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Predicting Coupled Noise in RC Circuits By Matching 1, 2, and 3 Moments
Bernard N. Sheehan, Mentor Graphics

Abstract
This paper develops the noise-counterparts to familiar delay
formulas like Elmore or PRIMO.  By matching the first few
moments of the network’s transfer impedance, we  obtain efficient
and accurate predictions for maximum noise between two
capacitively coupled RC networks.  Unlike many crosstalk
equations in the literature, the method applies to general
topologies and models transition-time dependence as well.
Efficient enough for large circuits, the moment-matching noise
formulas developed here can serve as a key ingredient in CAD
methodologies that ensure a layout is free of noise problems.

Introduction
Capacitively coupled noise can sabotage a deep sub-micron

design, if not properly managed [1].  There is a clear need for
efficient, accurate analysis of crosstalk, including its impact on
timing[2].  On the one hand, some papers--[3][4][5][6]--propose
formulas that predict or bound noise, but these papers usually
postulate a simple topology, often coupled T networks.  At the
other extreme are papers that invoke the machinery of circuit
simulation or general N-port reduction[7][8][9].  We seek a middle
way— more general than the former, more efficient than the
latter— that computes noise by matching the first few moments of
the transfer function from aggressor to victim.

Consider the coupled RC networks in Figure 1. Our goal is to
estimate peak noise— in closed form, without simulation--at each
victim receiver, like R, due to a transition of the aggressor’s driver
d.  We want to estimate how crosstalk varies from receiver to
receiver depending on actual layout, and how it varies with the
rise or fall time ∆ of the aggressor’s source.

An important application of peak noise is in calculating  worst
or best case delay in the presence of coupling.  This is done by
translating the timing threshold by an amount equal to the peak
noise amplitude, as described in [7].

We solve the noise problem by analogy with familiar delay
formulas like Elmore and, more recently, PRIMO and h-gamma,
that are based on moment matching [10][11][12].  Whereas these
delay formulas are based on the first several moments of the
transfer function from driver to receiver on the same net, we
develop analogous equations for noise based on the first several
moments of the transfer function from the aggressor driver to a
victim receiver.  The resulting crosstalk formulas are quite
general, tolerably accurate, and very efficient.

2. Coupled Circuit Equations
The nodal equations for a pair of coupled RC networks like

those in Figure 1 can be written in block form as
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The matrix partitions correspond to the aggressor and victim
nets. Blocks C11 and G11 are the capacitance and conductance
matrices of the aggressor and V1(s) is the Laplace transform of net
1’s nodal voltages.  C22 G22 and V2(s) are the corresponding
quantities for net 2 (the victim net).  Normally, C11 and C22 are
diagonal.  Block C21 and CT

21 constitute the coupling between the
nets.  Jd(s) is the Laplace transform of the current source at d,
VR(s) the transform of the noise voltage at R.  Unit vector ed has 1
in the row corresponding to the nodal equations for node d where
the driver is attached; unit vector eR has a 1 in the row
corresponding to the receiver’s nodal voltage.  The driver
conductance gd is included in G11; the conductance of the
quiescent victim driver, gD, is included in G22.
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Figure 1 Two coupled RC Networks

3. Moment Calculation
We are interested in calculating the initial coefficients in the

expansion of the transfer impedance
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where z0 is absent because there is no dc connection between the
two circuits.  We will first show how to calculate the z’s, which
are called moments, and then we will show how to estimate
coupling noise using these moments.

To derive expressions for the moments, expand the nodal
voltage vector in powers of s
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The superscripts denote the term in the Taylor’s expansion and the
subscripts denote the block.  Substituting (3.2) into (2.1) and
equating powers of s gives us the recurrence relations
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with initial conditions
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Clearly (3.3) and (3.4) can be solved for as many terms as desired,
provided 11G and 22G are nonsingular.  We get the moments of

(3.1) by taking the R’th components of )(
2
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)(

2
kT

Rk Vez = (3.5)

The above equations are general, applying to any topologies
for the coupled nets.  If either or both of the nets are trees,
however, the inversion of 11G (or 22G ) simplifies considerably.
For a tree, the conductance matrix can be factored in linear time
without introducing fill.  In fact, for trees it is possible to replace
equations (3.3)-(3.5) by the calculation of a number of
‘generalized’ Elmore delays.  See [13] for details.

We remark that while z1 and z3 are normally positive, z2 is
negative (this is due to the minus sign in (3.3) and the fact that the
entries of C12 are all negative).

4. Moment Matching
Having explained how the first several moments of the

transfer impedance can be calculated, we return to our primary
task of considering how these moments can be used to predict
coupling noise.

The general procedure for predicting noise or delay from a set
of moments is this.  First, judiciously select a family of functions

)(),...,( 1 sFF mpp=  with parameters p1,… ,pm. The
parameterized form F is chosen so that the inverse

transform [ ]FLtf 1)( −≡  has a shape similar to the expected
impulse responses of actual circuits.  Next, calculate values for the
parameters so that the Maclaurin series of F(s) has the same initial
coefficients as ZRd(s); in other words, match moments.  Finally,
for a given source Jd(s), take the noise or delay of the approximate

waveform [ ])()()(ˆ 1 sJsFLtv dR
−≡  as an estimate for the

noise or delay of the true waveform.

5. Admissible Forms
In what follows we require our parameterized forms to satisfy

the following properties.
Definition. A trial function f(t) is admissible if:
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0,0)( (c) <= ttf
00)( (d) ≥≥ ttf

Conditions (a) and (b) are normalization conditions, (c) expresses
causality, and (d) captures the feature of RC circuits that the

impulse response is non-negative [12].

Let a
i Sf ∈ be an element from the class aS  of all

admissible functions.  Then
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where Fi(s) is the Laplace transform of fi.  In other words, from
any admissible function we can form an expression that matches
the first two moments of ZdR(s).  The quantity 1212 zz−≡τ in
(5.2), being positive with dimensions of time, can be though of as
a coupling time constant from d to R.

We now develop coupled noise estimates based on matching 1,
2, or 3 moments.

6. One Moment Noise Estimate
The one moment noise estimate can be derived by an abstract

argument that shows the result to be independent of the particular
matching form used.  Indeed, let fi be any admissible form.  For
simplicity, assume that the driver is a Norton circuit with a
saturating ramp current source:

2

1
)(

s
e

VgsJ
s

DDdR ∆
−=

∆−

(6.1)

∆ is the rise time of the ramp. The response of (5.2) to JR(s)  can
be shown to be
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In general, because of admissibility properties (a) and (b), we
infer that

12
1max  if ,ˆ τ>>∆

∆
≈ zVg

v DDd
R (6.3)

for any admissible fi, since the maximum value of the integral in
(6.2) for 12τ>>∆ will always be approximately (but somewhat
less than) 1.  Expression (6.3) is a one moment estimate for max
noise, since it uses only z1; it is valid for driver transition times ∆
that are large relative to the coupling time constant

1212 zz−=τ .  A refined argument in [13] shows that the
actual peak noise satisfies the bounds
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Equation (6.3) is equivalent to the result in [14], but [14] does not
develop the validity condition 12τ>>∆ .

7. Two Moment Noise Estimate
To match 2 moments, perhaps the simplest form is
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which is the Laplace transform of tetf −=)(1 .  It is

straightforward to show that )(1 tf satisfies properties (5.1) and
is therefore admissible.

Substituting ue −  for )(uf i in (6.2), we get for the noise due

to ramp source (6.1)
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The peak noise occurs at ∆=t :
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This two moment formula for noise is derived in [13] by a
different method that attempts to estimate the error or uncertainty
in (7.3).

8. Three Moment Noise Estimate
To match three moments, we must use a form with one

parameter.  We consider a two pole and a gamma function.
Consider first the admissible two pole form:
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where .1≤x  We motivate (8.1) by suggesting that the factor

with τ+, say, captures in some way the average response from the
driver to the coupling capacitors and τ- captures the response from
the coupling capacitors to the receiver.

The scaled function ( )12
)(

1
)( )( zszsFzsZ xx −=

matches the first three moments z1, z2, and z3 provided we choose
x so that
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Evidently, (8.1) can match z1, z2, and z3 only if 2
213 zzz is in the

range [3/4, 1].  Experience shows that this restriction is rarely a
problem in practice; see section 9 below.

The moment matching procedure is as follows.  Assuming
2
213 zzz is in the range [¾, 1], compute x from (8.3) and then

compute the maximum value of
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For a step input (i.e. sVgsJ DDdR =)( ), we get
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the quantity on the right varying from 2/e for x=0 to 1 for x=1.
For finite ramp inputs, the maximum of (8.4) requires solving a
transcendental equation numerically.  Efficient methods of

approximation are possible, but we omit details.
An alternative to (8.1) is the trial form,
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whose inverse Laplace transform is the gamma function kernel

)(/1 yety ytyy Γ−− (8.8)
This function has already been used in PRIMO and h-gamma for
calculating delays; we want to see if it works also for crosstalk.

It is easy to show that (8.8) is an admissible function, and that

( )12
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While equation (8.9) can be solved for y given any positive

numbers z1, -z2, and z3, in practice we restrict 2
213 zzz to the

range (0.5,1]:  this keeps the step response finite at t=0.
The procedure for getting peak noise is the same as before.

Assuming 2
213 zzz is in the range (0.5,1], we compute y from

(8.9), and then compute the maximum of
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For finite rise-times (i.e., 0>∆ ), (8.10) doesn’t apply and we

must solve a transcendental equation numerically to get max
Rv .

9. Numerical Verification
In this section we test the adequacy of our noise estimates

against a diverse set of 400 coupled RC networks.  The set
includes various net topologies, coupling lengths, positions of
coupling along the two nets, like and opposed signal directions
(opposed meaning that if two nets run horizontally and net 1’s
driver is at the left of its trace, then net 2’s driver is at the
opposite, right end of its trace).  The set also includes an
assortment of internal resistances for both aggressor and victim
drivers.  The traces are all on layer 4 using 0.18µm process
technology.  To show our theory under the least flattering
circumstances, we use a step current source (∆=0) for the
aggressor’s driver.

For even greater comprehensiveness, we evaluate the test set
using three sizes (scalings) for the nets.  First, we simulate the set
with the nets having their original sizes (100-200µm); this scaling
represents local interconnect.  Next we increase the lengths of all
traces by a factor of 10 while keeping everything else (driver
characteristics, metal cross-sections, topology) the same.  The
resulting 1000-2000µm long nets are indicative of interconnect
within a major functional block.  Finally, we increase net lengths
by a factor 100.0, resulting in nets 1-2cm long that represent
global interconnect.
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Figure 2.  Simulated test set. Ordinate

is )/( 2
2
1

max zzVgv DDdR− ; abscissa is 2
231 zzz

Figure 2 plots simulated max
Rv  versus 2

231 zzz  for each

scaling.  All crosstalk values are normalized by

( )2
2
1 / zzVg DDd− .  For comparison, (8.5) and (8.10) are drawn

as solid and dotted lines, respectively.
We make the following observations.  The one moment

formula (6.3), of course, is totally unserviceable for step inputs,
it’s prediction being infinite.  Because the normalization factor is
the limit of (7.3) as 0→∆ , the two moment formula (7.3)
predicts 1.0 for all cases in Figure 2.  With few exceptions, actual
noise is 0.7 to 0.9 times the two moment prediction. Of the three
moment formulas, (8.5) is quite accurate for small to medium
sized circuits and is clearly superior to (8.10).

Bear in mind that Figure 2(c) is an exceedingly harsh

example: in practice it is not likely (or at least not advisable) to
have two global nets run in adjacent channels across the chip; nor
will the driver in practice make a step transition.  Despite these
exacerbating conditions, (8.5) is still accurate to within about 30%
of the true peak noise.

For the global circuits of Figure 2(c),  the problem is not so
much that (8.5) is deficient as that, in general, crosstalk for such
circuits cannot be predicted accurately from any 3-moment
formula.  In this regime crosstalk just doesn’t have a clean
functional dependence on only z1, z2, and z3.

10. Conclusion
The arguments and data in this paper, we feel, suggest that

two and three moment formulas for crosstalk, like those for delay,
can well serve as the CAD workhorse whenever efficiency is a
premium and accuracy is not.  Significantly more efficient than
simulation, both two and three moment formulas apply to a wide
range of net topologies, net sizes, driver strengths, and transition
times.  In our tests, neither formula erred by more than about 30%,
with the 3-moment calculation being significantly more accurate
than this except for the largest nets.  By contrast, noise based on
one moment, while fine for small nets, is restricted by the need for
transition time to exceed the coupling time constant.  The two and
three moment formulas do not have this restriction.
                                                            
1 K. L. Shepard, “Design Methodologies for Noise in Digital

Integrated Circuits,” DAC 98,pp. 94-99.
2 p. Gross, R. Arunachalam, K. Rajagopal, L. Pileggi,

“Determination of Worst-Case Aggressor Alignment for Delay
Calculation,” ICCAD 98, pp. 221-19.

3 G. Yee, R. Chandra, V. Ganesan, and C. Sechen, “Wire Delay in
the Presence of Crosstalk,”, TAU 97.

4 T. Stohr, M. Alt, A. Hetzel, J. Koehl, “Analysis, Reduction, and
Avoidance of Crosstalk of VLSI Chips,”, ISPD 98.

5 H. Kawaguchi and T. Sakurai, “Noise Expressions for
Capacitance-Coupled Distributed RC Lines,” TAU 97.

6 A. Vittal and M. Sadowska, “Crosstalk Reduction for VLSI”,
IEEE Trans. on CAD, Vol 16, No. 3, March 97

7 F. Dartu and L. Pileggi, “Calculating Worst-Case Gate Delays
Due to Dominant Capacitance Coupling,” DAC 97, pp 64-51.

8 T. V. Nguyen, A. Devgan, A. Sadigh, “Simulation of Coupling
Capacitances using Matrix Partitioning,” ICCAD 98, pp12-18

9 D. Pandini, P. Scandolara, and C. Guardiani, “Network
Reduction for Crosstalk Analysis in Deep Submicron
Technologies,”, TAU 97, pp 280-89.

10 R. Kay and L. Pileggi, “PRIMO: Probability Interpretation of
Moments for Delay Calculation,” DAC 98, pp 463-68.

11 T. Lin, E. Acar, and L Pileggi, “h-gamma: An RC Delay Metric
Based on a Gamma Distribution Approximation of the
Homogeneous Response,” ICCAD 98, pp 19-25.

12 R. Gupta, B. Krauter, B. Tutuianu, J.Willis, L. Pileggi, “The
Elmore Delay as a Bound for RC Trees with Generalized Input
Signals,” DAC95, pp. 364-69.

13 B. N. Sheehan, “Predicting Coupled Noise in RC Circuits,”
DATE 2000.

14 A. Devgan, “Efficient Coupled Noise Estimation for On-Chip
Interconnects,” ICCAD 97, pp. 147-51.


	Main
	DAC00
	Front Matter
	Table of Contents
	Session Index
	Author Index


