
ral
ym-
ce-

ing
ee
pu-
n,

s a
s are
ent

on
m-
ol

try

e,

nd
ree

oth

c-

a) .

Block Placement with Symmetry Constraints
based on the O-tree Non-Slicing Representation
Yingxin Pang✝ Florin Balasa✞ Koen Lampaert✟ Chung-Kuan Cheng✝

✝Dept. of CSE, University of California, San Diego, La Jolla, CA 92093
✞Dept. of EECS, University of Illinois, Chicago, Chicago, IL 60607-7053

✟Conexant Systems Inc., 4311 Jamboree Road, Newport Beach, CA 92660

ABSTRACT
The ordered tree (O-tree) representation has recently gained much
interest in layout design automation. Different from previous topo-
logical representations of non-slicing floorplans, the O-tree repre-
sentation is simpler, needs linear computation effort to generate a
corresponding layout, and exhibits a smaller upper-bound of possi-
ble configurations. This paper addresses the problem of handling
symmetry constraints in the context of the O-tree representation.
This problem arises in analog placement, where symmetry is often
used to match layout-induced parasitics and to balance thermal cou-
plings in differential circuits. The good performance of our place-
ment tool dealing with several analog designs taken from industry
proves the effectiveness of our technique.

1. INTRODUCTION
The ability of placement tools to optimize complex layout-related
objectives, while having the flexibility to handle a large variety of
specific constraints, is crucial in order to automatically produce
high-quality layouts in terms of density and electrical performance.
In device-level analog placement dealing with symmetry con-
straints is essential, as analog circuits use very often differential
architectures based on electrically symmetric networks. Symmetry
is widely used in analog layout to match interconnection parasitics
and device parameters, or to balance thermal effects.

The issue of symmetry has been addressed so far in the context of
two distinct classes of analog placement solutions. The first class of
tools, exploring the absolute representation of placement configura-
tions with simulated annealing algorithms, has proven to be suc-
cessful when dealing with industrial examples [2],[5-7]. However,
they may converge slowly, due to the huge size of the search space
which contains also infeasible placement configurations (as cells
are allowed to overlap). In addition, the tuning of these tools is usu-
ally difficult, requiring a significant amount of testing effort.
The second class of solutions employs topological representations

of placement configurations, where cell positions are specified
based on encoded topological relations. In the ILAC system [9],

symmetry is handled in a slicing floorplan model. Recently, seve
non-slicing topological representations have been proposed. S
metry constraints can be efficiently handled within the sequen
pair representation as shown in [1].

The O-tree representation[4] has recently gained an increas
interest: different from the other topological representations, O-tr
needs a smaller amount of encoding storage and linear time com
tation effort to generate each placement configuration. In additio
the upper-bound of possible encodings is smaller, which entail
reduced representation redundancy. These important advantage
strong incentives to address the symmetry constrained placem
problem in the context of the O-tree representation.

In this paper, we present a novel placement technique based
the O-tree representation, in the presence of positioning and sy
metry constraints. The good performance of our placement to
when dealing with several analog designs taken from indus
proves the effectiveness of our approach.

2. BRIEF OVERVIEW OF THE O-TREE
REPRESENTATION
An n-node O-tree is a tree withn+1 nodes encoded by (T, π), where
T is a2n-bit string that identifies the branching structure of the tre
and π is a permutation of then node labels (excluding the root).
When traversing the tree, we write a ‘0’ for descending an edge a
a ‘1’ for subsequently ascending that edge. Given the 7-node O-t
in Figure 1(a), we can represent it asT= 0010110010110011,
π=abcdefgh.

An O-tree where nodes represent rectangular blocks imposes b
horizontal and vertical positioning constraints:
(a) each parent block must be placed to the left of its children;
(b) if two blocks are overlapping along their x-coordinate proje
tion, the block having a higher index in permutationπ must be
placed on top of the one having a lower index.
Figure 1(b) displays the minimum area placement of the O-tree(

a

b

c

d
e

f

g
h

f

g
h

e
d

c

b
a

Figure 1: An O-tree and its corresponding block placement
(a) (b)

This work is supported in part by grants from NSF Project
MIP-9529077 and the California MICRO program

Permission to make digital/hardcopy of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage, the copyright notice, the title of the
publication and its date appear, and notice is given that copying is by permission of
ACM, Inc. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.

DAC 2000, Los Angeles, California
(c) 2000 ACM 1-58113-188-7/00/0006..$5.00

d
c-
he
e

rcs
s-

t

ym-
-

ri-

the

cal
not
the

le

rt of
of

i-

2),

er
ti-
3. RECTANGLE PACKING WITH SYMME-
TRY CONSTRAINTS IN THE CONTEXT OF
THE O-TREE REPRESENTATION
Symmetry constraints can be formulated in terms ofsymmetry pairs
andsymmetry groups. A symmetry pairis a couple of blocks having
the same dimensions, which have to be placed symmetrically with
respect to an axis. Asymmetry groupis a set of symmetry pairs

which share a common axis . Assuming the common axes are hori-
zontal in all symmetry groups, then the symmetry constraints can
be formulated as follows: if{(a1, b1), (a2 , b2), ... , (ak , bk)} is a

symmetry group, and(ai , bi) is a symmetry pair, fori=1, ... , k then

whereys defines the position of the common symmetry axis.

The first type equalities are calledhorizontal symmetric con-
straints; the second type arevertical symmetric constraints.

3.1 Symmetric X-feasible O-trees
If an O-tree can lead to a placement which satisfies both the hori-
zontal positioning constraints and the horizontal symmetric con-
straints (1), then the O-tree is calledsymmetric x-feasible.

In order to determine whether an O-tree is symmetric x-feasible
or not, an horizontal constraint graphGx is built. This directed

graph has the same nodes as the given O-tree, and the same directed
edges as horizontal positioning constraints. In addition, for each
symmetric pair of blocks(a,b), two new arcs(a,b) and (b,a) are
introduced (unless positioning constraint paths betweena and b
already exist).

The edges ofGx are weighted: if the edge(u,v) corresponds to a

positioning constraint, its weight isw(u,v)=wu , the width of the

block represented by nodeu; if the edge corresponds to a symmet-
ric constraint, thenw(u,v)=0.

The existence of positive cycles in the directed graphGx prevents

the symmetric x-feasibility of the O-tree.
Theorem 3.1.1:If the horizontal constraint graphGx does not con-

tain positive cycles, then the corresponding O-tree is symmetric x-
feasible. In addition, one can build a minimum width placement
satisfying both horizontal positioning and symmetric constraints in

O(n2) time.
Proof: In a minimum width placement the x-coordinate of each
block must be equal to the longest path length from the "root" node
to its corresponding node inGx . Finding a minimum width place-

ment results to be a single-source longest path problem, which can
be solved with the Bellman-Ford algorithm [3]. IfGx contains no

positive cycles, the longest path problem is provably consistent and
the Bellman-Ford algorithm converges.

As the x-coordinates of blocks are longest path lengths, the hori-
zontal positioning constraints being satisfied. the horizontal sym-
metric constraints (1) are satisfied as well.

The complexity of the Bellman-Ford algorithm isO(VE), whereV
is the number of nodes andE is the number of edges [3]. Since the
O-tree hasn edges, the number of edges inGx is O(n). Taking also

into account thatGx hasn+1 nodes, the complexity results to be

O(n2).

Remark: The proof of Theorem 3.1.1 relies on the Bellman-For
algorithm [3]. In practice, it is possible to exploit the special stru
ture of the O-tree and perform the same tasks in linear time. T
use of Bellman-Ford algorithm in the proof of Theorem 3.1.1 is du
only to clarity reasons.

Example: Assuming the pairs of blocks(b,h)and(e,f)are symmet-
ric, the horizontal constraint graphGx of the O-tree displayed in

Figure 1(a) can be visualized in Figure 2(a), where the broken a
model the horizontal symmetric constraints (1). Figure 2(b) di
plays the minimum width placement.
Theorem 3.1.2:If there is a positive cycle inGx , then the O-tree is

not symmetric x-feasible.
Proof: If Gx contains a positive cycle, this cycle must include a

least one newly added edge between nodes corresponding to s
metric blocks. If(a,b) is such a directed edge of zero weight, it fol
lows that xa >xb, as there is a path of positive length fromb to a

formed by all the edges of the given positive cycle, excepting(a,b).
It follows that the O-tree is not symmetric x-feasible and the ho
zontal symmetric constraints conflict with the O-tree constraints.

Theorems 3.1.1 and 3.1.2 prove the equivalence between
existence of positive cycles in the horizontal constraint graphGx

and the O-tree property of symmetric x-feasibility.

3.2 Symmetric Y-feasible O-trees
If an O-tree can lead to a placement which satisfies the verti
symmetric constraints (2) and, at the same time, which does
violate the vertical positioning constraints (see Section 2), then
O-tree is calledsymmetric y-feasible.

In order to determine whether an O-tree is symmetric y-feasib
or not, we construct a vertical constraint graphGy .

This directed graph has the same nodes as the given O-tree. Pa
the directed edges represent the positioning vertical constraints
the O-tree. These edges can be determined as follows:
for each blockBi , i=1, ..., n , let ψ(i) be the set of block indexesk

lower thani in permutationπ , which spanning intervals (xk, xk +

wk) overlap (xi, xi + wi); if ψ(i) is non-empty, for eachk ∈ψ(i) intro-

duce in graphGy a directed edge (Bk ,Bi) , unless there is no other

edge(Bk ,Bj) , with j∈ψ(i) (in order to disregard unnecessary trans

tive arcs). In order to handle the vertical symmetric constraints (
for each edge (Bk ,Bi), we define the weight as(hk+hi)/2 . In this

way, the nodes will correspond to the center of the blocks rath
than the bottom of the blocks. Additional edges modeling the ver
cal symmetric constraints (2) must be added inGy as well. Assum-

x
ai

x
bi

=

y
ai

y
bi

h
ai

+ + 2ys=

(1)

(2)

a

b

c

d

e

f
g

h

f

g
h

e
d

c

b
a

Figure 2: A symmetric x-feasible O-tree and its placement
(a) (b)

root

ing
irs
ro-

e
ic

n-
e

le.
e

the

o-

e is

ric
lic
-

(as

-
um

the
the
ro-

-
e.
as
to

nto
the
e

ing that all the symmetry pairs(a,b) have their elements in
topological order relative to the positioning constraints, the addi-
tional edges are introduced as follows:

for every symmetry group {(a1 , b1), (a2 , b2), ... , (ak, bk)}

 for every two symmetry pairs (ai , bi), (aj , bj)

 if there is a path from ai to aj then {

 add to Gy a directed edge (bj , bi), unless it exists already

 let weight(bj , bi) = the longest path length from ai to aj }

 if there is a path from bi to bj then {

 add to Gy a directed edge (aj , ai), unless it exists already

 let weight (aj , ai) = the longest path length from bi to bj }

Example: Assuming the pairs of blocks(b,h)and(e,f)are symmet-
ric, the vertical constraint graphGy of the O-tree displayed in Fig-

ure 1(a) can be visualized in Figure 3(a). The plain arcs represent
the O-tree vertical positioning constraints. The broken arc(b,e)was
introduced during the execution of the procedure shown above, as
there was a path from nodef to nodeh . This arc was added to
model the vertical symmetry constraints, as it will be explained in
the proof of Theorem 3.2.1 .

The existence of cycles in the directed graphGy prevents the sym-

metric y-feasibility of the O-tree.
Theorem 3.2.1:If the vertical constraint graphGy does not contain

cycles, then the corresponding O-tree is symmetric y-feasible. In
addition, one can build a minimum height placement satisfying

both vertical positioning and symmetric constraints inO(n2) time.
Proof: Denotingxi , yi the coordinates of the left-bottom corner of

block Bi , zi=yi+hi /2 the y-position of the center ofBi, and given a

symmetry group U={(a1 , b1), (a2 , b2), ... , (ak, bk)}, a placement

which has the properties stated in Theorem 3.2.1 can be constructed
as follows:
(1) letzroot=0 and zi = the longest path length from root to nodeBi .

(2) determine the position of the common symmetry axis

(3) execute a topological sort of the nodes inGy ,

 reorder the symmetry pairs(ai , bi) in U such that nodes

bi are ordered according to the topological sort

(4) for each symmetry pair(ai , bi) in U

if d > 0 then {

 execute the Bellman-Ford single-source longest path
 algorithm [3], considering nodebi as the source }

Since the y-positions of the blocks are adjusted (Step 4) accord
to the topological order, the y-positions of the early symmetry pa
are not affected by the adjustments involving symmetry pairs p
cessed later. After each iteration in Step 4, the current pair(ai , bi)

will get y-coordinates of block centers symmetric relative to th
positionys of the common axis. One by one, all vertical symmetr

constraints are satisfied. Taking into account that the vertical co
straint graphGy was built such that the positioning constraints ar

inherently satisfied, the O-tree results to be symmetric y-feasib
As the positionys of the symmetry axis has the minimum possibl

value, the final placement has a minimum height.
Steps 1 and 4 contain the most expensive operations. Due to

Bellman-Ford algorithm, step 1 requiresO(n2) time [3]. Step 4 has
k iterations; in each iteration the single-source longest path alg
rithm may be executed. Actually, each edge inGy is examined no

more than once and, therefore, the complexity isO(n2) . In conclu-

sion, the algorithm described above runs inO(n2) time.
Theorem 3.2.2:If there is a cycle inGy , then the O-tree is not sym-

metric y-feasible.
Proof: For every symmetry pair(a,b), as we may assumexa = xb ,

there is a path between the nodesa andb containing only edges cor-
responding to positioning constraints. Let(a,b) and (c,d) be two
symmetry pairs belonging to the same group, and suppose ther
such a path froma to b and another one fromc to d . A cycle inGy

must contain a "broken" arc (corresponding to a vertical symmet
constraint), as the positioning constraints determine an acyc
graph. Let(d,b) be such a "broken" arc contained in a cycle: it fol
lows there is a path from nodeb to noded in Gy and, consequently,

zd > zb . But this "broken" arc(d,b)could be introduced inGy only

due to the existence of a path from nodea to nodec . This implies
zc > za , which together with the other inequalityzd > zb , implies

that the symmetry pairs cannot have a common symmetry axis
(zc+zd)/2 > (za+zb)/2), which contradicts the symmetry group

assumption.

3.3 Symmetric Feasible O-trees
An O-tree is calledsymmetric feasibleif it is both symmetric x- and
y- feasible. Givenn rectangular blocks, a set of symmetric con
straints, and a symmetric feasible O-tree, one can build a minim
area placement as described in subsections 3.1 and 3.2, where
positions of the blocks satisfy both the O-tree constraints and
given symmetric constraints. On the other hand, there is a recip
cal property:
Theorem 3.3.1:A minimum area rectangle packing with symmet
ric constraints can be represented by a symmetric feasible O-tre

Our placement tool employs the simulated annealing algorithm
the exploration engine for the O-tree search space. According
theorem 3.3.1 , only the symmetric feasible O-trees are taken i
account, as they lead to placement configurations satisfying
symmetric constraints. The test of symmetric feasibility and th
placement construction can be done simultaneously.

a

b

c

d
e

f

g
h

f

g
h

e

d

c

b a

Figure 3: A symmetric y-feasible O-tree and its placement
(a) (b)

symmetry
axis

ys
max

ai bi,() U∈=
zai

zbi+
2

zbi
zbi d+=update

d y
s

zai
zbi+

2
---------------------–=let

i-

air,’’
4. EXPERIMENTS
The placement algorithm described in this paper has been imple-
mented in C on a SUN ULTRA-60 workstation.

Table 1 displays the placement results obtained from several test
cases. SP denotes symmetry pairs, SS denotes self-symmetric cells.
The self-symmetric cells are cells presenting geometrical symmetry
and sharing the same (horizontal) axis with the other symmetry
pairs in the group. The smallest example having 14 cells runs in 10
seconds, while the largest example - with 110 cells - has been suc-
cessfully placed in about 25 minutes.

Figure 4 shows the block placement of a circuit containing a sym-
metry group, consisting of 3 pairs of symmetric devices and 2 self-
symmetric cells, which can be noticed near the bottom of the figure.
The 47 block example has been processed in 4.37 minutes. The lay-
out area is only about 12% larger than the total area of all the blocks
in the circuit, which proves the good rectangle packing capability of
the placement tool.

Figure 5 shows the layout (after placement) of another circuit
characterized by a larger number of symmetric constraints. Our
placement tool has processed this example (having 11 symmetry
pairs and 1 self-symmetric cell) in only 5.21 minutes. The speed
exhibited by the tool can be justified as follows: the upper-bound of
the number of configurations in the O-tree representation [4] is
smaller than the upper-bounds in other topological representations.

Our experiments suggest that the speed performance of our
placement tool based on the O-tree representation is better relative
to similar tools where placement configurations are represented
employing absolute coordinates [5], or tools based on the sequence-
pair topological representation [1].

5. CONCLUSIONS
This paper has addressed the problem of taking into account sym-
metry constraints when non-slicing floorplans are represented with
O-tree structures. The necessity of handling symmetry emerges
when, for instance, the O-tree topological representation is applied
to device-level placement for analog layout. The good performance
of our ordered tree-based placement tool when dealing with several
analog designs taken from industry substantiates the effectiveness
of our novel techniques.

6. REFERENCES
[1] F. Balasa, K. Lampaert, “Module Placement for Analog Layout
 Using the Sequence-Pair Representation,’’Proc. 36th DAC.,
 pp. 274-279, June 1999.
[2] J. Cohn, D. Garrod, R. Rutenbar, L. Carley,‘‘KOAN/ANGRAM
 II: new tools for device-level analog layout,”IEEE J. of solid
 State Circuits, Vol. SC-26, No. 3, pp. 330-342, March 1991.
[3] T. H. Cormen, C. E. Leiserson, R. L. Rivest, “Introduction to
 Algorithm,”The MIT press, 1990.
[4] P.-N. Guo, C.-K. Cheng, T. Yoshimura, ‘‘An O-tree representa-

tion of non-slicing floorplan and its applications,’’Proc. 36th
 DAC. , pp. 268-273, June 1999.
[5] K. Lampaert, G. Gielen, W. Sansen, ‘‘A performance-driven

placement tool for analog integrated circuits,’’IEEE J. of Solid-
 State Circuits, Vol. SC-30, No. 7, pp. 773-780, July 1995.
[6] E. Malavasi, E. Charbon, E. Felt, A. Sangiovanni-Vincentelli, “

Automation of IC layout with analog constraints,”IEEE Trans.

on Comp.-Aided Design of IC’s and Systems, Vol. 15, No. 12,
 pp. 1518-1524, Dec. 1996.
[7] E. Malavasi, E. Charbon, G. Jusuf, R. Totaro, A. Sangiovann
 Vincentelli, ‘‘Virtual symmetry axes for the layout of analog
 IC’s,’’ Proc. 2nd ICVC, pp. 195-198, Seoul, Korea, Oct. 1991.
[8] H. Murata, K. Fujiyoshi, S. Nakatake, Y. Kajitani, “VLSI mod-

ule placement based on rectangle-packing by the sequence-p
IEEE Trans. on Comp.-Aided Design of IC’s and Systems,

 Vol. 15, No. 12, pp. 1518-1524, Dec. 1996.
[9] J. Rijmenants, J.B Litsios, T.R. Schwarz, M. Degrauwe,
 “ILAC: an automated layout tool for analog CMOS Circuits,”

IEEE J. of Solid-State Circuits, Vol. SC-24, No. 2, pp.417-425,
 April 1989.

Table 1: Placement results

Design
of
cells

Sym.
const.

Area

(µm2)
 Time
(min)

vd2 14 2 SP 1365 0.17

dffrsdch 37 4 SP 6286 1.89

tx_current 47 3 SP, 1 SS 46309 4.73

lpf2_b25b 52 11 SP, 1 SS 36245 5.21

dcservo_cmfb 66 3 SP, 3 SS 60466 11.43

biasynth2p4g 67 8 SP 4967 13.54

lnamixbias2p4 110 4 SP 49027 24.36

Figure 4: Designtx_current with 47 cells

Figure 5: Designlpf2_b25b with 52 cells

	Main
	DAC00
	Front Matter
	Table of Contents
	Session Index
	Author Index

