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A bst r act Connection to power supply

The decrease in feature size and added chip functionality in
large sub-micron integrated circuits demdacger grids for

power distribution. Since power grids are performance limit-
ing factors [1, 2, 3], then their analysis is important in order to
(1) predict the performance and (2) improve the performance if Ve
necessary. Thus, there is a clear need for effigient in terms

of both execution time and memory, techniques for power grid _——

analysis.
This paper discusses the modeling of power grids and pr#
f Contacts to devices

poses a new PDE-like multigrid method for the simulation o
power grids. The proposed method is vefficientand suitable
for both DC and transient simulation of power grids.

Level 2

Level 1

Figure 1: Power grid components.

1 Modeling of Power Grids

The first step in power grid analysis involves modeling the gridsGiven the above, the complete power grid model is com-
and the powesourcesanddrains[4]. Typically, power distri- posed of a linear netvyork of R_LC elements excited by constant
bution within an integrated circuit is done from the top-levdPltage sources and time varying current sources. The behavior
metal layer, which is connected to the package, down throjisUch a system can be expressed following the MNA formu-
inter-layerviasand finally to the active devices, as illustrated iigtion as the following ordinary differential equation:
Figure 1. The metal wires and vias are well modeled as a linear, Gx+Cx = u(t) (1)
time-invariant and passive network consisting of resistive, ca-
pacitive and -rarely- inductive elements. For modern integrafédherex is a vector of node voltages, and source and inductor
circuits such as microprocessors, such a network can easilyckirents;G is the conductance matrig; includes the capaci-
clude millions of nodes and tens of millions of elements.  tance and inductance terms, and) denotes the time varying

As for the powersourcesanddrains, their models can be sources modeling the sources and drains.
quite complex. The models for the power sources can be
involved enough to include sophisticated package and bozrd Analvsis of P Grid
models. On the other hand, the models for the power drafns nalySs of Fower rids

can account for the complex interaction between the POl to the large size of typical power grids, general circuit

g.rid, the underly_ing non-linear ci_rcuit, and the time-vary_m% ulators such as Spice [5] are not adequate for power grid
signals propagating across the chip. However, the huge Slzgr?ollysis because of CPU time and memory limitation. The in-
the power grid makes it infeasible to include any but the sim;.": . '

efficiency of standard simulators [2, 6] comes about because

f . . . . .
Y\éiWey require a lumped element approximation of the circuit
which requires the translation of a regular geometrical struc-

ture to an expansive set of equivalent circuit elements, and (b)
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sources are modeled as simple constant voltage sources
power drains are modeled as time-varying current sources.



If we applythe BackwardEulerintegrationformulato Eq. 1
we generata setof linearequations:

(G+C/h)x(t+ h) = u(t + h) +x(t)C/h )

which canbereadily simplifiedto Ax(t + h) = bwith A= G+
C/handb = u(t+ h) + x(t)C/h.

Thesolutionof Eq. 2 requiregheinversion(factorization)of
the matrix G + C/h which is independenbf x, time-invariant,
large and sparse.We note, however, thatif we hold the time
steph constantthenonly oneinitial factorizationis required,
with a forward/backvard solve at eachtime step. Since,for
large matrices,a factorizationis significantly more expensve
thana forward/backvardsolve, the useof a constantime step
resultsin large savings. The time stepneedsto be keptsmall
enougho insuretheaccurag of thesolution. For applicationin
theanalysisof powergridsof digital circuits,we find thatusing
100stepsperclockcycle (i.e. h = 0.01x Tperiod) is sufficient.

Toillustrate,we simulatea simplegrid of 33wiresin eachof
the x andy directions,connectedo a singlevoltagesourceat
oneof thecornersandloadedwith 100time dependenturrent
sourcesatrandomlocations.Theresultingelectricalmodelhas
1089nodesandatotal of 1090equationsWe performthesim-
ulation for 100time steps. Spice[5] takes 13.3 sec. of CPU
time, whereasour simulatorimplementingthe methodabove
takes0.73sec.for a netspeedumf about18x. Dueto the su-
perlineardependencef solve time on matrix size,the speedup
will be even more dramaticfor the much larger systemsnor-
mally encountere@vhensimulatingrealisticpower grids.

3 Proposed Analysis Method

In a well designedpower grid, the grid resistances much
smaller than the equivalent sink resistancesince the power

grid is requiredto deliver as constanta voltage as possible
to all sinks. This causedocal power disturbancesas would

be causedby a large localized sink, to be spread acrossan

areamuchlargerthanthatof the sink causingthe disturbance.
This spreadindeadsto voltagedistributionswhich arespatially
smooth andmotivatessolutionmethodsvhich canmake useof

this smoothnesso speedup thesolutionprocess.

3.1 Power GridsasPDEs

We notethatthe solutionof power grids resultsin a systemof
linearequationsstructurallyidenticalto thatof afinite element
discretizationof a two-dimensionaparabolicpartial differen-
tial equation(PDE). This motivatesus to considerthe power
grid problemasa discretizatiorof a continuous?DEwherethe
solutionis needecdht a spatiallyfixedsetof points.

Recently the multigrid method(MG) hasbecomethe stan-
dardfor solvingsmoothPDES[7]. Thebasicideaof multi-grid
methodss to solvetheproblemonacoarsegrid andmapthere-
sulting solutionbackto thefine grid. Using aniterative linear
solver for the fine grid, the mappedsolution provides an ex-
cellentinitial point andcorvergenceis rapid. The majortools

Figure2: Multiple resolutionpower grids.

neededor thatareintergrid transferoperatorswhicharecalled
restrictionandprolongationoperatorsTherestrictionoperator
R_mapsthe problemonto coarsegrids while the prolongation
operator? mapsthe solutionbackto finer grids.

We limit thediscussiorof intergrid transferoperatorgo the
casewheregrid spacings doubledateverylevel. Considettwo
grids wy, (fine) and wyy (coarsewith equation? rewritten asa
systemof linear equationsAjx; = b; wherei indicateswhich
grid is beingconsidered.To mapthe problemfrom oy, to wyp,
therestrictionoperator® _is used: by, = R x by. To mapthe
solutionback, the prolongationoperator?® is used: x, = P x
Xon. TO map Ay, to Agy we first reducethe grid wy, to wyn as
describedn the next sectionand then formulate Ay, at woh.
Oncethe problemis definedat the coarsergrid, the smaller
systemof equationscan be solved for the node voltagesxon,
then this solutionis mappedbackto the finer grid using the
prolongationoperator Note that for power grid problemsas
definedabore, R = PT.

3.2 Grid Reduction

In the context of power grid analysis,a natural methodfor
grid reductionis skippingevery otherwire while doublingwire
widthsto keepthetotalresistanceonstant Thisresultsin asit-
uationlik e thatillustratedin Figure2. However, typical power
gridsmaybeirregular, i.e. differentedgesmay have different
lengthsanddifferentseperatiordistancesThus,thereduction
algorithmshouldpresent systematianechanisnfor reducing
ary generl grid. Furthermorethe algorithmshouldmaintain
the structureof the original grid so thatit canbe recursiely
applieduntil a coarseenoughgrid is obtained.

The major objective of thereductionalgorithmis to remove
asmary nodesaspossiblewhile maintainingthe ability to esti-
matevoltagesattheremovednodesby interpolation.Thealgo-
rithm takesasinputafine grid wy, andalist of nodesto be kept
andproducesasoutputareducedyrid wyn, with asmallernum-
berof nodes.Thelist of keptnodesconsistof specificnodesof
interestsuchascornernodesandnodeswherevoltagesources
arelocated.

The algorithm makes useof certainstatusflags, which are
explainedin Table 1, to decidewhethera nodeis kept or re-
moved. Furthermore theseflagsindicatehow to interpolate



Indication

No flag (default)
Kept
VisitedHorizontally
Visited Vertically
Remawed

Tablel: Meaningof statusflags.

the voltageat a removed nodefrom its kept neighbors. The
grid reductionalgorithm consistsof threepassegslescribedas
follows:

1. FirstPass:

Updateeachkept node; that is, startingfrom that node,
go along horizontal (vertical) direction and flag all vis-
ited nodeswith H (V). Flag extremitiesaskept A node
which is visited both horizontallyandvertically (flagged
with bothH andV), is flaggedaskept

2. SecondPass:

ForeachH (V) node flagit asremoved(R), flagits neigh-
borsalong samerow (column) askept andthenupdate
thoseneighbors.

If anodeis not flagged(N), thenflag it asremoved (R),
andflag its diagonalneighborsaskept Again updatethe
keptnodes.

3. Third Pass(definesinterpolation):

Voltage of a kept nodeis sameas that computedat the
coarsemgrid.

Voltageof an H (V) nodewhich is thenflaggedasR is
interpolatedrom its row (column)neighbors'voltages.

Voltageof anN nodewhich is thenflaggedasR is inter-
polatedfrom its diagonalneighborswhich arekept

The diagonal neighborsof a node X are definedas those
nodesreachedby going 2 stepsfrom X first horizontally and
thenvertically or first vertically andthenhorizontally For ex-
ample,if nodeY is the upperneighborof nodeX, thentheleft
andright neighborsf Y arediagonalneighborsof X.

The algorithmis illustratedby theirregular grid wy, shovn
in Figure3 which will be reducedo resultin the grid wyh. In
ourimplementatiorof the grid reductionalgorithm,grid nodes
are sortedaccordingto their position on the grid from top to
bottom,left to right. However, notethatthisis not a limitation
of thealgorithmwhich is robustenoughto handleany orderof
thenodes.

Initially, all nodeshave the default statusof N exceptfor the
nodeswhich shouldbe kept. In this example,thesewould be
all the cornernodesof the grid (dashedhodesin Figure3). A
tagconsistingof two fieldsis associateavith every nodeof the
grid. Theleft field indicateshe statusof the nodeafterthefirst
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Figure3: Irregulargrid with statusflags.

passandtheright field indicatesthe statusof the nodeafterthe
secondoass.

As shawn in Figure 3, after the first pass,an edge(row or
column)consistingof atleastonekeptnode hasits extremities
flaggedaskept Theremainingnodeson thatedgeareflagged
with H or V basedon whetherthe edgeis horizontalor verti-
cal. Note that somenodesstill have a statusflag of N which
indicatesthatthesenodeshave not beenvisited duringthefirst
pass.Thenafterthe secondpassnodeswith aK flag arekept
while thosewith an R flag are removed thus resultingin the
coarsegrid wyn.

It remainsto describehow the interpolationworks. We al-
readypointedout thatthe statusflagsindicatewhich neighbors
of aremovednodeareusedfor interpolation.Note thatthein-
terpolationfunctiontakesinto consideratiorthe valuesof con-
ductancedetweenthe nodes. Soif the voltageat a removed
nodem s interpolatedrom thevoltagesat nodesA andB, then
thelinear interpolationfunctionI NT () is definedas:

V(m) =INT(V(A),V(B)) = aV(A) + a1V (B)

where
gma

& OmA+ OmB
ay = OmB
OmA+ ImB
Oma is the conductanceetweemodesm andA, andgmg is the
conductancdetweemodesm andB.

The reductionalgorithm appliedto the irregular grid given
in Figure 3 indicateswhich nodesare kept andwhich arere-
moved. Furthermorejt definesthe interpolationmechanism
which is illustratedby Figure 4 wherethe filled nodescorre-
spondo removednodesandtheblanknodescorrespondo kept
nodes.Thearrovs from every removednodeindicatewhich of
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Figure4: Interpolationfrom reducedyrid nodes.

its neighborsareusedfor interpolation.For example,the volt-
ageat theremovednoder is interpolatedfrom the voltagesat
its five diagonalneighborghatarekept,A, B, C, D, andE. Us-
ing theinterpolationfunctionI NT () definedabove, thevoltage
at noder is relatedto the voltagesat nodesm, n, p, andq. It
followsthat:

V(r) =INT(V(m),V(n),V(p),V(a))
V(m) = INT(V(A),V(B))
V(n) = INT(V(A),V(C))
V(p) =INT(V(B),V(E))

V(q) =INT(V(D),V(E))

Hence,
V(r) =INT1(V(A),V(B),V(C),V(D),V(E))

Finally, we point out thatif the original grid is regular, then
the algorithmis optimal. Thatis, it resultsin maximalreduc-
tion in the numberof nodesasillustratedin Figure5. In that
case,every grid reductionresultsin a linear systemwith ap-
proximately4x fewer unknovns and consequently8x smaller
CPUtime for solutionby directsparsematrix methods.

3.3 TimeDomain Analysiswith Multi-Grids

In section2 we pointedout that the fixed time stepBE inte-
grationmethodofferslargeefficiency gainsbecausét requires
only onematrixinversionfor all time steps.However, this effi-
cieng/ comesatthe costof requiringthe useof adirectsolver.
For this reasonwe arenot ableto utilize the classicalMG iter-
ationandaremotivatedto modify it.

Considerthe casewherewe usedirect solutionmethodsto
solve the original systenof equationgo getthesolutionwhich
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Figure5: BasicMultigrid operator
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Figure6: Multiple resolutionpower grids.

we denoteby x°. We thenselecta numbern of MG-reduced
systemssolve them,andusethe prolongationoperatorgo get
anestimateof thefull solutionx,i=1---n.

Figure6 shaws a plot of a randomselectionof components
of theerrorx? — x for a 66000nodepower grid problem. We
obsenefrom theplot thattheerroris smoothandwell behared
asafunctionof i or, equivalently, the logarithmof the spatial
stepsizemultiplier h. This standgo reasorsincewe expectthe
errorto beproportionalto a power of h dependingontheorder
of theinterpolationformulaused.

Giventhe above, we proposeto usethevaluesx,i =m---n
andextrapolateto theactualsolutionx®. We dothis by linearly
extrapolatingcomponentvisefor eachelementof x, i.e. fitting
alinearmodelof theform x; = & + bilog(h), thusxio =a;. We
call themethodMultigrid Extrapolation

For time domainanalysis,we solve for all X' at eachtime
point and then perform the extrapolation. As above, the LU
factorsof the systemmatricesare generatecbnceandreused



logz(h) | h dimension| cputime(sec)
7 128 | 272 2.44

6 64 | 628 3.25

5 32 | 1885 3.47

4 16 | 6355 10.02

3 8 23491 NA

2 4 90631 NA

1 2 355158 NA

0 1 908149 5993.41

Table2: CPUtimesfor largeexample.

for all time steps,preservingthe efficiency of the fixed time
stepBE scheme.

4 Experimental results

The proposednultigrid methodhasbeenimplementedandin-
tegratedinto a linearsimulatorwrittenin C++. All experimen-
tal resultsreportedin this sectionwere obtainedby running
the simulationson a 333MHz Pentiumll machinewith Red-
HatLinux 6.0 operatingsystem.

Theefficiengy of theproposedechniquas illustratedby ap-
plyingit to theanalysisof thepowergrid of alarge19M transis-
tor PaverPCprocessobuilt in a0.181 CMOS process[g The
irregular power grid onthe top 3 metallayersconsistingof ap-
proximatelynine hundredthousanchodeswassimulated.Sev-
eral grid reductionsare appliedand the problemaccordingly
mappedo thecoarsegridsasexplainedin section3.1. Table2
shavs thenumberof nodesof the grid at every level aswell as
the CPU timesfor solving the resultinglinear systemsat each
of thesegrids.

The estimatedsolutionfC is extrapolatedrom the solutions
x* throughx’. Thus,thereis noneedto solve thelinearsystems
resultingfrom thegridsatlevels1,2 and3. Thatiswhy noCPU
timesareshavn for levels1, 2 and3. As shavn in Table2, ob-
taining the solutionsx* throughx’ requiresa total of about20
secondswhile solvingthe original systemrequiresabout6000
secondsThus,the proposednethodoffersa speedupf about
300x for the given example. Of course,the multigrid method
involvessomeoverheador settingup the restrictionand pro-
longationmatricesaswell asreformulatingthe problemat the
smallergrids. But this overheads smallenoughto maintaina
speedumf two ordersof magnitudeover existing methodsor
power grid analysis.

Anothersignificantadvantageof the multigrid techniqueis
low memorydemand This follows from thefactthatthe mem-
ory requiredby ary solver is directly proportionalto the size
of thelinearsystembeingsolved. Consequentlyin the context
of power grid analysisthe requiredmemorywould bedirectly
proportionalto the dimensionof the grid. Sincethe proposed
methodmapsthelargegrid problemto smallerdimensiorgrids
and solves the resultingsmallerproblems,thenit is obvious
thatit requiredessmemorythanexisting methods As a matter
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Figure7: Errorin nodesvoltages.

of fact, simulatingthe power grid of the given examplewith
existing methodimposeghe useof aniterative solver dueto
memorylimitation. The multigrid method,on the otherhand,
utilizes direct solversthus promisingmore speedupgor tran-
sientanalysis.

To verify the accurag of the proposedechniquethe exact
solutionx? is comparedo thesolution® whichis extrapolated
from thesolutionsx* throughx’. Thehistogramof theerrorsin
thevoltagesatthedifferentnodesof thegrid is shovnin Figure
7. Thisfigure shavs thatthe error distribution approximates
normaldistribution with a meanof -2.0%,a standardieviation
of 3.0%andarangeof -17.7%to 29.9%.

Theresultingerroris oftenquite acceptableonsideringhat
the power grid drainsarerarely known to greateraccurag. Of
course,it is possibleto performiterative refinemen{9] to re-
ducetheerrorif necessaryFurthermoreye have obsenedthat
theerroris relatedto the geometryof the grid andthus,we are
looking into efficient methoddor reducingthe error.

Finally, we notethatthenumberof levelsusedfor grid reduc-
tion introducesa tradeof betweernthe accurag of the solution
andthe speedupsichiered. We illustratethis point by solving
the sameexampleagainbut now usingoneextra level for ex-
trapolatingthe solution. Thatis, the approximatesolutiong® is
now extrapolatedfrom the solutionsx® throughx’ ratherthan
x* throughx’.

This requiresan extra overheadof 28.13 CPU secondsut
the errorsarereduced. The histogramin Figure 8 shaws the
new errordistribution which still approximates normaldistri-
bution but now hasa meanof -1.7%, a standarddeviation of
2.4%andarangeof -13.5%to0 22.6%.

5 Conclusion

An efficient PDE-like methodfor power grid analysisis pre-
sented.Initial resultson realisticexamplesshon speedup®f
oneto two ordersof magnitudeover currentmethods. Note
that the proposedmethodresultsin speedupgor both DC as
well as transientanalysis. Future work involves developing
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techniquedor obtainingmore accurateresultsby considering

N
(61

differentinterpolatiormethodsaswell asdifferentmappingop-

eratorsacrosghegrids.
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