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ABSTRACT symmetry is handled in a slicing floorplan model. Recently, several

The ordered tree (O-tree) representation has recently gained mu(r:}%)n-sllcmg topologlcal represgntaﬂons have bgen proposed. Sym-
metry constraints can be efficiently handled within the sequence-

interest in layout design automation. Different from previous topo-_ . ;
pair representation as shown in [1].

logical representations of non-slicing floorplans, the O-tree repre* The O-tree representation4] has recently gained an increasin
sentation is simpler, needs linear computation effort to generate a P Y9 9

corresponding layout, and exhibits a smaller upper-bound of possf.merest: different from the other topological representations, O-tree

needs a smaller amount of encoding storage and linear time compu-

ble configurations. This paper addresses the problem of handling . ) - "
9 - 1NIS pap P . t%tlon effort to generate each placement configuration. In addition,
symmetry constraints in the context of the O-tree representatlonhe upper-bound of possible encodings is smaller, which entails a

This problem arises in analog placement, where symmetry is oftertﬁ

used to match layout-induced parasitics and to balance thermal coﬂ?duwd representation redundancy. These important advantages are

plings in differential circuits. The good performance of our place- strong incentives to address the symmetry constrained placement

ment tool dealing with several analog designs taken from industr)pr?:lﬁlrin n thercsvntexrt of tnh[e On-tr\t/ael r?presrsn;?t;onhni based on
proves the effectiveness of our technique. S Paper, we present a novel placement technique based o

the O-tree representation, in the presence of positioning and sym-
metry constraints. The good performance of our placement tool
1. INTRODUCTION when dealing with several analog designs taken from industry
The ability of placement tools to optimize complex layout-related proves the effectiveness of our approach.
objectives, while having the flexibility to handle a large variety of
specific constraints, is crucial in order to automatically produce2. BRIEF OVERVIEW OF THE O-TREE
high-quality layouts in terms of density and electrical performance.REPRESENTAT'ON
In device-level analog placement dealing with symmetry con-
straints is essential, as analog circuits use very often differentiaf\n N-node O-tree is a tree witt+1 nodes encoded byi(m), where
architectures based on electrically symmetric networks. Symmetrg is a2n-bit string that identifies the branching structure of the tree,
is widely used in analog layout to match interconnection parasitic@nd T is a permutation of the node labels (excluding the root).
and device parameters, or to balance thermal effects. When traversing the tree, we write a ‘0’ for descending an edge and
The issue of symmetry has been addressed so far in the context 8f 1’ for subsequently ascending that edge. Given the 7-node O-tree
two distinct classes of analog placement solutions. The first class dft Figure 1(a), we can represent it d&s 0010110010110011,
tools, exploring the absolute representation of placement configurd®=abcdefgh.
tions with simulated annealing algorithms, has proven to be suc- An O-tree where nodes represent rectangular blocks imposes both
cessful when dealing with industrial examples [2],[5-7]. However, horizontal and vertical positioning constraints:
they may converge slowly, due to the huge size of the search spaga) each parent block must be placed to the left of its children;
which contains also infeasible placement configurations (as cell¢b) if two blocks are overlapping along their x-coordinate projec-
are allowed to overlap). In addition, the tuning of these tools is usution, the block having a higher index in permutationmust be
ally difficult, requiring a significant amount of testing effort. placed on top of the one having a lower index.
The second class of solutions employs topological representatiorfSigure 1(b) displays the minimum area placement of the O-tree(a) .
of placement configurations, where cell positions are specifiec

based on encoded topological relations. In the ILAC system [9], @/V® g
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3. RECTANGLE PACKING WITH SYMME- Remark: The proof of Theorem 3.1.1 relies on the Bellman-Ford
TRY CONSTRAINTS IN THE CONTEXT OF algorithm [3]. In practice, it is possible to exploit the special struc-

ture of the O-tree and perform the same tasks in linear time. The

THE O-TREE REPRESENTATION use of Bellman-Ford algorithm in the proof of Theorem 3.1.1 is due

Symmetry constraints can be formulated in termsyohmetry pairs ~ only to clarity reasons.
andsymmetry groupsA symmetry pairs a couple of blocks having @
the same dimensions, which have to be placed symmetrically witt (@/v SR

respect to an axis. Aymmetry groups a set of symmetry pairs @ .

which share a common axis . Assuming the common axes are hor @D/v A SN

zontal in all symmetry groups, then the symmetry constraints car root ~~a @ Lo d f
.o e

@—0© c

\@) , a

be formulated as follows: if(aq, by), (8, b)), ..., (&, bJ} is a
symmetry group, angh; , by) is a symmetry pair, foi=1, ..., kthen

Xai - Xbi 1) S b
Ya; " Vi " May = s ©) g
wherey; defines the position of the common symmetry axis. @) (b)
The first type equalities are calledorizontal symmetric con- Figure 2: A symmetric x-feasible O-tree and its placement
straints the second type awertical symmetric constraints. Example: Assuming the pairs of block,h)and(e,f)are symmet-
ric, the horizontal constraint grapB, of the O-tree displayed in
3.1 Symmetric X-feasible O-trees Figure 1(a) can be visualized in Figure 2(a), where the broken arcs

If an O-tree can lead to a placement which satisfies both the hori’@del the horizontal symmetric constraints (1). Figure 2(b) dis-

zontal positioning constraints and the horizontal symmetric conPlays the minimum width placement. .
straints (1), then the O-tree is calgnmetric x-feasible Theorem 3.1.2:If there is a positive cycle iG, , then the O-tree is

In order to determine whether an O-tree is symmetric x-feasible10t symmetric x-feasible.
or not, an horizontal constraint gragh, is built. This directed ~Proof If Gy contains a positive cycle, this cycle must include at
graph has the same nodes as the given O-tree, and the same dired@@st one newly added edge between nodes corresponding to sym-
edges as horizontal positioning constraints. In addition, for eactnetric blocks. If(a,b)is such a directed edge of zero weight, it fol-
symmetric pair of blockga,b), two new arcs(a,b) and (b,a) are  lows that x; >x;, as there is a path of positive length frdmo a
introduced (unless positioning constraint paths betwaemd b formed by all the edges of the given positive cycle, exceptinb).

already exist). It follows that the O-tree is not symmetric x-feasible and the hori-
The edges o6, are weighted: if the edg@i,v) corresponds to a  zontal symmetric constraints conflict with the O-tree constraints.
positioning constraint, its weight i&(u,v)=w, , the width of the Theorems 3.1.1 and 3.1.2 prove the equivalence between the
block represented by node if the edge corresponds to a symmet- €Xistence of positive cycles in the horizontal constraint grégh
ric constraint, them(u,v)=0. and the O-tree property of symmetric x-feasibility.
The existence of positive cycles in the directed gr&plprevents
the symmetric x-feasibility of the O-tree. 3.2 Symmetric Y-feasible O-trees

Theorem 3.1.Lif the horizontal constraint grap@, does not con- If an O-tree can lead to a placement which satisfies the vertical

tain positive cycles, then the corresponding O-tree is symmetric X'symmetric constraints (2) and, at the same time, which does not

feasible. In addition, one can build a minimum width placement, jo|ate the vertical positioning constraints (see Section 2), then the
satisfying both horizontal positioning and symmetric constraints ing_¢ e is calledymmetric y-feasible

o(rP) time. In order to determine whether an O-tree is symmetric y-feasible
Proof. In a minimum width placement the x-coordinate of each or not, we construct a vertical constraint gra?,h

block must be equal to the longest path length from the "root” noderpjs directed graph has the same nodes as the given O-tree. Part of
to its corresponding node 18, . Finding a minimum width place-  he directed edges represent the positioning vertical constraints of
ment results to be a single-source longest path problem, which cafe O-tree. These edges can be determined as follows:

be solved with the Bellman-Ford algorithm [3]. @, contains no  for each block; , i=1, ..., n, let yi(i) be the set of block indexds
positive cycles, the Iongest path problem is provably consistent angbwer thani in permutationrt, which spanning intervals, x, +

the Bellman-Ford algorithm converges. w,) overlap &, x; +w;); if Q(i) is non-empty, for eack Oy(i) intro-

As the x-_c'oor'dlnates of ‘?'OC"S are Iong_e;t path Iengths, the horlEiuce in graplGy a directed edgeB ,B;) , unless there is no other
zontal positioning constraints being satisfied. the horizontal sym-

metric constraints (1) are satisfied as well. edge(By,B;) , with jOW(i) (in order to disregard unnecessary transi-
The complexity of the Bellman-Ford algorithm@VE), whereV tive arcs). In order to handle the vertical symmetric constraints (2),
is the number of nodes arilis the number of edges [3]. Since the for ach edgeB ,B;), we define the weight afy+h;)/2 . In this
O-tree has edges, the number of edges@ is O(n). Taking also ~ way, the nodes will correspond to the center of the blocks rather
into account tha, hasn+1 nodes, the complexity results to be than the bottom of the blocks. Additional edges modeling the verti-
o cal symmetric constraints (2) must be addecjnas well. Assum-



ing that all the symmetry pairga,b) have their elements in if d>O0then {

topological order relative to the positioning constraints, the addi- update Zbi = Zbi +d
tional edges are introduced as follows: execute the Bellman-Ford single-source longest path
for every symmetry group {{aby), (8, by), ... , (& b} algorithm [3], considering ndojeas the source }
for every two symmetry pairs; (&), (g, ) Since the y-positions of the blocks are adjusted (Step 4) according
if there is a path from, 4o 3 then { to the topological order, the y-positions of the early symmetry pairs

are not affected by the adjustments involving symmetry pairs pro-
cessed later. After each iteration in Step 4, the current(pajr)

will get y-coordinates of block centers symmetric relative to the
positionyg of the common axis. One by one, all vertical symmetric
constraints are satisfied. Taking into account that the vertical con-
straint graphG,, was built such that the positioning constraints are
Example: Assuming the pairs of block®,h)and(e,f)are symmet-  inherently satisfied, the O-tree results to be symmetric y-feasible.
ric, the vertical constraint grapB, of the O-tree displayed in Fig-  As the positionys of the symmetry axis has the minimum possible
ure 1(a) can be visualized in Figure 3(a). The plain arcs represenialue, the final placement has a minimum height.

the O-tree vertical positioning constraints. The brokenlayg)was  Steps 1 and 4 contain the most expensive operations. Due to the

introduced during the execution of the proc_edure shown above, 3Sellman-Ford algorithm, step 1 requir@{nz) time [3]. Step 4 has
there was a path from node to nodeh . This arc was added 10 | jterations; in each iteration the single-source longest path algo-

model the vertical symmetry constraints, as it will be explained inim may be executed. Actually, each edgeGpis examined no
the proof of Theorem 3.2.1 . '

add to Ga directed edge (hb), unless it exists already
let weight(h b) = the longest path length fromt® g }

if there is a path from; bo b then {
add to Ga directed edge (ag), unless it exists already
let weight (a &) = the longest path length fromto b }

more than once and, therefore, the complexitp'(ﬂz) . In conclu-

sion, the algorithm described above run®{n) time.
Theorem 3.2.2:If there is a cycle irGy , then the O-tree is not sym-
h metric y-feasible.
Proof. For every symmetry paifa,b), as we may assumeg = X, ,
f there is a path between the no@deandb containing only edges cor-
d_ o responding to positioning constraints. Ltb) and (c,d) be two
e symmetry symmetry pairs belonging to the same group, and suppose there is
axis such a path frona to b and another one fronctod . A cycle inGy
a must contain a "broken" arc (corresponding to a vertical symmetric
b constraint), as the positioning constraints determine an acyclic
graph. Let(d,b) be such a "broken" arc contained in a cycle: it fol-
€) (b) lows there is a path from nodeto noded in G, and, consequently,
Figure 3: A symmetric y-feasible O-tree and its placement Z4 > z;, . But this "broken" ar¢d,b) could be introduced i, only
due to the existence of a path from nagto nodec . This implies
Z. > z,, which together with the other inequality > z,, , implies
that the symmetry pairs cannot have a common symmetry axis (as
rgzc+zd)/2 > (z4+zp)/2 ), which contradicts the symmetry group

assumption.

The existence of cycles in the directed gr&pfprevents the sym-
metric y-feasibility of the O-tree.
Theorem 3.2.1If the vertical constraint grap@, does not contain

cycles, then the corresponding O-tree is symmetric y-feasible. |
addition, one can build a minimum height placement satisfying

both vertical positioning and symmetric constraint@(nz) time.

Proof. Denotingy; , y; the coordinates of the left-bottom corner of _ ’ o _
block By , z=y;+h; /2 the y-position of the center & and given a An O-tree is calledymmetric feasibl# it is both symmetric x- and
' y- feasible. Givenn rectangular blocks, a set of symmetric con-

symmetry group Ufa, , by), (a», b)), ..., b}, a placement - ) . . L
yh' hh y gh up Ui 1 ) (dz' b_[z_)h (a'"s ;)i pb s(tJalnts, and a symmetric feasible O-tree, one can build a minimum
which has the properties stated in Theorem 3.2.1 can be constructeg, , placement as described in subsections 3.1 and 3.2, where the

3.3 Symmetric Feasible O-trees

as follows: positions of the blocks satisfy both the O-tree constraints and the
(1) letz0=0 and z = the longest path length from root to noBe. /e symmetric constraints. On the other hand, there is a recipro-
(2) determine the position of the common symmetry axis cal property:
_ max Fa; +Zp; 0 Theorem 3.3.1:A minimum area rectangle packing with symmet-
Ys = (3, b OUuy o 2 E ric constraints can be represented by a symmetric feasible O-tree.
(3) execute a topological Sort of the Nodesy Our placement tool employs the simulated annealing algorithm as

the exploration engine for the O-tree search space. According to
theorem 3.3.1, only the symmetric feasible O-trees are taken into
account, as they lead to placement configurations satisfying the
symmetric constraints. The test of symmetric feasibility and the
Za; + Zbj placement construction can be done simultaneously.

2

reorder the symmetry pa{e, by) in U such that nodes
b; are ordered according to the topological sort
(4) for each symmetry pafg; , b) in U

let d= Yo~



4. EXPERIMENTS Table 1: Placement results

The placement algorithm described in this paper has been imple

mented in C on a SUN ULTRA-60 workstation. Design # of Sym. Area | Time
Table 1 displays the placement results obtained from several test cells const. (Hm?) (min)
cases. SP denotes symmetry pairs, SS denotes self-symmetric cel
The self-symmetric cells are cells presenting geometrical symmetry vd2 14 2 8P 1365 0.17
and sharing the same (horizontal) axis with the other symmetr
pairs in the group. The smallest example having 14 cells runs in 1( dffrsdch 37 4 5P 6286 1.89
seconds, while the largest example - with 110 cells - has been sug- tx_current 47 3SP, 1S9 46309 4.7
cessfully placed in about 25 minutes.
Figure 4 shows the block placement of a circuit containing a sym-|  Ipf2_b25b 52 11SP,1S$ 3624 5.21
metry group, consisting of 3 pairs of symmetric devices and 2 self-
symmetric cells, which can be noticed near the bottom of the figure| dcservo_cmfb 66 3SP,3Sp  6046p 11.43
The 47 block example has been processed in 4.37 minutes. The lay- biasynth2pdg 67 8 Sp 4967 13.54

out area is only about 12% larger than the total area of all the blocks
in the circuit, which proves the good rectangle packing capability of| |namixbias2p4 110 4 SP 49027 24.36
the placement tool.

Figure 5 shows the layout (after placement) of another circuit
characterized by a larger number of symmetric constraints. Oul
placement tool has processed this example (having 11 symmetr
pairs and 1 self-symmetric cell) in only 5.21 minutes. The speed
exhibited by the tool can be justified as follows: the upper-bound of
the number of configurations in the O-tree representation [4] is
smaller than the upper-bounds in other topological representations

Our experiments suggest that the speed performance of ou
placement tool based on the O-tree representation is better relativ
to similar tools where placement configurations are representec
employing absolute coordinates [5], or tools based on the sequence
pair topological representation [1].

5. CONCLUSIONS

This paper has addressed the problem of taking into account sym
metry constraints when non-slicing floorplans are represented with [ s

to device-level placement for analog layout. The good performance
of our ordered tree-based placement tool when dealing with severa
analog designs taken from industry substantiates the effectivenes ==
of our novel techniques.
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