
Efficient Building Block Based RTL Code Generation from
Synchronous Data Flow Graphs

Jens Horstmannshoff
Integrated Signal Processing Systems

RWTH Aachen, Germany

Heinrich Meyr
Integrated Signal Processing Systems

RWTH Aachen, Germany

ABSTRACT
This paper presents a RTL-HDL code generation from synchronous
data-flow graphs which supports the building block based design of
data-flow oriented ASIC systems. Here, additional interfacing and
controlling hardware is generated to adapt non-matching interfac-
ing properties. In order to reduce interface register cost, a retiming
approach is taken to schedule optimum building block activation
times. The code generation methodology is compared to an exist-
ing approach using different case studies.

1. INTRODUCTION
As the complexity of todays application specific integrated circuits
steadily increases, a building block based design methodology is
established in order to meet aggressive time-to-market constraints
[2]. Here, the design is partitioned into several functional units
called building blocks. Each functional building block is indepen-
dently implemented using different paths to implementation. Even-
tually, all blocks are combined into the desired system architec-
ture. Due to the increasing block reuse the I/O properties of con-
nected building blocks might be non-matching, requiring the sys-
tem designer to create additional interfacing hardware to combine
all blocks into an operable system.
A very efficient way, of automating the seamless development of
building-block based data-path oriented ASIC designs is RTL-HDL
code generation from synchronous data-flow graphs as depicted in
figure 1. Synchronous data-flow graphs [4] are widely used for
algorithm design of data flow oriented designs like wireless digi-
tal receiver structures [6]. At this level of specification, no notion
of time is present which enables fast algorithmic simulation. In
the course of the code generation, the purely functional data-flow
actors are mapped to complex RTL building blocks that are taken
from a library. Due to the possibly non-matching interfacing prop-
erties of the blocks, additional interfacing and controlling hardware
has to be generated to compose all blocks into an operable system.
Here, the interfaces contain FIFO queues to adapt non-matching
data-transfer pattern and provide initial values in the system startup
phase. The controller provides independent enable signals for each
building block.
In this paper, we present an RTL-HDL code generation from syn-
chronous data-flow graphs that supports the building block based
design of data-flow oriented ASIC systems. Here, a retiming ap-
proach is used to schedule building block activations which leads
to a tremendous reduction in interface register area compared to
previous work [1].
The paper is organized as follows: Section 2 summarizes the exist-
ing HDL code generation approaches from synchronous data flow
representations. In section 3, the input specifications for our HDL
code generation are presented. Section 4 discusses the algorithms
involved in the code generation . Finally, some experimental results
are shown in section 5.

2. PREVIOUS WORK
Several approaches of generating hardware from synchronous data
flow graphs are known to date. In [8], portions of the data flow
graph are grouped into hardware execution units for which asyn-
chronous communication is generated. Here, the granularity of the
actors is restricted, so the desired combination of complex building
blocks is not supported.
In [9], a library based HDL code generation method is presented
that enables the integration of more complex building blocks. This
approach, however, is strongly restricted concerning the I/O prop-
erties of the building blocks. Each block is assumed to read and
write samplesequidistantly, meaning that a fixed number of clock
cycles elapses between each sample being read or written. This
assumption is not valid for a vast number of building-block archi-
tectures which are integrated in todays communication systems.
The code generation approach presented in this paper is based on
the work discussed in [1], where the building blocks are allowed
to have arbitrary periodic port access patterns. Here, a straightfor-
ward approach is taken to generate the additional interfacing and
controlling hardware, which can lead to a high overhead in inter-
facing registers. In this paper we will present a code generation
approach that tremendously reduces this overhead.

A
1 2 2 1

1

1

E1

E4

C

B

1

1 11

1

E2

E3

 Synchronous Data-Flow Graph

A C

B
RTL System Architecture

RTL

RTL

RTLSIG2
SIG1

SIG3

SIG4

HDL Code Generation

Interface

Interface

Controller

Interface

FIFO

Initial Values

M
u

x

Figure 1: Code Generation Scenario

3. INPUT SPECIFICATION
3.1 Synchronous Data-flow Graphs
At the algorithmic level, the system is represented by a synchronous
data-flow graph [4][7]GSDF � ���

SDF ��� SDF � , which serves as an in-
put specification for our code generation. In data-flow, a system is
represented as a directed graph, in which the set of nodes

�
SDF

stands for computations, while the set of edges� SDF represents
FIFO channels. These channels queue data values, encapsulated in
objects called tokens, which are passed from the output of one com-
putation to the input of another. To clarify our terminology, figure 2
depicts two nodesNSDF

i andNSDF
j which are connected via edgeESDF.

Each nodeNSDF
i has a number of input portsPin

j
�
NSDF

i
� and output

Permission to make digital/hardcopy of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage, the copyright notice, the title of the
publication and its date appear, and notice is given that copying is by permission of
ACM, Inc. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.
DAC 2000, Los Angeles, California
(c) 2000 ACM 1-58113-188-7/00/0006..$5.00

 E

P (N)1
out�

i N i	
η
 (E)i
	 σ� (E)i

P (N)1
in
	

j
� N j�

η
 (E)
o�σ� (E)o�ζ

ρ

SDF
�

SDF
�

SDF
�

Figure2: Definition of graph terms
portsPout

j � NSDF
i � . So,edgeESDF in figure2 canbe representedby

anorderedpair of portsESDF � � Pout
1 � NSDF

i ��� Pin
1 � NSDF

j ��� , wherethe

input port of this edgeis givenby σin � ESDF � � Pout
1 � NSDF

i � andthe
outputport by σout � ESDF � � Pin

1 � NSDF
j � . To denotethe nodeswith

respectto aconnectededgewe introducetheinputnodeof edgeE
asηin � ESDF � � NSDF

i andits outputnodeasηout � ESDF � � NSDF
j .

In synchronousdata-flow, eachcomponentconsumesandproduces
afixednumberof samplesat its portseachtimeit is activated.This
numberis referredto astheport’s datarater � P � NSDF ��� . Thenum-
ber of initial valuesζ � ESDF� on edgeESDF denotesthe numberof
datatokensthatarewrittento theedgeoutputportσo � ESDF � before
thefirst datatokenis producedby theedgeinputportσo � ESDF � .
3.2 Building Block I/O Model
Thesynchronousdata-flow modelof thesystemcontainsnonotion
of time. Whenthe purely functionaldata-flow actorsaremapped
to RTL architecturesfrom abuilding block library, wehave to map
theblock communicationto a clock cycle truetimescale.This en-
ablesusto performthecommunicationanalysisnecessaryfor HDL
codegeneration.
Thebuildingblocksareassumedtoaccesstheirportsin port timing-
patterns. A port timing patternconsistsof a periodicsequenceof
time steps(specifiedin multiples of clock cycles) at which data
samplesareconsumedor producedat this port. Figure3 depicts
theportaccesswaveformsof a resourceshareddownsamplingFIR
filter architecture,from which the port timing patternscanbe de-
rived.
The durationof onepatternperiodis given by the block iteration
periodandisdenotedby Inode � NSDF � . In figure3 theiterationperiod
is givenby Inode � DFIR2� � 7. During oneblock iteration-period,
the RTL building block consumesandwrites the samenumberof
dataitemsat its portsasspecifiedby the data-ratesof the corre-
spondingsynchronousdataflow model.Inorderto mapthesedata
items to the clock cycle true scheduleof the RTL model,we in-
troducea port time mappingvector �µ � P� for every dataport P to
specify in which clock cycle within the iterationperiod it is ac-
cessed.The j-th elementof �µ � P� representstheclock cycle index
of thefirst valid accessto portportP afterblock initialization. The
DFIR2 block in figure 3, consumesr � INPUT� � 4 datasamples
andproducesr � OUTPUT� � 1 datasamplesperblockiterationpe-
riod. The waveformsof the INPUT andOUTPUT portsin figure
3 aremarked by the index of the currentlytransmitteddatatoken
within theblock iterationperiod. So theport mappingvectorsare
givenby �µ � INPUT� � � 0 4 5 6� T �µ � OUTPUT� � � 4� (1)

In thefollowing, we will graphicallyrepresenttheport timing pat-
ternsby a line of boxes,whereeachboxstandsfor aclockcycle in
theprocessingof theI/O scheduleof thecorrespondingport. Fig-
ure 4 c) shows this representationfor the waveformsdisplayedin
figure3. A shadedbox impliesa port accessin thecorresponding
cycle. Differentboxshadingsareusedto differentiatebetweenthe
productionor consuptionof separatedatatokenson a singledata
port.

4. ALGORITHMS
In thissection,we discussthealgorithmsthatarenecessaryto cal-
culateall parametersfor the efficient generationof the the addi-
tional top level gluehardwareasshown in figure1. This includesa
controllerthatsuppliesindependentinitialization andpausingsig-
nals for eachbuilding block. Furthermore,interfaceshave to be

INPUT

CLOCK

OUTPUT

RESET

Cycle
Index

Iteration Period

0 1 2 3 4 5 6

0 1 2 3

7 8 9 10 11 12 13

0 1 2 3

00

Figure3: Waveforms of DFIR2 Filter Ar chitecture
generatedthat containFIFO registersfor mismatchedtiming pat-
ternsandunbalancedmerging paths. If a data-flow edgecontains
initial values, the correspondinginterfacesalso have to provide
thesevaluesbeforethefirst validoutputsampleof thefeedingblock
is available.
All algorithmicstepsaredemonstratedusingthe simpleexample
systemwhosesynchronousdataflow graphmodel is depictedin
figure4 a). This systemcontainstwo downsamplingfilter blocks
DFIR1 andDFIR2. TheI/O schedulesof thearchitecturesthatare
usedto implementthe data-flow actorsaredepictedin figure4 b)
and4 c). The I/O scheduleof block DFIR2 hasalreadybeendis-
cussedin section3.2.

DFIR1 DFIR2
SIG_1

2 1 4 1

a) Synchronous Data-flow Graph of Example System

b) I/O Schedule DFIR1
RTL

...Input

Output

1 20

...
Input

Output

...1 20 4 53 6

...

c) I/O Schedule DFIR2
RTL

Figure4: ExampleSystem

4.1 Block Pausing
The first stepin analyzingthe RTL systemcommunicationis to
determinetheminimumsystemiterationperiodandthenumberof
clock cycleseachbuilding block hasto be pausedin this period.
TheminimumsystemiterationperiodImin

sys describestheminimum
numberof clock cycles the RTL systemrequiresfor onesystem
iteration. This value also marksthe upper throughputboundof
the RTL systemarchitecturewith the given building blocks. To
calculateImin

sys , we first have to determinethe numberof iteration
periodseachblock goesthroughduringonesystemiteration.This
informationcanbeextractedfrom thesynchronousdata-flow graph
[4].
Let qNSDF

i
denotethe numberof timesnodeNSDF

i is activatedper
systemiterationperiod,thenwehave to determinevaluesfor qNSDF

i

which fulfil thesetof equationsgivenby
Γ �q � �0 (2)

where�0 is a vectorfull of zeros,�q is the repetitionvectorandΓ is
the topology matrix of thesynchronousdataflow graph. Now we
areableto calculatetheminimumsystemiterationperiod

Imin
sys

� max�
NSDF

i ��� �
Inode

�
NSDF

i
� qi

� (3)

Pleasenotethatany systemiterationperiodcanbechosendepend-
ing onthesystemthroughputrequirementsaslongastheminimum
systemiteration interval is not violated. If the numberof cycles
a nodeNSDF

i requiresfor qi activationsis smallerthanthe system
iterationperiod,thecomponenthasto bepausedfor

p
�
NSDF

I
� � Isys � I

�
NSDF

i
� qNSDF

i
(4)

cycles in eachsystemiteration. This measurehasto be taken in
orderto achieve aglobalperiodicityconsistency.
In theexamplesystemdepictedin figure4, block DFIR1hasto be
activatedthreetimeseachsystemiterationwhile DFIR2onlyneeds
to beactivatedonce.This leadsto aminimumsystemiterationpe-
riod of Imin

sys
� 12. Whenchoosingthe minimum systemiteration

period,block DFIR2 hasto bepausedfor 5 clock cycleseachsys-
temiteration.

4.2 Schedulingby Retiming
For thegenerationof thecontroller, wehave to schedulethebuild-
ing block activations.This involvesthedeterminationof theblock
initialization timetro � NSDF � , whichdenotesthenumberof clockcy-
clesthatelapsebetweensysteminitializationandtheinitialization
of the building block that implementsdata-flow actorNSDF. Fur-
thermore,we have to determinea mappingfor the p � NSDF � pause
cyclesto theI/O scheduleof thebuilding block. In this paper, we
usearetimingapproach[5] to performthisschedulingtask.
In the following, we will demonstratehow to constructa directed
retiminggraphGRET from thedataflow input systemspecification
thatrepresentstheperiodiccommunicationof thesystem.On this
graphrepresentation,retimingwill beperformed.

4.2.1 PhasePartitioning
TheretiminggraphGRET � ��� RET ��� RET � is adirectedgraph,where
eachnodeNRET standsfor a phaseof a block I/O schedulethathas
to bescheduled.Sothefirst stepin constructingtheretiminggraph
is to find a phasepartitioningfor eachbuilding block that reflects
theschedulingpossibilitiesfor this block. Here,we have to differ
betweentwo cases� UnpausedBuilding Blocks p � NSDF � � 0

The I/O scheduleof theseblocks only consistsof one phase,
sinceonly the block initialization time has to be determined.
This is thecasefor blockDFIR1 in figure4.

Input

Output

0Cycle
Index

1 2 3 4 5 6 0

Phase 1 2 3 4 5

Figure5: PhasePartitioning of Block DFIR2 PausedBuilding Blocks p ! NSDF "$#% 0
In thesecases,wehaveto determineapausemappingin addition
to theblock initializationtime. Soaphasepartitioninghasto be
foundthatreflectsall possiblepausecyclemappings.Thisphase
partitioningis doneby iteratingthroughthe q timesreplicated
I/O scheduleof the pausedbuilding blocksandcreatinga new
schedulephasefor eachport accesscycle.
For block DFIR2 in theexamplesystemof figure4, this results
in thephasepartitioningdepictedin figure5. TheI/O schedule
of DFIR2 is partitionedinto five phasesthat separateits port
accesscycles. Pleasenotethat theOUTPUTport is registered,
whichmeansthattheportaccesscycleof theoutputdatasample
is cycle3.

4.2.2 Constructionof RetimingGraph
Thesetof retimingnodes& RET is composedof theblockschedule
nodesand an initialization nodeNRET

init that representsthe system
initialization. Thenodesareconnectedby a setof retimingedges' RET. The retimingedgesERET (' RET arerepresentedby ordered
pairsof retimingnodesERET % ! NRET

i) NRET
j

" . All retimingedgesare
labeledwith theedgedelaysD ! ERET " andtheedgewidthsw ! ERET " .
Theedgeset

' RET canbepartitionedinto threesubsets Scheduleedges
' RET

sch

A scheduleedgeERET
i ! NSDF " (' RET

sch standsfor adirectsequential
dependency betweentwo phasesof anI/O schedule.All sched-
ule nodesof a building block NSDF arecyclically connectedby
scheduleedgesto reflecttheperiodicexecutionof theI/O sched-
ule phases.Thedelayof ascheduleedgerepresentsthenumber
of pausecyclesthatareplacedbetweentheschedulephasesrep-
resentedby theconnectednodes.Thewidth of a scheduleedge
is alwayszero. Datatransferedges

' RET
dt

A datatransferedgeERET
i ! ESDF"*% ! NRET

i) NRET
j

" standsfor adata

token transferbetweenthe I/O schedulephasesrepresentedby
nodesNRET

i andNRET
j . Here, the edgedelaydenotesthe delay

betweentheproductionof a datatoken from the feedingblock
port σi ! ESDF" ontoedgeESDF andits consumptionfrom thecon-
sumingblock port σo ! ESDF " . Thewidth of a datatransferedge
representstheword lengthof thedataitemsthatarebeingtrans-
fered.Pleasenotethatinitial valuesassignedto adata-flow edge
leadto acyclic shift in theconsumingretimingnodecorrespon-
dence. Initializationedges

' RET
init

An initialization edgeERET
init ! NSDF "+% ! NRET

init) NRET
0 ! NSDF "�" repre-

sentsthe sequentialdependency betweensysteminitialization
andthe first schedulephaseof block NSDF. The delayof these
edgesrepresentthe initialization time of block NSDF, sowe can
write

tro ! NSDF ",% D ! ERET
init ! NSDF "�" (5)

Thewidth of theseedgesis alwayszero.

Figure6 depictsthe retiming graphof the examplesystemfrom
figure4. Here,thenodelabelDFIRi j representsthe j-th schedule
phaseof block DFIRi. Initialization edgesandscheduleedgesare
solid,while datatransferedgesaredotted.
For retimingwearbitrarilychooseaninitial systemschedulewhere

0

DFIR1_1

DFIR2_1 DFIR2_2 DFIR2_3 DFIR2_4 DFIR2_5

System Init 0

0

0-1
-2 -4

5

0 0 0 0

Figure6: Retiming Graph of Initial Setup

all buildingblocksareactivatedatsysteminitializationtime. Sothe
edgedelayfor all initialization edgesis zero. Furthermore,we in-
sertall pausecyclesat theendof theqNSDF block iterationswithin
eachsystemiterationperiod. This implies that the scheduleedge
which connectsthe last schedulephaseof eachblock NSDF to the
first schedulephasehasa delayof p ! NSDF" , while all othersched-
ule edgedelaysarezero. Theinitial datatransferdelayof the i-th
datatransferoveredgeESDF is givenby

D ! ERET
i ! ESDF "�"-% . i / ζ

rout 0 Iout / µout1
i 2 ζ 3 mod rout

4 . i
r in 0 I in 4 µin

i mod r in (6)

wherer in/rout representsthedatarateof theedgeinput/outputport
while I in/Iout standfor theiterationperiodof theedgeinput/output
node. The vectors 5µin/5µout denotethe port timing patternsof the
edgeinput/outputports.
For theexamplesystemin figure4, this resultsin thepatterncorre-
spondenceon SIG 1 asdepictedin figure7.

Input
DFIR2

...

Output
DFIR1

System
Init

Ph.1 Ph2 Ph3 Ph4 Ph5

Ph.1

...

5 pauscycles

Figure7: Initial Communication over EdgeSIG 1

4.2.3 RetimingFormulation
Basedontheretiminggraphconstructedin theprevioussection,the
retimingproblem[5] canbe formulated.A retiming is a labeling
of the retiming graphverticesπ : NRET 6 Z, whereZ is the set

of integers. The delayof a retiming graphedgeafter retiming is
denotedby Dπ � ERET � andgivenby

Dπ � ERET � � π � ηo � ERET �7�98 D � ERET �;: π � ηi � ERET ��� (7)

whereηi � ERET � denotesthe start retiming nodeof edgeERET and
ηo � ERET � marksthe end retiming nodeof this edge. The retim-
ing label π � NRET � of a retiming nodeNRET representsthe number
of delaysmoved from its outgoingretimingedgesto its incoming
retimingedges.
It is ourobjectiveto minimizethedatatransferdelayweightedwith
thewidth of thetransfereddatatokens,in orderto reduceinterface
registercost. A retimingπ � NRET � � 1 on retimingnodeNRET con-
tributesanincrementof ∆C � NRET � to thecostfunction

∆C � NRET � �=< RET
in > NRET?

∑ w � ERET �;: < RET
out > NRET ?

∑ w � ERET � (8)

Here, � RET
in � NRET � representsthe set of incoming retiming edges,

while � RET
out � NRET � standsfor thesetof outgoingretimingedgeswith

respectto retimingnodeNRET. Pleasenotethatall scheduleandini-
tializationedgesarezerowidth, sincenocostis causedby pausing
a building block or delayingits initialization. Whenformulating
theretimingasanILP problem,theobjective functionto bemini-
mizedis givenby

min @ NRET ACB RET

∑ ∆C � NRET � π � NRET � (9)

In orderto achieve a valid retiming, it hasto be ensuredthat the
retiminggraphedgedelayafterretimingdoesnotbecomenegative.

π � ηi � ERET ���;: π � ηo � ERET ���ED D � ERET � (10)

The ILP problemgiven by equations9 and10, resemblesthe un-
constrainedmin-arearetimingproblemasformulatedin [5]. The
dualof this ILP problemis amin-costflow network problemwhich
canbesolvedefficiently in polynomialtime[3]. In orderto ensure
feasibilityof theretimingILP problem,it hasto beguaranteedthat
thesumof delaysalongall cyclesin theretiminggraphis smaller
or equalzero.

4.2.4 RetimingSolution
After solvingtheretimingproblemformulatedin section4.2.3,we
areableto determineall datathat is necessaryto generatethe re-
quiredadditionalhardware.Theblockinitializationtimesaregiven
by theinitializationedgedelaysDπ � ERET

init � NSDF ��� asshown in equa-
tion 5. Thepausecycle mappingcandirectly bederived from the
scheduleedgedelaysDπ � ERET

i � NSDF��� . Thenumberof registersre-
quiredto implementtheFIFO buffer on a dataflow edgeis given
by themaximumnumberof overlappingtokentransfers.By mini-
mizing thedelaysof thesetransfersin theretimingtransformation,
themaximumoverlapis tremendouslyreducedcomparedto exist-
ing approaches.
Thepatterncorrespondenceon SIG 1 of theretimedexamplesys-
temin figure4 is shown in figure8. Block DFIR2 is initializedone
clockcycleaftersysteminitialization. Onepausecyclewasmoved
betweenphase3 andphase4, while two pausecycle wereplace
betweenphase4 and phase5. In this schedule,no registersare
requiredonedgeSIG 1 sincenodatatransferoverlaptakesplace.

Input
DFIR2

...

Output
DFIR1

System
Init

Ph.1 Ph2 Ph3 Ph4 Ph5

Ph1

...

pause
mapping

Delayed
Block

Activation

Figure8: RetimedCommunication over EdgeSIG 1

5. EXPERIMENT AL RESULTS
Table1 shows thecodegenerationcostfor differentdesigns.Here,
C denotesthe total numberof one bit wide registersusedin the
interfaceFIFOS,while ∆A representsthe areaoverheadimposed
by thegeneratedcontrollerandinterfaces.Theretimingbasedap-
proachpresentedin this paperis comparedto two otherschedul-
ing methods. Approach[1] performsperiodicity adjustmentby
arbitrarily insertingthe pausecycles into the building block I/O
schedules,while initializationtimeandregisterplacementis deter-
minedusinga shortestpathalgorithmon a timed graph. Further-
more,aschedulewith minimumregistercostwasdeterminedusing
abranch-and-boundalgorithm.Dueto thelargesearchspaceof the
schedulingproblemthismethodleadsto intolerablerun times.
In theCarriersyncdesign,theretimedschedulingresultsin aninter-
faceregistercostreductionby a factorof 8 comparedto approach
[1]. Although the optimumsolution is not reached,the increase
in areaoverheadis just 0.8%. In designDmodFX, the retiming
approachleadsto an optimumsolutionwith an areaoverheadof
0.6%. In the latticedesign,interfaceregistercostwasreducedby
two ordersof magnitudecomparedto approach[1]. It is interesting
to noticethatapproach[1] couldnot find a feasiblesolutionin the
Triplefeedbackdesign,dueto thefixedpauselocations.
In general,we cansaythattheretimingbasedcodegenerationap-
proachproducesvery efficient designsin polynomialtime thatare
closeto theoptimumsolution.

Appr. [1] Retiming OptimumDesign
C ∆A C ∆A C ∆A

Carriersync 42 11.9% 5 4.0% 0 3.2%
DmodFX 448 18.5% 0 0.6% 0 0.6%
Lattice 3832 - 36 - 12 -

Tiplefeedback infeasible 24 - 11 -

C � InterfaceRegisterCost,∆A � Aint&contr F Ablocks
Table1: Experimental Results

6. SUMMARY
In thispaper, wepresentedanHDL codegenerationapproachfrom
synchronousdataflow graphsthat enablesthe seamlessbuilding
block baseddesignof data-flow orientedsystems.After mapping
purelyfunctionaldata-flow actorsto RTL building blocksfrom an
existing library, additionalinterfacingandcontrollinghardwareis
createdto integrateanefficientRTL top level architecture.By em-
ploying a retimingtechniqueto minimizedatatransferdelays,the
interfaceregistercostis significantlyreducedcomparedto existing
approaches.

7. REFERENCES
[1] J.Horstmannshoff, T. Grötker, andH. Meyr. MappingMultirateDataflow

to Complex RT Level HardwareModels.In ASAP. IEEE,1997.
[2] M. Hunt andJ. Rowson. Blocking in a systemon a chip. IEEE Spec-

trum, November1996.
[3] E.Lawler. CombinatorialOptimization:NetworksandMatroids. Rine-

hart& Winston,1976.
[4] E. LeeandD. Messerschmitt.Synchronousdataflow. Proceedingsof

theIEEE, September1987.
[5] C. Leiserson,F. Rose,andJ.Saxe. OptimizingSynchronousCircuitry

by Retiming. In Proceedingsof the3rd Caltech Conferenceon VLSI,
pages87–116.ACM, 1991.

[6] H. Meyr, M. Moeneclaey, andS.Fechtel.Digital CommunicationRe-
ceivers. JohnWiley andSons,1998.

[7] SYNOPSYS.COSSAPBlock DiagramEditor Users Guide, 1999.
[8] M. C. WilliamsonandE. A. Lee. Synthesisof ParallelHardwareIm-

plementationsfromSynchronousDataflow GraphSpecifications.Novem-
ber3-61996.

[9] P. Zepter, T. Grötker, and H. Meyr. Digital Receiver Designusing
VHDL Generationfrom Data Flow Graphs. In Proc. 32nd Design
AutomationConf., June1995.

	Main
	DAC00
	Front Matter
	Table of Contents
	Session Index
	Author Index

