepausecycle mappingsThisphase
partitioningis doneby iteratingthroughthe g timesreplicated
I/0 scheduleof the pausedbuilding blocksandcreatinga nev
schedulephasedor eachport accessycle
For block DFIR2 in the examplesystemof figure 4, this results
in the phasepartitioningdepictedin figure5. Thel/O schedule
of DFIR2 is partitionedinto five phaseghat separatets port
accesgycles. Pleasenotethatthe OUTPUT port is registered,
whichmeanghatthe portaccesgycle of theoutputdatasample
is cycle 3.

4.2.2 Constructionof RetimingGraph

Thesetof retimingnodesn(RET is composedf theblock schedule
nodesand an initialization node NTE' that representghe system
initialization. The nodesare connectedy a setof retiming edges
ERET. Theretiming edgesER®" € ERFT arerepresentetdy ordered
pairsof retimingnodesE"®" = (NFT, NF¥T). All retimingedgesare
labeledwith theedgedelaysD(ER®") andthe edgewidthsw(ERET).
TheedgesetERET canbe partitionedinto threesubsets

e ScheduleedgesERET

A scheduleedgeE[*T(N°®F) € £3°T standdor adirectsequential
dependencbetweerntwo phaseof anl/O schedule All sched-
ule nodesof a building block NSPF are cyclically connectedy

scheduleedgedo reflecttheperiodicexecutionof thel/O sched-
ule phasesThedelayof a schedulesdgerepresentshe number
of pausecyclesthatareplacedbetweertheschedulehasesep-

resentedy the connectedhodes.The width of a scheduleedge
is alwayszero.

e Datatransferedgesef®"
A datatransferedgeE["(E>>) = (N¥", N¥") standsfor adata

token transferbetweenthe I/O schedulgphasegepresentedy
nodesN" and NJ-RET. Here, the edgedelay denotesthe delay

betweenrthe productionof a datatoken from the feedingblock

port i (ES®F) ontoedgeE="" andits consumptiorfrom the con-

sumingblock port 0,(E3"F). Thewidth of a datatransferedge
representtheword lengthof thedataitemsthatarebeingtrans-

fered.Pleasenotethatinitial valuesassignedo adata-flav edge
leadto acyclic shiftin theconsumingetimingnodecorrespon-
dence.

o Initialization edgesERET

nit
An initialization edge ERTT(NS®F) = (NRFT,NG=T(N)) repre-
sentsthe sequentiadependenc betweensysteminitialization
andthe first schedulephaseof block NS°F. The delay of these
edgegepresentheinitialization time of block N*°F, sowe can
write
tro(N°*F) = D(EFT(N*)) (®)
Thewidth of theseedgesds alwayszero.
Figure 6 depictsthe retiming graphof the examplesystemfrom
figure4. Here,thenodelabel DFIRI_j representshe j-th schedule
phaseof block DFIRI. Initialization edgesandscheduleedgesare
solid, while datatransferedgesaredotted.

For retimingwe arbitrarilychooseaninitial systenschedulavhere

Figure 6: Retiming Graph of Initial Setup

all building blocksareactivatedat systeninitializationtime. Sothe
edgedelayfor all initialization edgess zero. Furthermorewe in-
sertall pausecyclesat the endof the gysor block iterationswithin
eachsystemiterationperiod. This implies thatthe scheduleedge
which connectshe last schedulephaseof eachblock NSPF to the
first schedulgphasehasa delayof p(NS°F), while all othersched-
ule edgedelaysarezero. Theinitial datatransferdelayof thei-th
datatransferover edgeES™* is givenby

{i +C

D(EiRET(ESDF)) = rout J |OLI + I»l(()ll'_,’t_z) mod row

i in in
- \‘WJ I - IJ'I mod N (6)

wherer"/r°" representthe datarateof the edgeinput/outputport
while 1'"/1°% standfor theiterationperiodof the edgeinput/output
node. The vectorspi"/fi°4 denotethe port timing patternsof the
edgeinput/outputports.

For theexamplesystenin figure4, this resultsin the patterncorre-
spondencen SIG_1 asdepictedn figure7.

Output
DFIR1

Input
DFIR2

5 pauscycles
System
Init

Figure 7: Initial Communication over EdgeSIG_1

4.2.3 RetimingFormulation

Basedntheretiminggraphconstructedn theprevioussectionthe
retiming problem([5] canbe formulated. A retimingis a labeling
of the retiming graphverticestt : N*" — Z, whereZ is the set

of integers. The delay of a retiming graphedgeatfter retiming is
denotedby Dr(ERET) andgivenby
Dr(E™*) = m(no(E™")) + D(E™) —m(ni (™)) (7)

wheren;(ER®") denoteshe startretiming node of edgeE"*" and
No(E"ET) marksthe end retiming node of this edge. The retim-
ing label T((NRET) of a retiming node NRET representshe number
of delaysmoved from its outgoingretiming edgego its incoming
retimingedges.
It is ourobjective to minimizethedatatransferdelayweightedwith
thewidth of thetransferedlatatokens,in orderto reducenterface
registercost. A retiming T(N®") = 1 on retimingnodeNF&T con-
tributesanincremenif AC(NFET) to the costfunction
'EEET(NRET) Zg{uET(NRET)
AC(NRET) — z W(ERET) _ z W(ERET) (8)

Here, E5F(NT) representshe setof incoming retiming edges,
while Z55 (NRET) standdor thesetof outgoingretimingedgeswith
respecto retimingnodeNRE", Pleasanotethatall schedulendini-
tializationedgesarezerowidth, sinceno costis causedy pausing
a building block or delayingits initialization. Whenformulating
theretimingasanILP problem,the objective functionto be mini-
mizedis givenby
VNRETGNRET
min z AC(NFET)TI(NRET) 9)

In orderto achieve a valid retiming, it hasto be ensuredhat the
retiminggraphedgedelayafterretimingdoesnotbecomenegative.

T(ni (E*)) —T(no(E™)) < D(E™) (10)

The ILP problemgiven by equations9 and 10, resembleghe un-

constrainednin-arearetiming problemasformulatedin [5]. The

dualof this ILP problemis a min-costflow network problemwhich

canbesolvedefficiently in polynomialtime [3]. In orderto ensure
feasibility of theretimingILP problem,it hasto beguaranteethat
the sumof delaysalongall cyclesin theretiminggraphis smaller
or equalzero.

4.2.4 RetimingSolution

After solvingtheretimingproblemformulatedin sectiord4.2.3,we
areableto determineall datathatis necessaryo generatehere-
quiredadditionalhardware. Theblockinitializationtimesaregiven
by theinitialization edgedelaysDn(ERET(NS°F)) asshavn in equa-
tion 5. The pausecycle mappingcandirectly be derived from the
scheduleedgedelaysDr(EF®"(N5°F)). The numberof registersre-
quiredto implementthe FIFO buffer on a dataflow edgeis given
by the maximumnumberof overlappingtokentransfers By mini-
mizing thedelaysof thesetransferdn theretimingtransformation,
the maximumoverlapis tremendouslyeducedccomparedo exist-
ing approaches.

The patterncorrespondencen SIG_1 of theretimedexamplesys-
temin figure4 is shavnin figure8. Block DFIR2is initialized one
clock cycle aftersysteminitialization. Onepausecycle wasmoved
betweenphase3 and phase4, while two pausecycle were place
betweenphase4 and phase5. In this schedule no registersare
requiredon edgeSIG_1 sinceno datatransferoverlaptakesplace.

System
Init

Output
DFIR1
nput | N T T2 TR L
DFIR2 | P11 _todd kL, § I
phzlpna’ 3
Delayed pause
Block mapping

Activation

Figure 8: Retimed Communication over Edge SIG_1

5. EXPERIMENTAL RESULTS

Tablel shavs the codegeneratiorcostfor differentdesignsHere,
C denotesthe total numberof one bit wide registersusedin the
interface FIFOS, while AA representshe areaoverheadimposed
by the generateatontrollerandinterfaces.Theretimingbasedap-
proachpresentedn this paperis comparedo two otherschedul-
ing methods. Approach[1] performsperiodicity adjustmentoy
arbitrarily insertingthe pausecyclesinto the building block 1/0
scheduleswhile initialization time andregisterplacements deter
minedusinga shortestpathalgorithmon a timed graph. Further
more,aschedulavith minimumregistercostwasdeterminedising
abranch-and-bounalgorithm.Dueto thelargesearctspaceof the
schedulingoroblemthis methodleadsto intolerableruntimes.

In theCarriersynaesigntheretimedschedulingesultsn aninter
faceregistercostreductionby a factorof 8 comparedo approach
[1]. Although the optimum solutionis not reachedthe increase
in areaoverheadis just 0.8%. In designDmodFX, the retiming
approacheadsto an optimumsolutionwith an areaoverheadof
0.6%. In thelattice design,interfaceregistercostwasreducedoy
two ordersof magnitudecomparedo approachl]. It isinteresting
to noticethatapproacH1] couldnotfind a feasiblesolutionin the
Triplefeedbacldesign,dueto thefixed pausdocations.

In generalwe cansaythattheretimingbasedcodegeneratiorap-
proachproducesvery efficient designsn polynomialtime thatare
closeto the optimumsolution.

: Appr. [1] Retiming |[Optimum
Design C | AA C | AA C |
Carriersync 42 | 11.9%| 5 | 4.0% || O | 3.2%
DmodFX 448 | 185% | 0 | 0.6% || O | 0.6%
Lattice 3832 - 36 - 12 -
Tiplefeedback infeasible 24 - 11 -
| C = InterfaceRegisterCost,AA = Aints cortr /Ablocks |

Table 1: Experimental Results

6. SUMMARY

In this paperwe presente@nHDL codegeneratiorapproachirom
synchronouslataflow graphsthat enableshe seamles$uilding
block baseddesignof data-flav orientedsystems.After mapping
purelyfunctionaldata-flav actorsto RTL building blocksfrom an
existing library, additionalinterfacingand controlling hardwareis
createdo integratean efficient RTL top level architectureBy em-
ploying a retimingtechniqueto minimize datatransferdelays the
interfaceregistercostis significantlyreduceccomparedo existing
approaches.

7. REFERENCES

[1] J.Horstmannshéf T. Grotker, andH. Meyr. MappingMultirate Dataflav
to Complex RT Level HardwareModels.In ASAR IEEE, 1997.

[2] M. HuntandJ. Rowson. Blocking in a systemon a chip. IEEE Spec-
trum, November1996.

[3] E.Lawler. CombinatorialOptimization:NetworksandMatroids Rine-
hart& Winston,1976.

[4] E.LeeandD. MesserschmittSynchronouslataflow. Proceeding®f

the|EEE, Septembef987.

C. LeisersonF. Rose,andJ. Saxe. Optimizing Synchronou<€ircuitry

by Retiming. In Proceeding®f the 3rd Calted Confeenceon VLS|,

pages37-116.ACM, 1991.

[6] H.Meyr, M. Moeneclag andS. Fechtel.Digital CommunicatiorRe-
ceives. JohnWiley andSons,1998.

[7] SYNOPSYSCOSSARIlod Diagram Editor Users Guide 1999.

[8] M. C.WilliamsonandE. A. Lee. Synthesiof Parallel Hardware Im-
plementationfrom Synchronou®ataflav GraphSpecificationsNovem-
ber3-61996.

[9] P. Zepter T. Grotker, and H. Meyr. Digital Recever Designusing
VHDL Generationfrom Data Flow Graphs. In Proc. 32nd Design
AutomationConf, June1995.

5

—

	Main
	DAC00
	Front Matter
	Table of Contents
	Session Index
	Author Index

