Removing user-specified false paths from timing graphs

David Blaauw, Rajendran Panda, Abhijit Das
Motorola, Inc., Austin, TX. E-malil: {blaauw, panda}@advtools.sps.mot.com

Abstract une approach Tor removing Specitied false paths from tuming
analysis is to simply filter them from the timing report. However,

We present a new method for removing user-specified false sul?—‘OSt circuit optimization tools require not only the identification of
graphs from timing analysis and circuit optimization. Given a tim- € true critical path, but also the true slack of all nodes in the
ing graph and a list of specified false paths, false subpaths, or fals ircuit. True slacks are not available in the path filtering approach.
subgraphs, we generate a new timing graph in which all specified? [8], an approach for removing known false subgraphs from
false paths are removed using a process of node splitting and eddéning analysis is proposed. This method uses additional book-
removal. We present the necessary and sufficient condition for splitt€€pIng during the propagation of arrival and required times.
ting a node, and show that the number of nodes that must be addddowever, the method has a worst-case complexity that is
to the timing graph is linear with the size of the false path specifica-8Xponential with the number of specified false subgraphs. Also, itis
tion. We also present an algorithm for finding the minimum set of?0t clear how easily other timing algorithms such as incremental
nodes that must be split. Since this algorithm requires exponentiaiMing analysis, multicycle path handling, and top critical path

run time for false subpaths and false subgraphs, we present a he@numeration can be extended with this approach. In [9], an
ristic splitting approach which has linear worst-case run time, and /mprovement of the algorithm in [8] is proposed. The run time is

where the number of added nodes is linear with the size of the fals@ignificantly reduced, but the worst-case run time remains
path specification. The heuristic approach was implemented an§*Ponential with the number of false subgraphs.

results are given for large industrial circuits. In this paper, we use an approach based on node splitting. By
1. Introduction splitting nodes and removing certain edges from the graph, it is

o i _ .. possible to isolate and remove the specified false paths without
Static timing analysis has become an integral part of the timingemoving any true paths. An advantage of this approach is that all
verification and optimization of large digital IC designs. However, timing analysis algorithms can be directly applied to the newly
static timing analysis may include false paths in its analysis, andjenerated true timing graph without any modification to these
this results in an overly pessimistic timing report. Many circuit algorithms. The cost of generating the true timing graph is incurred
optimization tools, such as those used for transistor and gatenly once, and is amortized over the large number of timing
sizing[1], use static timing analysis in the inner loop of their analysis invocations during circuit optimization. The runtime
optimization. In this case, the presence of false paths unnecessariyenalty during timing analysis is linearly related to the number of
constrains the optimization problem and leads to either aadded nodes in the new timing graph, which, in turn, is linear with
suboptimal solution or a complete failure to meet timing the size of the false path specification. Thus, the proposed approach
constraints. Therefore, effective removal of false paths from statigs very attractive for use in an optimization framework, unless the
timing analysis is critical. Furthermore, since static timing analysisoptimization procedure alters the false paths, either through timing
is part of the inner loop of the optimization, the false paths must behanges or logic changes.
accounted for efficiently to ensure that overall performance of the_ . L . .
optimization is not significantly compromised. Earlier work in node splitting was reported in [10,11] where it was

)] _shown that a path can be removed from a timing graph by splitting

Extensive research has been done on the problem of identifyingodes along the path from the last node with multiple fanout to the
false paths which arise in a circuit due to reconvergent fanoutcircuit input nodes. This approach yields a number of new nodes
These false paths are caused by logic and temporal correlationgat is linear with the number of false paths. However, for false
between the circuit nodes. Although the complete identification ofsubpaths and false subgraphs, splitting all nodes from the first
all such false paths in a circuit is an NP-complete problem, amultiple fanout node to the primary input will yield an exponential
number of exact or approximate methods have been proposed[2-7humber of new nodes in the worst case. Our approach presented in
is paper uses a similar splitting method. However, it is shown that
t all nodes from the last multiple fanout node to the input node
ed to be split. We present thecessary and sufficienbndition
r splitting a node, and then show how this condition is satisfied
r a false subgraph by splitting only the nodes that lie on the false
bgraph. Using this method, the number of new nodes added to the
ing graph is linear with the size of the false path specification.

Also important are user-specified false paths. These are paths tht
may be logically and temporally sensitizable but are unimportant L39S
the intended operation of the circuit. For instance, a path betwee
two latches may be false when the clocks that drive the latches ar%
asynchronous with respect to one another. Another example is
path which is part of a reset or scan circuit. Since such false pat

rely on specific information unavailable to the static timing analysisFina” : ; i
; o y, in [12], a method for removing false paths from a timing
tool, they must be manually identified. graph through node splitting was introduced for false paths and

In this paper, we present an efficient approach for removing a set dflse subpaths. This method is computationally expensive as it
specified false paths from timing analysis for use in the inner loog€lies on path counting to determine which nodes must be split and
of circuit optimization. The set of false paths can be specified agvhich edges can be removed. Also no algorithm is provided to
complete paths, subpaths, or subgraphs, and will be referred to &8move false subgraphs from the timing graph.

false paths specificatioThe actual identification of false paths can ; : -~ -
be performed either manually or automatically, and is not dlscusselfgrtgﬁ"?t?rf’; gvxgélésitnptrﬁget?r;mg g?ggﬁ.sﬂgir?g (zhsigﬁég'ﬁgittig?lmwéon
in this paper. We propose a method which, given a directed, acycliGpan"show that only a subset of nodes that lie on false subgraphs
timing graph and a false paths specification, generates a new timi ed to be split to remove all false paths from the timing graph. We
graph (called thérue timing graph) from which all specified false yhon" present an algorithm for determining the minimum set of

paths have been removed. nodes that must be split. This algorithm has worst-case exponential
complexity. We therefore present a heuristic that has a quadratic run
time and generates a number of nodes that is bounded linearly by
the size of the false paths specification.

Permi ssion to make digital/hardcopy of all or part of this work for personal or 2. Removing false paths through node splitting
classroom use is granted without fee provided that copies are not made or S . . o
distributed for profit or commercial advantage, the copyright notice, thetitle of the Defmlthn. An edge '5 drue edgef every p‘"?‘th through itis a tr.ue
publication and its date appear, and noticeis given that copying is by permission of path. It is afalse edgef every path through it is a false path. Itis a
ACM, Inc. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission and/or afee.

DAC 2000, Los Angeles, California

(c) 2000 ACM 1-58113-188-7/00/0006..$5.00

stained edgé one or more false paths (and possibly some true paths)
pass through it. Thus, the false edges in a timing graph are a subsetof p .

the stained edges in that graph. NF\ e

Our approach for generating a false-path-free timing graph relies on -Bo->x< 7

the following simple observation: If an edge is false, it can be deleted, ~ Pz —7%

thus removing every false path through that edge without affecting AN

any true timing path in the circuit. Conversely, to remove a false path) & - =

it must have at least one false edge.We illustrate our approach in Figure 2. A node before and after node splitting.

Figure 1(a), which shows a timing graph with a single false path €.from nodeN to nodeN;. After splitting nodeN, the false path®
An edgee along this false path can be removed if all nodes on the,, P,, and R in the figure) now pass through the newly created
false path with multiple fanin lie topologically after, and all nodes nodesN; (nodes N and N, in the figure) and no longer have multiple

along the false path with multiple fanout lie topologically befere . . g

This condition guarantees that no paths other than the false path Iﬁ%\ﬁmf?t thlsl_tr;pde._t'lfhereflore, if ?r?ufls:toheAll_FOtﬂocilce ofa pgﬁ, "

e, and by removing from the circuit we remove only the false path!'€" alt€r spiitting, it1S no longerthe - Als0, The 1anin nodexp
We define the first node along a false path which has multiple fanin@8ng P (nodé\g,) has multiple fanout edges after splitting, since the
thefirst-fanin-nodg(FF1) of the path, and the last node along the falsianin edges oN have been duplicated. Thus, if noNewas the LFO
path that has multiple fanout as thast-fanout-nodgLFO) of the node ofP before splitting, nodéNg, is the LFO ofP after splitting
path. In order for a false path to contain at least one edge which ¢aitleN. The LFO node oP has been moved exactly one node toward
be removed, it is necessary that the FFI node of the path lig® input along patR.

topologicallyafter the LFO node of the path. In Figure 1(a), the FFI n

node of path P is node n3 and the LFO node is n5. Since the FFI ndid@llows that, by splitting all nodes from the LFO node to the FFI
for path P occurs topologicallyeforeits LFO node, path P contains Node in reverse topological order, the LFO node will be exactly the
no edges that can be removed without also removing some true pai@ain node of the FFI node alorfg and the edge between them can
The following lemmas provide sufficient conditions for removinde removed. This is illustrated in Figure 1, where nod&sn4, and
edges from a timing graph without affecting any tru@3are splitin that order. After splitting, node2is the LFO node oP

path. and lies before the FFI node of R3_new. The edge betweem2 and
nl n2 n3_newcan then be removed to eliminagefrom the timing graph.
e——pe ———De ° The node splitting procedure is given below.
~ n3 \4”4 5/ Procedure 1 Node Splitting. Consider a nodBl with stained fan-out
/ e e e edgeskE = {ey,.....,g}. The splitting of N is done in the following
p / ————— “\‘ sequence of steps:
N
. W (i) Add k nodesNq,, N.. (i) Connect all fan-in nodes dfl to each
nl n2 @ of Ny, ..., N.. (iii) For i=1,...k, move fan-out, from N to N;.
o——po——Do
- " / The above node splitting procedure has the following properties
n3 n4 n5 which we will use to eliminate the false paths:

{] o———De

Path preservation property: The procedure preserves all the paths
S —e——e in the original graph, except that nodieis replaced by one ofl

~ né 1
n3_new n4_new n5 M throughN, on some paths.

(b)
. . Fan-out transfer property: The k stained fan-outs ofN are
Lemma 1.If, in a false path P, the LFO node lies before the FFI nOdf’r’ansferred to eachp faFr)lin ﬁode Wf N, throughNj are now fan-out

then P can be eliminated (and all other paths preserved) by deletin .
every edge on P between the LFO and FFI nodes. tfre% a_md\l has only true fan-o_ut edges. Note that the fan-ins of every
node in the graph have remained the same.

Proof. For an edge of P lying between the LFO and FFI, there is) . .
exactly one path, P, passing through it, as there is no fan-in bef§renay first seem that the node splitting procedure will add an

and no fan-out after the edge. Thus, every edge between the LFO x@onential number of new nodes. A careful analysis will reveal that
the FFl is false and can be removed. the number of nodes added is bounded by N, where N is the number

i o of edges in the false paths specification. When a nddesplit, the
Lemma 2. A fan-in (fan-out) free false path P can be eliminated (angumber of newly generated nodes is equal to the number of fanout
all other paths preserved) by deleting every edge on P occuring aielges ofN that lie on one of more false paths (stained edges).
(before) the LFO (FFI) node. Splitting nodeN also increases the number of stained fanout edges of
. .. the fanin nodes oN. Thus, by splitting nodes in reverse topological
Lergmﬁ 3tk'16\ fan-tlrr]l free, fan-odutgreg flaltse path P an be ellp'm'nate&der we increase the number of edges in the timing graph for the
(and all other paths preserved) by deleting every edge on P. next level of nodes that will be split. However, the total number of

Lemmas 2 and 3 are simply special cases of Lemma 1, whigk®ined edges itself does not increase as a result of node splitting, as
provides a sufficient condition for removing an edge. We call tHe@n be seen from Figure 2. Also, the number of stained edges can

false paths that can be eliminated by the application of Lemmas Di@ver exceed the number of edges in the false path specification.
as ‘simple false paths’. Since only one new node is created at the most for every stained

edge, the number of nodes added in the true timing graph is bounded
The basic idea of our approach is this: When the sufficient conditipy the number of edges in the false path specification.
is not met for some path, we transform the graph such that the L)
condition is satisfied for some edges on the false path, allowing tHateorem 1.Let P be a false path in circuit grap@ with Ngg) and
false path to be eliminated. We do this by splitting all nodes from th o as the FFI and LFO nodes @hsuch that eitheNgg; andN_ o
LFO node to the FFI node in a manner similar to that described dfie one and the same nodeNpig occurs afteNgg,. The false path

[10] and [12] and as illustrated in Figure 2. P can be eliminated, and all other paths preserved, by splitting every

For each stained fanout edgeof nodeN which lies on one or more Node fromN g up to Neg (both inclusive), in that order, using
false paths, we generate a new ndden Figure 2, ¢ and & are the _F’roceduref 1H andl_thenddelgﬁlng the stained edgk tivat is fanning
stained fanout edges of node N. So, we generate two new nopes'%O one of the split nodes blr.

and N, corresponding to these fanout edges.Njpwe then create Proof: The path preservation property guarantees that all paths in the
new edges from all fanin nodes of nodeand move the fanout edgeoriginal graph are preserved after every splitting. Let S be the split

node ofNgg through whichP is passing in the new graph obtained (a) _———
after all splitting. Due to the fan-out transfer property of Procedure 1, & ~ ~

n3 =~ -
~ - - O
and the order in which we split the nodes (viz. frdffizo up toNgg e € B o5 M6 e W ST
in that order) pattP in the new graph is guaranteed to be fan-out free e2 o £ ;7/_ _____ X
2 __

from S onwards. Thus the node fanning i@and lying onP (call it n mo--- o——
Nin) is now the LFO node of. Moreover, since the fan-ins of no)
node in the graph has chang&lyill be the FFI ofP. By lemma 1P e PP il
can be eliminated, and all other paths preserved, by deleting the edge o 5===x :5/
betweerN;, andS.

o} o— O

Corollary 1. SupposeC is a circuit graph with nsimplefalse paths
(those paths which can be eliminated by application of Lemmas 1-3),) .
andP is the set of all false paths i@@. LetN be the union set of nodes Figure 3. False paths that share a common tail.

from the FFI up to the LFO (both inclusive) of every p&fin P. Al N;. Theorem 1 guarantees that all the false paths shariogn be
paths inP can be eliminated, and all other paths preserved, by fikliminated by deleting some of the fan-in edgelpfThis, combined
splitting every node iN using Procedure 1 in an order guaranteeingith condition (b), will delete every fan-in edge dE, thus making
that a node is not split after any of its fan-in nodes is split, and thﬁ'&deN- redundant

deleting the stained fan-in edges of every path fanning into one of the)

split nodes of the FFI of that path. Corollary 2. In theorem 2, condition (c) can be replaced by requiring
Property.Fan-out free tail creation. Call the set of edges of a falseth@t no true path enteringhas a tail in.

pathP from a nodeN through the last edge ttail of P atN. The The essence of theorem 2 and corollary 2 is that any node satisfying
splitting of all nodes from LFO up to and includingin that order their conditions is not a ‘true’ fan-in (fan-out) node, in the sense that
creates a tail oP at someN (a split node of N) such that this tail is the true paths through it are created only by fan-out (fan-in) nodes
fan-out free. lying after (before) that node on any path. Application of theorem 2
p dure 2 Eliminati £ all fal th to the FFI and LFO nodes and subsequently corollary 2 repeatedly on
rocedure 2 Elimination or afl false patns. the topologically-next nodes has the effect of moving the boundaries

(i) Levelize the circuit graphC. (i) Construct a set of nodesl (FFI and LFO) closer. That is, FFIs are pushed toward the outputs
consisting of all nodes from the FFI to the LFO of every false path #ld LFOs pushed toward the inputs, thus reducing the number of
P. (iii) Split every node inN in a levelized manner from output to nodes to be split significantly.

input. (iv) Delete the edges on each path that are fanning into the SE|6ure 3 shows a sim P ;
ple example of a timing graph with two false
nodes of the FFI nodes of every path. paths which share a common tail at nods. If each path is

We will now show that we can do better than what is Suggested nsidered indiVidUa"y, node5 will be the FFI node and node7 the

Procedure 2. We will introduce the notions of ‘true FFI' and ‘trué-FO node for both paths. Therefore, all nodes fro#hto n5 would
LFO’ to help develop the necessary concepts. be split. Using the above definitions, however, the false pate3n

)) o has a common tail with the false path ehat noden5. Therefore, the
When multiple false paths are present in a timing graph, the FFI afidt FFI node is noh5 but n6, and only nodes7 andn6 need to be
LFO nodes can be defined more precisely as the first node alongpiit. Figure 3(b) shows the timing graph after both these nodes are
false pathP where a true path joins pat) and the last node along split. Edgee5can now be removed to eliminate both false paths.
pathP where a true path leav&srespectively. We earlier defined the . . . -
tail of pathP at nodeN, whereN is a node orP, as all edges oP It can easily be shown that the set of nodes identified for splitting by
from nodeN through the last edge Likewise, we define theead Procedure 1 together with Theorem 2 and Corollary 2 is optimal.
of P at node N as all edges &from the first edge oP through the Thatis, the set cannot be further reduced and still cause all false paths

fanin edge of nod&. We are now ready for defining the notion ofto be removed. Thus, the necessary and sufficient condition for
true FFl andtrue LFO. splitting a node is that it lies between the first ‘true’ fan-in and the last

— . . ~ ‘true’ fan-out of any false path.
Definition. True First Fan-in Node: The true FFI node of a pathis
the first nodeN alongP with one or more fanin edges inthat do not 3. False subpaths and false subgraphs

belong toP, such that there is at least one true path that liee.an false sub ; ;

. ; . ¢ = path Pwith start nodes and end nodd potentially
and the tail o> atN. If all paths that lie ore_inand the tail o atN . \qjsts of an exponential numberazfmplete false pathsowever,
are false, then there is no true fanin path jointhgt nodeN, andN 5’ these false paths share a common tail at neded a common
does not qualify as a true FFI node for head at nodé Thus, it is clear that the earliest possible FFI node of
Similarly, a nodeN along pattP only qualifies as a true LFO node ofiS the fanout node of, and the last possible LFO node Bfis the
P if, for a fanout edgee_outwhich does not belong tB, there is at fanin node off. Because of this, only the nodes that lie between the

least one true path that lies enoutand on the head &fatN. start node oP and the end node & may need to be split.
The following theorem is key to develop the necessary and sufficiddkewise, afalse subgraphwith entry nodesS and exit nodes~
condition for splitting a node: consists of a set dalse subpath®;, with start nodes; € S, and end

node f e F. Therefore, only the nodes betwegrandf; need to be
split, as explained above. This means that for a false subgraph, only
the nodes that lie on the false subgraph between the entry and exit
nodes may need to be split.

Theorem 2.Let N be a node irC. Supposél (H) is the set of distinct
tails (heads) of all the false paths passing throMgthe tails (heads)
being constructed from (until) nod¢ Procedure 2 will eliminate all
the false paths without splitting\ if N meets the following
conditions: From the aforesaid discussion, it is thus clear that the maximum

number of new nodes that need to be added to the true timing graph is
bounded by the number of edges in the false path specification for
false paths, false subpaths, or false subgraphs.

(a) Every fan-in (fan-out) edge bfis stained.
(b) For everyt (h) in T (H), every fan-in (fan-out) oN has at least
one false path through it that has the same tail (hedadhps
(c) Nis the first (last) fan-in (fan-out) node of all false paths passinthe minimumset of nodes that need to be split can be determined
throughN. using theexactalgorithm shown below in pseudo-code.
We prove the case for paths with common tails only:))

FindFaninNodey)

Proof: Consider the situation in which every node from the LFO i .
nodes up to the FFI nodes on every false path, inclublihgve been for (all edges e) {if (& a false path) e->stained=T}
split using Procedure 2. Consider a fan-out freetfait a new node for (all nodes n) {n->fanin=F; if (e a false path) n->stained=T}

for (all stained nodes n, in C, in topological order) subpaths. The table also shows that the run time for generating the
if (for any fanin edge e_in, of n, e->stained == F) n->fanin =T false-path-free timing graph scales linearly with the number of false

for (all fanout edges e_out, of n) { subpaths, and is less than 700 seconds for 500,000 subpaths. In
e_out->tail_list = tails of pathse_out, at n practice, timing analysis will be performed many times during circuit
for (all paths P, starting at 8.e_out->tail_list) optimization, and the run time for generating the true timing graph
for (all fanin edges e_in, of n) can easily be amortized over the circuit optimization run time.
if (for all false paths FR e_in, FP ¢ P) n->fanin =T .
if (n->fanin==T) 5. Conclusions

for (all fanout edges e_out, of n) e_out->stained = FALSE \ye presented a new method for generating a false path free timing
. . raph from a timing graph and a list of user-specified false subgraphs,
The number of paths that lie on the tail of a false subpath or subgrqgg&e subpaths, or complete false paths. The necessary and sufficient
can grow exponentially with the size of the timing graph. The aboy@ition for removing a false path from the timing graph was
algorithm thus has a worst-case run time exponential with the sizefdfined, and from this, the minimum number of nodes that are
the timing graph. To avoid this complexity, we also propose @quired to be split was derived. Since determining the minimum
heuristic approach to identify the common set of tails and heads [imber of nodes to be split requires exponential run time for false
the false paths. In this algorithm, a set of paths is considered to havg,gqraphs and false subpaths, a linear time heuristic was proposed.
common tail, only if these paths started at the same node. Thisri§s’ heuristic generates a false path free timing graph where the
more restrictive than the criteria set forth in Theorem 2, angmper of added nodes is bounded by the number of edges in the
therefore, it will not find all common heads and tails. The algorithigse path specification. The algorithms were implemented and tested
propagates a set of path-sets along edges, each path-set havigg & number of large industrial benchmark circuits. The results show
common tail. In order to obtain a linear run time, the list of path sef§st the method can easily remove a large set of specified false

is limited to a user specified constraint K, set to 50 in oufyppaths and subgraphs with excellent run time performance.
experiments. The algorithm for finding common tails is shown below

in pseudo-code: Time for
: : # edges in
FindCommonTail
0 Circuit| # FET # false false path true gra_ph #addeq
for (all edges e) subpath specification generation| nodes
e->tail_| = NULL; e->mark = F; (sec).
e->start_set = set of paths that end at e;
e->path_set = set of paths the lie on €; mrmd| 1,744 4 43 <10 99
for (all nodes n) n->c_tail=T; 28 156§ < 1.(438
for (all stained edges e, in topo-reverse order) { mefrm| 4,029
for (all fanout edges e_out of e->fanoutnode) 210 2,574 <1p 105
for (all path_sets S, in e_out->tail_I) 10,21(Q 156,358 14)0 181
add_to_list(e->tail_I, 1 e->path_set) 32937 456.48D 360 195
add_to_list(e->tail_I, e->start_set); i !
if (number of elements e->tail_| > K) mbbus 4,15f 1,532 17,220 10 158
_ remove all path sets in e->tail_| after K; 4,320 41,362 120 484
-> ->
. %Efaafgﬁ ,?od‘e’?i*;:f;};?:;” ate->tail mereg] 4,900 2,398 13,354 50 405
for (all tail sets S in e->tail_l) 96 1,272 6. 11B
[* check if all fanin edges have a path in S*/ 3 n
for (all paths p, in S) p->fanin_edge->mark=T vmx | 22,113 224,12¢ 2,471,936 340.0 2p8
for (all fanin edges e_in, of e->fanin_node) 426,144 5,270,656 644.0 412
if (e_in->mark==F) e->fanin_node->c_tail=F;
e->mark = F; Table 1: False path removal results

We must point out that the number of new nodes added to the grapReferences
O(N), where N is the number of edges in the specification of fal . .) . .
path, false subpath, or false subgraph, even when the set of nodi@toffai's'gfgrb;rz?ﬁgt.:?gcu'boﬁ6'3‘ fggg”om'al programming approach to
be split is determined by the heuristic algorithm. The heuristic (sueﬁi L ’ . Lo
optimal) procedure should not be confused as one that gives rise’to Ei's.'."'D%CDul’g'gga:,'p%n;gIgg& neral False path problem in timing analy-
the addition of an exponential number of new nodes to the graph. [3] P.C. McGeer, et. al. "Efficient Algorithms for Computing the Longest

; Viable Path in a Combinational Network", DAC , 1989, pp. 561-567.
4. Experlmental results [4] S. Devadas, et. al. "Computation of Floating Mode Delay in Combina-
The method described above for generating true timing graphs from a tional Circuits: Theory and Algorithms”, IEEE Trans. on Computer
timing graph with user-specified false subpaths was implemented in a A'dedl DeSlgn,ID"eC- 1993. o vl hod §
timing analysis and circuit optimization tool. The proposed approatH ;'t-hYéi(r?g&viéﬁ- aL Cﬁ%Ai’gé%X'mate Timing Analysis Method for Datap-
oo .tested on_industrial _?Ircwts ranging_from 1,700 to 22’0&% Y. Kukimoto, et. al. "Approximate Timing Analysis of Combinational
transistors and of both semi-custom and custom design styles. Table' 1 Circuits under XBDO Model", ICCAD, 1997, pp. 176-181
shows the results of eliminating false subpaths from the delay gra[gr Y. Kukimoto. et. al. “Hierarchical FunE:tionaI'Tirﬁing AnaI);sis" DAC
for the benchmark circuits. 1998 op. 580-585. ' ’
For each circuit in Table 1, the number of false subpaths removed8k E:(F:’ A%e”%egg’ S[f)- @"3;?‘7@‘5‘9 Analysis with known False Sub-Graphs”,
listed. Some circuits were run multiple times, each time with y) PP (9097195 - . -
different number of false subpaths. The list of false subpaths V\@]s E. Goldberg, et. al. “Timing Analysis with Implicitly Specified False

: Path”, Int. Workshop on Timing Issues in the Specification and Synthe-
generated by the user or through automatic means. The table shows g o Digital Designs, T99, 1999.

that the number of newly added nodes in the timing gragu@éd 101 k keut t al. “Is Redund N to Reduce Delay” IEEE
node$ is easily bounded by the number of edges in the false pzﬂh] T;an?gﬁr’cibﬂpa 189?] ancy Recesssary fo Reduce belay’s

specification. In reality, the number of added nodes is dramaticajiji] A. Saldanha et. al, “Circuit structure relations to redundancy and delay:
less than the bound given by the size of the false path specification. the KMS algorithm revisited”, DAC 1992, pp. 245-248.

This is due to the presence of a large number of paths with commep| D. Blaauw, et. al. “Generation of false path free tming graphs for circuit
tails and heads, and with overlapping edges. The table shows that the optimization”, Int. Workshop on Timing Issues in the Specification and
number of added nodes is small, even for a very large number of false Synthesis of Digital Designs, 1999.

	Main
	DAC00
	Front Matter
	Table of Contents
	Session Index
	Author Index

