
g
r,
f
e
h.
m
k-
s.
is

t is
tal
h
an
is
ns

By
is

out
all
ly
se
ed
g

e
of
th
ach
e

ing

s
ng
he
es
e
rst
l
d in
at
e

d
lse
the
n.
g
nd

it
nd
to

ion
e
phs

e
of
tial
run
by

Removing user-specified false paths from timing graphs
David Blaauw, Rajendran Panda, Abhijit Das

Abstract

We present a new method for removing user-specified false sub-
graphs from timing analysis and circuit optimization. Given a tim-
ing graph and a list of specified false paths, false subpaths, or false
subgraphs, we generate a new timing graph in which all specified
false paths are removed using a process of node splitting and edge
removal. We present the necessary and sufficient condition for split-
ting a node, and show that the number of nodes that must be added
to the timing graph is linear with the size of the false path specifica-
tion. We also present an algorithm for finding the minimum set of
nodes that must be split. Since this algorithm requires exponential
run time for false subpaths and false subgraphs, we present a heu-
ristic splitting approach which has linear worst-case run time, and
where the number of added nodes is linear with the size of the false
path specification. The heuristic approach was implemented and
results are given for large industrial circuits.

1. Introduction
Static timing analysis has become an integral part of the timing
verification and optimization of large digital IC designs. However,
static timing analysis may include false paths in its analysis, and
this results in an overly pessimistic timing report. Many circuit
optimization tools, such as those used for transistor and gate
sizing[1], use static timing analysis in the inner loop of their
optimization. In this case, the presence of false paths unnecessarily
constrains the optimization problem and leads to either a
suboptimal solution or a complete failure to meet timing
constraints. Therefore, effective removal of false paths from static
timing analysis is critical. Furthermore, since static timing analysis
is part of the inner loop of the optimization, the false paths must be
accounted for efficiently to ensure that overall performance of the
optimization is not significantly compromised.

Extensive research has been done on the problem of identifying
false paths which arise in a circuit due to reconvergent fanout.
These false paths are caused by logic and temporal correlations
between the circuit nodes. Although the complete identification of
all such false paths in a circuit is an NP-complete problem, a
number of exact or approximate methods have been proposed[2-7].

Also important are user-specified false paths. These are paths that
may be logically and temporally sensitizable but are unimportant to
the intended operation of the circuit. For instance, a path between
two latches may be false when the clocks that drive the latches are
asynchronous with respect to one another. Another example is a
path which is part of a reset or scan circuit. Since such false paths
rely on specific information unavailable to the static timing analysis
tool, they must be manually identified.

In this paper, we present an efficient approach for removing a set of
specified false paths from timing analysis for use in the inner loop
of circuit optimization. The set of false paths can be specified as
complete paths, subpaths, or subgraphs, and will be referred to as
false paths specification. The actual identification of false paths can
be performed either manually or automatically, and is not discussed
in this paper. We propose a method which, given a directed, acyclic,
timing graph and a false paths specification, generates a new timing
graph (called thetrue timing graph) from which all specified false
paths have been removed.

One approach for removing specified false paths from timin
analysis is to simply filter them from the timing report. Howeve
most circuit optimization tools require not only the identification o
the true critical path, but also the true slack of all nodes in th
circuit. True slacks are not available in the path filtering approac
In [8], an approach for removing known false subgraphs fro
timing analysis is proposed. This method uses additional boo
keeping during the propagation of arrival and required time
However, the method has a worst-case complexity that
exponential with the number of specified false subgraphs. Also, i
not clear how easily other timing algorithms such as incremen
timing analysis, multicycle path handling, and top critical pat
enumeration can be extended with this approach. In [9],
improvement of the algorithm in [8] is proposed. The run time
significantly reduced, but the worst-case run time remai
exponential with the number of false subgraphs.

In this paper, we use an approach based on node splitting.
splitting nodes and removing certain edges from the graph, it
possible to isolate and remove the specified false paths with
removing any true paths. An advantage of this approach is that
timing analysis algorithms can be directly applied to the new
generated true timing graph without any modification to the
algorithms. The cost of generating the true timing graph is incurr
only once, and is amortized over the large number of timin
analysis invocations during circuit optimization. The runtim
penalty during timing analysis is linearly related to the number
added nodes in the new timing graph, which, in turn, is linear wi
the size of the false path specification. Thus, the proposed appro
is very attractive for use in an optimization framework, unless th
optimization procedure alters the false paths, either through tim
changes or logic changes.

Earlier work in node splitting was reported in [10,11] where it wa
shown that a path can be removed from a timing graph by splitti
nodes along the path from the last node with multiple fanout to t
circuit input nodes. This approach yields a number of new nod
that is linear with the number of false paths. However, for fals
subpaths and false subgraphs, splitting all nodes from the fi
multiple fanout node to the primary input will yield an exponentia
number of new nodes in the worst case. Our approach presente
this paper uses a similar splitting method. However, it is shown th
not all nodes from the last multiple fanout node to the input nod
need to be split. We present thenecessary and sufficientcondition
for splitting a node, and then show how this condition is satisfie
for a false subgraph by splitting only the nodes that lie on the fa
subgraph. Using this method, the number of new nodes added to
timing graph is linear with the size of the false path specificatio
Finally, in [12], a method for removing false paths from a timin
graph through node splitting was introduced for false paths a
false subpaths. This method is computationally expensive as
relies on path counting to determine which nodes must be split a
which edges can be removed. Also no algorithm is provided
remove false subgraphs from the timing graph.

In this paper, we first present the necessary and sufficient condit
for splitting a node in the timing graph. Using this condition, w
then show that only a subset of nodes that lie on false subgra
need to be split to remove all false paths from the timing graph. W
then present an algorithm for determining the minimum set
nodes that must be split. This algorithm has worst-case exponen
complexity. We therefore present a heuristic that has a quadratic
time and generates a number of nodes that is bounded linearly
the size of the false paths specification.

2. Removing false paths through node splitting
Definition. An edge is atrue edgeif every path through it is a true
path. It is afalse edgeif every path through it is a false path. It is a

Motorola, Inc., Austin, TX. E-mail: {blaauw, panda}@advtools.sps.mot.com

Permission to make digital/hardcopy of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage, the copyright notice, the title of the
publication and its date appear, and notice is given that copying is by permission of
ACM, Inc. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.

DAC 2000, Los Angeles, California
(c) 2000 ACM 1-58113-188-7/00/0006..$5.00

d

e

d

I
he
n

ies

s

ry

n
at
ber

out
s).
of
l
the
of
, as
can
ion.
ed

ded

ery

the
lit
stained edgeif one or more false paths (and possibly some true paths)
pass through it. Thus, the false edges in a timing graph are a subset of
the stained edges in that graph.

Our approach for generating a false-path-free timing graph relies on
the following simple observation: If an edge is false, it can be deleted,
thus removing every false path through that edge without affecting
any true timing path in the circuit. Conversely, to remove a false path
it must have at least one false edge.We illustrate our approach in
Figure 1(a), which shows a timing graph with a single false path P.
An edgee along this false path can be removed if all nodes on the
false path with multiple fanin lie topologically aftere, and all nodes
along the false path with multiple fanout lie topologically beforee.
This condition guarantees that no paths other than the false path use
e, and by removinge from the circuit we remove only the false path.
We define the first node along a false path which has multiple fanin as
thefirst-fanin-node(FFI) of the path, and the last node along the false
path that has multiple fanout as thelast-fanout-node(LFO) of the
path. In order for a false path to contain at least one edge which can
be removed, it is necessary that the FFI node of the path lies
topologicallyafter the LFO node of the path. In Figure 1(a), the FFI
node of path P is node n3 and the LFO node is n5. Since the FFI node
for path P occurs topologicallybeforeits LFO node, path P contains
no edges that can be removed without also removing some true paths.
The following lemmas provide sufficient conditions for removing
edges from a timing graph without affecting any true
path.

Lemma 1.If, in a false path P, the LFO node lies before the FFI node,
then P can be eliminated (and all other paths preserved) by deleting
every edge on P between the LFO and FFI nodes.

Proof. For an edge of P lying between the LFO and FFI, there is
exactly one path, P, passing through it, as there is no fan-in before
and no fan-out after the edge. Thus, every edge between the LFO and
the FFI is false and can be removed.

Lemma 2.A fan-in (fan-out) free false path P can be eliminated (and
all other paths preserved) by deleting every edge on P occuring after
(before) the LFO (FFI) node.

Lemma 3. A fan-in free, fan-out free false path P can be eliminated
(and all other paths preserved) by deleting every edge on P.

Lemmas 2 and 3 are simply special cases of Lemma 1, which
provides a sufficient condition for removing an edge. We call the
false paths that can be eliminated by the application of Lemmas 1-3
as ‘simple false paths’.

The basic idea of our approach is this: When the sufficient condition
is not met for some path, we transform the graph such that the
condition is satisfied for some edges on the false path, allowing that
false path to be eliminated. We do this by splitting all nodes from the
LFO node to the FFI node in a manner similar to that described in
[10] and [12] and as illustrated in Figure 2.

For each stained fanout edgeei of nodeN which lies on one or more
false paths, we generate a new node,Ni. In Figure 2, e1 and e2 are the
stained fanout edges of node N. So, we generate two new nodes N1
and N2, corresponding to these fanout edges. ToNi, we then create
new edges from all fanin nodes of nodeN, and move the fanout edge

ei from nodeN to nodeNi. After splitting nodeN, the false pathsPi
(P1, P2, and P3 in the figure) now pass through the newly create
nodesNi (nodes N1 and N2 in the figure) and no longer have multiple
fanout at this node. Therefore, if nodeN is the LFO node of a pathP,
then after splitting, it is no longer the LFO. Also, the fanin node ofNi
along P (nodeNFI) has multiple fanout edges after splitting, since th
fanin edges ofN have been duplicated. Thus, if nodeN was the LFO
node ofP before splitting, nodeNFI is the LFO ofP after splitting
nodeN. The LFO node ofP has been moved exactly one node towar
the input along pathP.

It follows that, by splitting all nodes from the LFO node to the FF
node in reverse topological order, the LFO node will be exactly t
fanin node of the FFI node alongP, and the edge between them ca
be removed. This is illustrated in Figure 1, where nodesn5, n4, and
n3are split in that order. After splitting, noden2 is the LFO node ofP
and lies before the FFI node of P (n3_new). The edge betweenn2and
n3_newcan then be removed to eliminateP from the timing graph.
The node splitting procedure is given below.

Procedure 1. Node Splitting. Consider a nodeN with stained fan-out
edgesE = {e1,.....,ek}. The splitting of N is done in the following
sequence of steps:

(i) Add k nodesN1,, Nk. (ii) Connect all fan-in nodes ofN to each
of N1, ..., Nk. (iii) For i=1,...k, move fan-outei from N to Ni.

The above node splitting procedure has the following propert
which we will use to eliminate the false paths:

Path preservation property: The procedure preserves all the path
in the original graph, except that nodeN is replaced by one ofN1
throughNk on some paths.

Fan-out transfer property: The k stained fan-outs ofN are
transferred to each fanin node ofN. N1 throughNk are now fan-out
free, andN has only true fan-out edges. Note that the fan-ins of eve
node in the graph have remained the same.

It may first seem that the node splitting procedure will add a
exponential number of new nodes. A careful analysis will reveal th
the number of nodes added is bounded by N, where N is the num
of edges in the false paths specification. When a nodeN is split, the
number of newly generated nodes is equal to the number of fan
edges ofN that lie on one of more false paths (stained edge
Splitting nodeN also increases the number of stained fanout edges
the fanin nodes ofN. Thus, by splitting nodes in reverse topologica
order we increase the number of edges in the timing graph for
next level of nodes that will be split. However, the total number
stained edges itself does not increase as a result of node splitting
can be seen from Figure 2. Also, the number of stained edges
never exceed the number of edges in the false path specificat
Since only one new node is created at the most for every stain
edge, the number of nodes added in the true timing graph is boun
by the number of edges in the false path specification.

Theorem 1. Let P be a false path in circuit graphC with NFFI and
NLFO as the FFI and LFO nodes onP, such that eitherNFFI andNLFO
are one and the same node, orNLFO occurs afterNFFI. The false path
P can be eliminated, and all other paths preserved, by splitting ev
node fromNLFO up to NFFI (both inclusive), in that order, using
Procedure 1, and then deleting the stained edge onP that is fanning
into one of the split nodes ofNFFI.

Proof: The path preservation property guarantees that all paths in
original graph are preserved after every splitting. Let S be the sp

n1

P
n6

n5n4n3

n2

(a)
n1

P n6

n5n4n3

n2

(b)
n3_new n4_new n5_new

Figure 2. A node before and after node splitting.

e1

e2

N

N1

N

N2

e1

e2

NFI NFI
P1

P2
P3

P1

P2

P3

g

ing
at
es
2
on

ies
uts

of

se

are

by
al.
aths
for
st

he

nly
exit

m
h is
for

ed
node ofNFFI through whichP is passing in the new graph obtained
after all splitting. Due to the fan-out transfer property of Procedure 1,
and the order in which we split the nodes (viz. fromNLFO up toNFFI
in that order) pathP in the new graph is guaranteed to be fan-out free
from S onwards. Thus the node fanning intoSand lying onP (call it
Nin) is now the LFO node ofP. Moreover, since the fan-ins of no
node in the graph has changed,Swill be the FFI ofP. By lemma 1,P
can be eliminated, and all other paths preserved, by deleting the edge
betweenNin andS.

Corollary 1. SupposeC is a circuit graph with nosimplefalse paths
(those paths which can be eliminated by application of Lemmas 1-3),
andP is the set of all false paths inC. Let N be the union set of nodes
from the FFI up to the LFO (both inclusive) of every pathP in P. All
paths inP can be eliminated, and all other paths preserved, by first
splitting every node inN using Procedure 1 in an order guaranteeing
that a node is not split after any of its fan-in nodes is split, and then
deleting the stained fan-in edges of every path fanning into one of the
split nodes of the FFI of that path.

Property.Fan-out free tail creation. Call the set of edges of a false
pathP from a nodeN through the last edge thetail of P at N. The
splitting of all nodes from LFO up to and includingN in that order
creates a tail ofP at someNk (a split node of N) such that this tail is
fan-out free.

Procedure 2. Elimination of all false paths.

(i) Levelize the circuit graphC. (ii) Construct a set of nodesN
consisting of all nodes from the FFI to the LFO of every false path in
P. (iii) Split every node inN in a levelized manner from output to
input. (iv) Delete the edges on each path that are fanning into the split
nodes of the FFI nodes of every path.

We will now show that we can do better than what is suggested by
Procedure 2. We will introduce the notions of ‘true FFI’ and ‘true
LFO’ to help develop the necessary concepts.

When multiple false paths are present in a timing graph, the FFI and
LFO nodes can be defined more precisely as the first node along a
false pathP where a true path joins pathP, and the last node along
pathP where a true path leavesP, respectively. We earlier defined the
tail of pathP at nodeN, whereN is a node onP, as all edges ofP
from nodeN through the last edge ofP. Likewise, we define thehead
of P at node N as all edges ofP from the first edge ofP through the
fanin edge of nodeN. We are now ready for defining the notion of
true FFI andtrue LFO.

Definition.True First Fan-in Node: The true FFI node of a pathP is
the first nodeN alongP with one or more fanin edgese_inthat do not
belong toP, such that there is at least one true path that lies one_in
and the tail ofP atN. If all paths that lie one_inand the tail ofP atN
are false, then there is no true fanin path joiningP at nodeN, andN
does not qualify as a true FFI node forP.

Similarly, a nodeN along pathP only qualifies as a true LFO node of
P if, for a fanout edgee_outwhich does not belong toP, there is at
least one true path that lies one_out and on the head ofP atN.

The following theorem is key to develop the necessary and sufficient
condition for splitting a node:

Theorem 2.Let N be a node inC. SupposeT (H) is the set of distinct
tails (heads) of all the false paths passing throughN, the tails (heads)
being constructed from (until) nodeN. Procedure 2 will eliminate all
the false paths without splittingN if N meets the following
conditions:

(a) Every fan-in (fan-out) edge ofN is stained.
(b) For everyt (h) in T (H), every fan-in (fan-out) ofN has at least
one false path through it that has the same tail (head) ast (h).
(c) N is the first (last) fan-in (fan-out) node of all false paths passing
throughN.
We prove the case for paths with common tails only:

Proof: Consider the situation in which every node from the LFO
nodes up to the FFI nodes on every false path, includingN have been
split using Procedure 2. Consider a fan-out free tailti at a new node

Ni. Theorem 1 guarantees that all the false paths sharingti can be
eliminated by deleting some of the fan-in edges ofNi. This, combined
with condition (b), will delete every fan-in edge ofNi, thus making
nodeNi redundant.

Corollary 2 . In theorem 2, condition (c) can be replaced by requirin
that no true path enteringN has a tail inT.

The essence of theorem 2 and corollary 2 is that any node satisfy
their conditions is not a ‘true’ fan-in (fan-out) node, in the sense th
the true paths through it are created only by fan-out (fan-in) nod
lying after (before) that node on any path. Application of theorem
to the FFI and LFO nodes and subsequently corollary 2 repeatedly
the topologically-next nodes has the effect of moving the boundar
(FFI and LFO) closer. That is, FFIs are pushed toward the outp
and LFOs pushed toward the inputs, thus reducing the number
nodes to be split significantly.

Figure 3 shows a simple example of a timing graph with two fal
paths which share a common tail at noden5. If each path is
considered individually, noden5will be the FFI node and noden7 the
LFO node for both paths. Therefore, all nodes fromn7 to n5 would
be split. Using the above definitions, however, the false path one3
has a common tail with the false path one4at noden5. Therefore, the
first FFI node is notn5 but n6, and only nodesn7 andn6 need to be
split. Figure 3(b) shows the timing graph after both these nodes
split. Edgee5 can now be removed to eliminate both false paths.

It can easily be shown that the set of nodes identified for splitting
Procedure 1 together with Theorem 2 and Corollary 2 is optim
That is, the set cannot be further reduced and still cause all false p
to be removed. Thus, the necessary and sufficient condition
splitting a node is that it lies between the first ‘true’ fan-in and the la
‘true’ fan-out of any false path.

3. False subpaths and false subgraphs
A false subpath Pwith start nodes and end nodef potentially
consists of an exponential number ofcomplete false paths. However,
all these false paths share a common tail at nodes and a common
head at nodef. Thus, it is clear that the earliest possible FFI node ofP
is the fanout node ofs, and the last possible LFO node ofP is the
fanin node off. Because of this, only the nodes that lie between t
start node ofP and the end node ofP may need to be split.

Likewise, a false subgraphwith entry nodesS and exit nodesF
consists of a set offalse subpathsPj, with start nodesj ε S, and end
node fj ε F. Therefore, only the nodes betweensj and fj need to be
split, as explained above. This means that for a false subgraph, o
the nodes that lie on the false subgraph between the entry and
nodes may need to be split.

From the aforesaid discussion, it is thus clear that the maximu
number of new nodes that need to be added to the true timing grap
bounded by the number of edges in the false path specification
false paths, false subpaths, or false subgraphs.

The minimumset of nodes that need to be split can be determin
using theexact algorithm shown below in pseudo-code.

FindFaninNodes()

for (all edges e) {if (eε a false path) e->stained=T}
for (all nodes n) {n->fanin=F; if (nε a false path) n->stained=T}

Figure 3. False paths that share a common tail.

n1

n2

n3

n4

n5 n6 n7

n8 n9
e1

e2

e3
e4

e5 e6
e7

e8
(a)

(b)

the
se
. In
it
h

ing
hs,

cient
s
re
m

lse
sed.
the
the
ted
ow
lse

ly-

-

”,

e-

E

y:

it
d

for (all stained nodes n, in C, in topological order)
if (for any fanin edge e_in, of n, e->stained == F) n->fanin = T
for (all fanout edges e_out, of n) {

e_out->tail_list = tails of pathsε e_out, at n
for (all paths P, starting at n,ε e_out->tail_list)

for (all fanin edges e_in, of n)
if (for all false paths FPε e_in, FP !ε P) n->fanin = T
if (n->fanin==T)

for (all fanout edges e_out, of n) e_out->stained = FALSE

The number of paths that lie on the tail of a false subpath or subgraph
can grow exponentially with the size of the timing graph. The above
algorithm thus has a worst-case run time exponential with the size of
the timing graph. To avoid this complexity, we also propose a
heuristic approach to identify the common set of tails and heads for
the false paths. In this algorithm, a set of paths is considered to have a
common tail, only if these paths started at the same node. This is
more restrictive than the criteria set forth in Theorem 2, and
therefore, it will not find all common heads and tails. The algorithm
propagates a set of path-sets along edges, each path-set having a
common tail. In order to obtain a linear run time, the list of path sets
is limited to a user specified constraint K, set to 50 in our
experiments. The algorithm for finding common tails is shown below
in pseudo-code:

FindCommonTail()

for (all edges e)
e->tail_l = NULL; e->mark = F;
e->start_set = set of paths that end at e;
e->path_set = set of paths the lie on e;

for (all nodes n) n->c_tail=T;
for (all stained edges e, in topo-reverse order) {

for (all fanout edges e_out of e->fanoutnode)
for (all path_sets S, in e_out->tail_l)

add_to_list(e->tail_l, S e->path_set)
add_to_list(e->tail_l, e->start_set);
if (number of elements e->tail_l > K)

remove all path sets in e->tail_l after K;
if (a path pε e->path_set is notε e->tail_l)

e->fanin_node->c_tail=F;
for (all tail sets S in e->tail_l)

/* check if all fanin edges have a path in S*/
for (all paths p, in S) p->fanin_edge->mark=T
for (all fanin edges e_in, of e->fanin_node)

if (e_in->mark==F) e->fanin_node->c_tail=F;
e->mark = F;

We must point out that the number of new nodes added to the graph is
O(N), where N is the number of edges in the specification of false
path, false subpath, or false subgraph, even when the set of nodes to
be split is determined by the heuristic algorithm. The heuristic (sub-
optimal) procedure should not be confused as one that gives rise to
the addition of an exponential number of new nodes to the graph.

4. Experimental results
The method described above for generating true timing graphs from a
timing graph with user-specified false subpaths was implemented in a
timing analysis and circuit optimization tool. The proposed approach
was tested on industrial circuits ranging from 1,700 to 22,000
transistors and of both semi-custom and custom design styles. Table 1
shows the results of eliminating false subpaths from the delay graph
for the benchmark circuits.

For each circuit in Table 1, the number of false subpaths removed is
listed. Some circuits were run multiple times, each time with a
different number of false subpaths. The list of false subpaths was
generated by the user or through automatic means. The table shows
that the number of newly added nodes in the timing graph (#added
nodes) is easily bounded by the number of edges in the false path
specification. In reality, the number of added nodes is dramatically
less than the bound given by the size of the false path specification.
This is due to the presence of a large number of paths with common
tails and heads, and with overlapping edges. The table shows that the
number of added nodes is small, even for a very large number of false

subpaths. The table also shows that the run time for generating
false-path-free timing graph scales linearly with the number of fal
subpaths, and is less than 700 seconds for 500,000 subpaths
practice, timing analysis will be performed many times during circu
optimization, and the run time for generating the true timing grap
can easily be amortized over the circuit optimization run time.

5. Conclusions
We presented a new method for generating a false path free tim
graph from a timing graph and a list of user-specified false subgrap
false subpaths, or complete false paths. The necessary and suffi
condition for removing a false path from the timing graph wa
defined, and from this, the minimum number of nodes that a
required to be split was derived. Since determining the minimu
number of nodes to be split requires exponential run time for fa
subgraphs and false subpaths, a linear time heuristic was propo
This heuristic generates a false path free timing graph where
number of added nodes is bounded by the number of edges in
false path specification. The algorithms were implemented and tes
on a number of large industrial benchmark circuits. The results sh
that the method can easily remove a large set of specified fa
subpaths and subgraphs with excellent run time performance.

References
[1] J. P. Fishburn, et.al. "TILOS: A posynomial programming approach to

transistor sizing," ICCAD, Nov 1985.
[2] D. H. C. Du, et. al. "On the general False path problem in timing ana

sis", DAC, 1989, pp. 555-560.
[3] P. C. McGeer, et. al. "Efficient Algorithms for Computing the Longest

Viable Path in a Combinational Network", DAC , 1989, pp. 561-567.
[4] S. Devadas, et. al. "Computation of Floating Mode Delay in Combina

tional Circuits: Theory and Algorithms", IEEE Trans. on Computer
Aided Design, Dec. 1993.

[5] H. Yalcin, et. al. "An Approximate Timing Analysis Method for Datap-
ath Circuits", ICCAD, 1996.

[6] Y. Kukimoto, et. al. "Approximate Timing Analysis of Combinational
Circuits under XBD0 Model", ICCAD, 1997, pp. 176-181.

[7] Y. Kukimoto, et. al. “Hierarchical Functional Timing Analysis”, DAC,
1998, pp. 580-585.

[8] K. P Belkhale, et. al. “Timing Analysis with known False Sub-Graphs
ICCAD, 1995, pp. 736-739.

[9] E. Goldberg, et. al. “Timing Analysis with Implicitly Specified False
Path”, Int. Workshop on Timing Issues in the Specification and Synth
sis of Digital Designs, T99, 1999.

[10] K. Keutzer, et. al. “Is Redundancy Necesssary to Reduce Delay”, IEE
Trans. on CAD, April 1991.

[11] A. Saldanha et. al, “Circuit structure relations to redundancy and dela
the KMS algorithm revisited”, DAC 1992, pp. 245-248.

[12] D. Blaauw, et. al. “Generation of false path free tming graphs for circu
optimization”, Int. Workshop on Timing Issues in the Specification an
Synthesis of Digital Designs, 1999.

U

Circuit # FET
false
subpath

edges in
false path

specification

Time for
true graph
generation

(sec).

added
nodes

mrrnd 1,744 49 435 < 1.0 99

mefrm 4,029
28 156 < 1.0 43

210 2,574 < 1.0 105

10,210 156,358 14.0 181

32,932 456,480 36.0 195

mbbus 4,157 1,532 17,220 1.0 158

4,320 41,362 12.0 454

mereg 4,902 2,398 13,334 5.0 405

vmtx 22,113
96 1,272 6.0 113

224,128 2,471,936 340.0 268

426,144 5,270,656 644.0 412

Table 1: False path removal results

	Main
	DAC00
	Front Matter
	Table of Contents
	Session Index
	Author Index

