
d
l,
e

e
o
s

ly
n
a
r

re
e
t
i
a
le

n
s

w
to

l
b
f

t
v

ign

f

s
es

+

h
ns

re,
m
in

he
op-

as
per
h

at
1]
cs.
-
led
ate
in

re
w-
t of
ll

Heterogeneous Modeling and Simulation of Embedded Systems
in El Greco

Joseph Buck and Radha Vaidyanathan
Synopsys, Inc.

{jbuck,radha}@synopsys.com
Abstract
This paper describes the functional specification an

verification portions of El Greco, a system for high-leve
heterogeneous functional specification, efficient compil
simulation, and software and hardware implementation
Specifications in the form of dataflow graphs, hierarchical finit
state machines, or a mixture, are supported. These specificati
can be arbitrarily nested, as in Ptolemy [1]. When dataflow graph
are placed in a control context, the graph execution is ful
controllable; its execution can be restarted or suspended a
parameters can be changed. We describe system modeling
simulation generation in El Greco and compare to othe
approaches.

1. Introduction
Designers of complex embedded systems are under pressu

deliver more and more functionality in less and less tim
Designing at a higher level of abstraction has long been accep
as a means of achieving greater productivity. However, it
generally accepted that the needed abstractions are dom
specific, and that these abstractions need to be efficiently coup
inspiring work like that of the Ptolemy project [1]. El Greco’s
focus is on the design of system-level tools for the curre
generation of digital communication and multi-media system
and we find that control and dataflow operations are common
mixed at multiple levels of hierarchy, making it difficult to
decompose systems into control-dominated and dataflo
dominated components each to be designed by an appropriate

It is generally accepted that functional verification dominate
the time required to design, implement, and test an embedd
system. It is not sufficient to simply be able to mode
heterogenously; the functional simulation of such models must
extremely efficient and implementation from high levels o
abstraction must avoid the synthesis of redundant hardware
software. We believe the simulation-based approach
heterogeneity used by Ptolemy will not be sufficient to achie
this, unless we can optimize across domain boundaries.

El Greco’s core concepts are:

• Provide a range of modeling styles so that the righ
w
d

of
cal
e
ese
a
ion
d
.

ns

d
nd

to
.
ed
s
in-
d,

t
,

ly

-
ol.

s
ed

e

of
o
e

t

abstraction can be used and details added as des
progresses by performing data and control refinement.

• Provide the ability to nest models at will, at any level o
hierarchy (inspired, of course, by Ptolemy).

• Base the modeling concepts on principles with rigorou
semantics: dataflow and synchronous-reactive languag
such as Esterel [2].

• Specify conditions, actions, and other behavior in a C+
subset, which is parsed and understood by the tool.

• Use detailed analysis and compilation to achieve very hig
simulation speed. Dead code is removed and transformatio
take place across control/dataflow boundaries.

• Use internal representations that are suitable for hardwa
embedded software, or compiled simulation generation fro
the same models. In particular, actions that are specified
C++ can be emitted to back end tools in VHDL or Verilog.

• Provide a state-of-the-art user interface that simplifies t
capture of complex heterogeneous systems, either in a t
down or bottom-up manner (not shown in this paper).

El Greco is designed to provide a path to implementation
embedded software, synthesizable hardware or both. This pa
describes only modeling and functional simulation, thoug
implementation issues figure strongly into the design.

2. Relationship to previous work
This work is strongly influenced by a number of systems th

came before it; particularly strong influences include Ptolemy [
for heterogeneous design, and Esterel [2] for control semanti
While this work was performed independently of Ptolemy’s *
charts [3], there are many resemblances; we make detai
comparisons in section 3.1. The semantics of hierarchical st
machines resembles that of Andre’s SyncCharts [4], which is
turn a variant of Harel’s StateCharts [5].

2.1 Combining dataflow and control

There are many hybrid modeling approaches in the literatu
that, in some sense, embed FSM-style specification with dataflo
like data communication. We see two types of approaches: tha
Ptolemy [3], which allows arbitrary nesting, and that of almost a
other tools, which restrict the form of the heterogeneity. We follo
a Ptolemy-like approach in our work; differences will be describe
in a subsequent section.

SDL [6] and Polis [7] specify local behavior in the form of
extended finite state machines and then use some form
asynchronous inter-process communication between these lo
behaviors. Alternatively, a supervisory controller controls th
execution states of a connected graph of modules, where th
modules communicate in a dataflow style (e.g. [8]). In [9],
dataflow system is enhanced by adding event-style communicat

a
the
e
he

ed
w

e
co
its
ly

as
d and
of
, a

tc.
ion

set
e,
We
can

its
ak
the
th
le
on
9”
or
is

ion,
st.

ike
but
nds.

lly
ues
In
ent
ls
be

ters

o
like
e
ain
between finite state machines and dataflow actors; this introduces
nondeterminism which must be controlled by a knowledgeable
user who specifies scheduling constraints.

These techniques differ in details: the communication channels
might be a one-place buffer or a FIFO queue, for example.
However, the heterogeneity is constrained; the nesting of models of
computation always follows the same form (e.g. primitive FSM-
like blocks at the innermost level, surrounded by inter-process
communication between such primitives).

The “bottom level”, where a synchronous-reactive behavior is
typically specified, may itself be specified in a heterogeneous
manner, using a language like Esterel, or regular expressions [10]
to structure the control and a software language (e.g. C) or a
hardware implementation language to specify atomic actions to be
executed by the controller. ECL [11] permits the use of both types
of constructs (reactive and computational) to be specified in one
language, as does SystemC (formerly called Scenic [12]).

2.2 Control specification

Our control modeling techniques have their roots in those of
Harel’s Statecharts [5]. There have been problems with the
semantics of Statecharts, resulting in a large number of Statecharts
variants [13]. Our control models closely resemble those of
Andre’s SyncCharts [4]. The detailed formal semantics of control
models are defined in terms of a translation to an Esterel equivalent.
We have chosen strictly synchronous semantics to enable a
complete analysis at compile time, resulting in more efficient
compiled simulation and hardware implementation.

2.3 Dataflow specification

El Greco uses cyclo-static dataflow (CSDF), which was
pioneered by the Grape-II project at the Catholic University of
Leuven [14]. Dynamic dataflow is also supported. The use of
CSDF permits finer-grain control of multirate dataflow graph
execution than is possible with synchronous dataflow.

3. Modeling in El Greco
In El Greco, the user composes designs in either a top-down or

a bottom-up fashion, by instantiating models. Models can be
primitive or hierarchical.

A primitive dataflow model, or prim_model, may read or write
data from or to ports, and can have internal state. Dynamic dataflow
and static dataflow models are written in exactly the same way;
analysis determines whether a prim_model is dynamic or not.

There are four types of hierarchical models:

Dataflow graphs. These are graphs whose nodes are instances of
other models; the ports of the instances are connected by nets. A net
has one driving port and can have any number of destination ports.
The communication is FIFO data streams; the streams are
duplicated if there are multiple outputs on a net.

Or-models. An or-model is a collection of mutually exclusive
states with transitions between states. The states can be atomic or
can be instances of other models. Atomic states may optionally
have an inline action, which is a statement of C++. If the member
states of an or-model are all atomic, it represents a flat FSM. The
states are connected by transitions, with conditions and actions,
written in C++.

And-models. An and-model represents a group of models that
execute in parallel lock-step with broadcast synchronous-reactive
communication between them. We use the constructive semantics
of Esterel to determine fixpoints in the event of cycles [16] and

reject cases that do not have unique fixpoints at compile time.

Gated models. A gated model has one or two children, plus
gating condition, which can depend on ports and parameters of
model. If the gating condition is true, the first child is run and th
second (if any) is suspended. If the gating condition is false, t
second child (if any) is run and the first is suspended.

We use the termcontrol modelto describe the three types of
hierarchical models that are not dataflow models.

For the most part, the user of a model need not be concern
whether that model is implemented as a hierarchical dataflo
graph, or-model, or primitive dataflow model (for example); th
external interface looks the same in all three cases. In El Gre
there is a clear separation of the interface of a model from
implementation. A graphical symbol for a model is automatical
generated (which then can be customized).

In tools such as Ptolemy and COSSAP, model execution h
three phases. In the reset phase, parameter values are obtaine
checked and the model is initialized. In the main phase
execution, the model reads and writes data. In the final phase
wrap-up occurs, for freeing resources, writing final results, e
However, all instances are reset at the beginning of a simulat
run, and all are “wrapped up” at the end.

When hierarchical control is added, it becomes natural to re
or wrap up instance execution at multiple points (for exampl
where a hierarchical state of an or-model is entered or exited).
support this, and go beyond it in that parameters of instances
be changed at the point of entry.

In El Greco, an instance of a model can be terminated by
parent in one of two ways, so called strong termination and we
termination. These concepts are borrowed from Esterel, where
term “abort” is used instead. If an instance is terminated wi
strong termination, it does not participate in the execution cyc
where the strong termination event occurs; with weak terminati
it does. Gérard Berry has suggested an analogy to the Unix “kill -
and “kill” events; for the latter there can be a cleanup handler; f
the former no such handler is possible. When an instance
terminated its internal state, if any, is lost.

In addition, an instance can “voluntarily” exit. This may in turn
cause the parent model to exit, or can be caught, like an except
and trigger an action in the parent. Again, any internal state is lo

Finally, an instance can be suspended. The effect is much l
gating the clock of a hardware component: state is preserved,
the instance does not “see” input events until the suspension e

The interface of a El Greco model has:

Zero or moreports. Ports provide the only data communication
path between models. In a dataflow context, ports are logica
connected to FIFO queues (though, where possible, such que
are replaced by buffers of size one in the compiled simulation).
a control context, ports are bound to signals belonging to the par
model. Ports have a type and a direction (in, out, or inout). Mode
with inout ports cannot be used in a dataflow context, but can
used in a control context.

Zero or moretype parameters. Rather than requiring one model
to add integers and another to add bit vectors, type parame
permit models to be written once for all types.

Zero or moreparameters. Parameters provide read-only data t
a model and are an extension of the parameters seen in tools
Ptolemy, or generics in VHDL. However, to make control mor
powerful, we permit parameters to be changed under cert

lo-

ok

ins
ph

n
pse
ces
in

m
s

ces
to
to

es.
es
to

do-
an

he
del
ost
for

ses

le
to

are
r
ue.
g,
g,

of
ean
or
.

el:
del
he

del

of
fer
be
ith
a

circumstances by the control environment (which can be a control
model in the simulation, or the top-level supervisor). Parameters
may have several modes:

• structural parametersmust be constant; their values are
compiled into the simulation.

• read-on-reset parametersare sampled when the model they
belong to is reset; their value can be changed by the control
environment (e.g. by binding a read-on-entry parameter of a
dataflow graph to a local signal in a control model). A typical
example of such use is where the result of one dataflow
computation (say, a signal detection routine) determines the
parameters for a subsequent computation.

• dynamic parameterscan be changed at any time; this feature
is used to make simulations interactive and has an effect
similar to thevolatile keyword in C/C++.

3.1 Comparison to Ptolemy *-charts [3]

This work resembles [3], but there are important differences.

Ptolemy takes a simulation-oriented approach to heterogeneity:
it has strong heterogeneous simulation capabilities but rather
limited implementation or compiled simulation capabilities for
models other than dataflow. We take a more implementation-
oriented approach, meaning that models are generally speaking
“white-box” and completely analyzed at simulation generation
time (though we do use a Ptolemy-like approach to interface with
hardware description language or instruction set simulators).

In Ptolemy, models intended for interpreted simulation are
written in a completely different manner from models intended for
software code generation (or compiled simulation) or hardware
synthesis. In El Greco, all implementation models are simulatable.

As in Esterel, El Greco does fixpoint analysis at compile time to
avoid the need for VHDL-style microsteps at simulation runtime.

El Greco can do static dataflow scheduling even in the presence
of symbolic data rates (within limits); Ptolemy cannot do this.

El Greco is designed to permit changes to parameters of
instances based on control model behavior.

Like *-charts, we permit the user to choose different models of
concurrency (e.g. dataflow vs. synchronous-reactive). However, we
believe that neither we nor they entirely succeed in making
concurrency completely orthogonal to FSM sequencing, since in a
hierarchical FSM a child instance is concurrent with its parent.

4. Cyclostatic analysis of prim_models
Primitive dataflow models are analyzed to determine whether

they are statically schedulable. This is accomplished by attempting
to divide the main action into phases and groups of phases. A phase
is a segment of code that reads one value from some set (possibly
empty) of input ports, optionally performs a computation, and then
writes one value to some set (possibly empty) of output ports. We
can also have phase groups, typically delimited byfor statements.
If we can deduce the number of times the loop is executed, and this
number is a constant or depends only on parameters, we have
identified a phase group.

An example of statically schedulable prim_model follows. First
we have a phase group of Factor phases that reads the input; it is
followed by a single phase that writes the output.

prim_model DownSample {
type_param T = float;
port in T InData;
port out T OutData;

param read_on_reset unsigned Factor;
main_action {

for (unsigned i = 1; i <= Factor; i++)
read(InData);

OutData = InData;
write(OutData); }}

prim_models whose I/O pattern depends on data are not cyc
static, and usually result in dynamic scheduling.

5. Dataflow graph scheduling
While there are some exceptions, control models, as a rule, lo

like unit-rate static primitive dataflow models to the dataflow
scheduler and are treated as such. If the dataflow graph conta
other dataflow graphs, we flatten them, to obtain one flat gra
consisting of primitive models or control models.

El Greco’s dataflow scheduler performs transformations o
adjacent instances in the dataflow graph, in an attempt to colla
pairs of instances into clusters, which are then treated as instan
themselves. There is insufficient space to describe the algorithm
detail here, but it is closely related to the clustering algorith
described in [15]. A qualitative description will have to suffice, a
a full description would require a complete paper.

We alternate between a merge pass, in which adjacent instan
with matching data rates are merged wherever this will not lead
deadlock, and a loop pass, where transformations are applied
instances to create more opportunities for subsequent merg
Possible transformations include “stalling”, where empty phas
that move no data are added, “sum-up”, where a loop is added
combine all the phases of an instance into one phase, and “
while”, where a do-while loop is added that repeatedly executes
instance until a data value emerges or is consumed.

The merging and looping transformations are applied to t
internal syntax trees that represent the actions of each mo
instance; dead code is eliminated from the merged clusters. In m
cases the use of CSDF means that buffers of size one suffice
communication, so the generated simulation code typically pas
values between instances in registers.

6. Mapping of Control constructs to Esterel
The semantics of El Greco control models closely resemb

those of Esterel modules, although the user is not exposed
Esterel. Control models can have variables and signals, which
identical to those of Esterel, with the following difference: fo
valued signals, we do not use the presence bit, but only the val
As a result, we have two kinds of boolean signals: non-latchin
corresponding to pure signals in Esterel, and latchin
corresponding to valued boolean signals. We also permit the use
general expressions in contexts where Esterel requires Bool
combinations of pure signals; we hide the distinction between, f
example, Esterel’spresent andif statements with code generation

And-models correspond to the || (parallel) statement of Ester
the child models execute in parallel lockstep, and the and-mo
exits when all of its children exit. Gated models correspond to t
suspendconstruct of Esterel, combined with parallelism. In
dataflow contexts, in most cases we can transform a gated mo
inline to anif-then-else construct.

Or-models are state transition graphs, resembling those
Statecharts, but much closer to those of SyncCharts [9]. They dif
from those of SyncCharts chiefly in that dataflow graphs may
embedded inside. As in Statecharts, start transitions, possibly w
conditions, select the initial state. Transitions are enabled by

to
odel
to
are

trol
rol
ded
by

ch
ach
es
is
ith

ed
to

ns.

ild
ent
is
a

n
se
be
be

to
ed
r
me

of
is
ty.
nd
y.
condition on the arc. There are three primary types of transitions: a
strong termination transition, a weak termination transition, and an
exit-handling transition. The first two types of transition terminate
the execution of the currently active instance. Strong termination is
equivalent to theabort statement of Esterel; weak termination is
equivalent to theweak abortstatement of Esterel (or, equivalently,
a combination oftrap and exit). Exit-handling transitions are
enabled when the instance they are associated with exits and the
optional condition on the transition is satisfied.

If more than one transition can be active at the same point,
strong transitions take priority over transitions of other types; users
can also specify priorities. The existence of two equal-priority
enabled transitions is considered an error.

An or-model exits if an exit transition is taken. This is a
transition with a source instance but no destination instance. The
or-model also exits if the active instance exits, but there is no
enabled exit-handling transition.

Because of the correspondence to Esterel it is possible to extend
the tool to be able to incorporate models written in Esterel or an
Esterel-based language such as ECL [11] as another model type.

We use a control skeleton generator based on work by Edwards
[17] to obtain fast, efficient control code.

7. The control/dataflow interface
We now describe the control/dataflow interface, first for the

simpler case of unit-rate and then treating the general case.

We call a modelunit-rate if it can execute in a dataflow context
by first consuming one value from each input port, and then
producing one value on each output port. A dataflow graph can be
unit-rate even if it contains non-unit-rate components, provided
that a schedule exists that meets this condition at the boundaries
(for example, we could have balancing decimation and
interpolation blocks). Use of cyclo-static dataflow makes unit-rate
dataflow graphs easier to achieve, even for cases where a model
requires many samples to operate.

When a control model is embedded in a dataflow graph, it
appears as a unit-rate model: one value is consumed by each input
and one value is produced on each output. When a dataflow model
(either a prim_model or a dataflow graph) is embedded in a control
model, it may or may not be unit rate. Ports of the dataflow model
can be bound either to ports or to signals belonging to the parent
control model. In addition, parameters of the dataflow model can
be bound to parameters, ports, or signals of the parent control

model, except that structural parameters can only be bound
parameters of the parent. The streams seen by the dataflow m
are produced by sampling the values of the input port bindings
produce values, and the values produced by the dataflow model
used to update the corresponding ports or signals of the con
model. Values output by the dataflow model can be used for cont
(e.g. in an expression that causes a transition). If the embed
dataflow graph has unit rate at the boundary, the rates are
definition compatible with the rates of the parent control model.

It is frequently desirable to use a state machine to swit
between dataflow systems that require multiple data values for e
control step. To achieve this, we must tell the tool how many valu
each port of the hierarchical state will consume or produce. This
done by specifying an optional samples/step expression along w
the port binding. If the expression is omitted, one value is mov
(the unit rate case); otherwise it gives the number of values
move. However, if this feature is used, it imposes some restrictio

If we use the movement expression, then the port of the ch
instance must be bound to a port, not to a signal, in the par
control model. Furthermore any port of the control model that
bound to a non-unit-rate port of some child may not be used in
condition or action on a transition, or in the inline action of a
atomic state. The effect is that we have two kinds of ports: tho
that are only routed through to the child instances (which may
multirate), and those that can be used for control (which must
unit rate).

For gated models, the number of values read from and written
external ports is the same no matter which “side” of the gat
model is executed. It is one (unit-rate) by default; if the use
overrides this, both sides of the gated model must specify the sa
expression.

8. Modeling Example
In this section we present a simple example1 to illustrate the

various modeling constructs. The example is a simplified model
an automotive cruise controller. The top level of the design
modeled as a dataflow graph. CC_TOP is the main functionali
The rest of models (the environment) that create input stimuli a
gather output for visualization have been omitted for simplicit
CC_TOP hasbool inputs cc_on (cruise control on), cc_off (cruise

1. A number of more complex designs in multi-media and com-
munication domains have been done. We have picked a tutorial
one for brevity and simplicity.

Figure 1. Model of Cruise Control

cc_on
cc_off
speed
acc

tvc

set resumebpp

CC_TOP

ig_on ig_off

ig_on ig_off

S1

CC

Normal_
mode cntr

cont == false

cc_on
cc_off || bpp

S1

Main

Control_

Body
tvc
cont

speed

top_or

Page1 Page2

Cntr_fsm

vc
or

d

d
s.
d
n
nt
e
ed
ue

cs.

im
de

A
s,”

g

A

,”

ed

e

,
d

t

f

lt

o-

d

er
control off), ig_on (ignition on), ig_off (ignition off), set (set
cruising speed), resume (resume after pause), bpp (brake petal
push) andfloat inputs acc (current acceleration), speed (current
speed) andfloat output tvc (throttle valve control). The
implementation of CC_TOP is an or-model denoted by top_or in
the figure. Top_or has an atomic state S1 which is the start state and
a hierarchical state CC. When ig_on is true the transition to CC is
enabled and when ig_off is true CC_TOP reverts to the ‘do
nothing’ state S1.

CC is implemented as an and-model with two concurrently
executingpagesPage1 and Page2 (a page is a user interface
concept: a model that is drawn in the context of its parent). Page1
contains a gated-model that models the default behavior when the
cruise control is turned off. This model is active only when the
condition “cont == false” evaluates to true. When cruise control is
on the gating condition evaluates to false and this model freezes
retaining its internal state (if any). The internals of this model is a
prim_model, normal_mode, which simply copies the acc input to
the tvc output.

The model in Page2 that executes in parallel with page1 is again
a hierarchical control model. This is an or-model cntr_fsm with two
states S1 and Main. When cc_on is true the state Main becomes
active. In the real design Main is a dataflow graph. In this example
we have simplified to it to a single prim_model Control_Body. The
code for Control_Body is

prim_model control_body {
port in float speed;
port out float tvc;
port out bool cont;
param float k1, k2;

//local variables
float speed_ref;
bool snap_ref= true;
float tvc_int;

main_action {
read(speed);
if (snap_ref) {

speed_ref = speed; snap_ref=false;
}

float delta = speed - speed_ref;
tvc = tvc_int = k1 * delta + k2 * tvc_int;
write(tvc);
cont = true;
write(cont);

}
}

Control_Body essentially tries to bring the current speed of the
vehicle to converge to the reference speed in a smooth manner. The
parameters k1 and k2 control the manner in which this convergence
happens. This behavior is illustrated in the output trace. Here the
curve drawn with circles is the speed of the vehicle. At time 58
cruise control is turned on. At this point the reference speed is
established and it can be seen that the vehicle speed converges to

the reference speed. The second curve drawn with ‘+’ is the t
output. The curve at the bottom models the environment which f
this time window is almost a constant.

This toy example illustrates the power and flexibility provide
by the different modeling styles and the ability to nest models.

9. Conclusions
El Greco provides a powerful environment for modeling an

validating the functionality of complex heterogeneous system
The ability to model at different levels of abstraction combine
with the ability to transform models from one level of abstractio
to a lower level either by code generation or by manual refineme
on a block by block basis all within the same environment, w
believe, are key advantages. This combined with fast compil
simulations wherever possible makes El Greco an uniq
environment for rapid algorithm exploration.

10. Acknowledgments
Gérard Berry provided assistance with control model semanti

Xavier Fournari provided the cruise control example.

Kola Djigande, Thorsten Grötker, Günther Heinz, Ulrich
Holtmann, Stefan Klostermann, Songhwai Oh, Joerg Richter, T
Sampson, Karsten Sievert, Horia Toma, and Markus Wloka ma
significant technical contributions.

References
[1] J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt, “Ptolemy:

Framework for Simulating and Prototyping Heterogeneous System
Int. Journal of Computer Simulation, vol. 4, pp. 155-182, April 1994.

[2] G. Berry and G. Gonthier, “The Esterel synchronous programmin
language: Design, semantics, implementation,”Science of Computer
Programming,1992, vol. 17, no 1, pp. 95-130.

[3] B. Lee and E. A. Lee, “Interaction of Finite State Machines with
Concurrency Models,” inProc. of 32nd Asilomar Conference on
Signals, Systems, and Computers, November 1998.

[4] C. Andre, “Representation and Analysis of Reactive Behaviors:
Synchronous Approach,”Proc. CESA ‘96, IEEE-SMC, Lille, France,
July 9-12, 1996.

[5] D. Harel, “Statecharts: A Visual Formalism for Complex Systems
Science of Computer Programming,Vol. 8, No. 3, 1987, pp. 231-274.

[6] F. Belina, D. Hogiefe, A. Sarma,SDL With Applications from
Protocol Specification, Prentice Hall International (UK), Hemel
Hempstead, 1991.

[7] F. Balarin et al., Hardware-Software Co-design of Embedded
Systems - The POLIS Experience. Kluwer Academic Pub., 1997.

[8] P. Chou and G. Borriello, “Modal Processes: Towards Enhanc
Retargetability through Control Composition of Distributed
Embedded Systems,” inProc. DAC 1998, June 1998.

[9] T. Grötker, R. Schönen, and H. Meyr, “PCC: A Modeling Techniqu
for Mixed Control/Data Flow Systems,” inProc. European Design
and Test Conference, 1997.

[10] A. Seawright, U. Holtmann, W. Meyer, B. Pangrle, R. Verbrugghe
and J. T. Buck, “A System for Compiling and Debugging Structure
Data Processing Controllers”,Proc.EuroDAC 1996, September 1996.

[11] L. Lavagno and E. Sentovich, “ECL: A Specification Environmen
for System-Level Design”,Proc. DAC 1999, June 1999.

[12] S. Liao, S. Tjiang, and R. Gupta, “An Efficient Implementation o
Reactivity for Modeling Hardware in the Scenic Design
Environment”,Proc. of 34th Design Automation Conf., June 1997.

[13] M. von der Beeck, “A Comparison of Statecharts Variants,”Proc. 3rd
Int. Symposium on Formal Techniques in Real Time and Fau
Tolerant Systems, LNCS 863, pp 128-148, Springer Verlag, 1994.

[14] G. Bilsen, M. Engels, R. Lauwereins, J.A. Peperstraete, “Cycl
Static Dataflow,”IEEE Trans. on Signal Processing, Feb. 1996.

[15] J. Buck and E.A. Lee, Dynamic Dataflow Graphs with Bounde
Memory Using the Token Flow Model,”Proc. of IEEE Int. Conf. on
Acoustics, Speech, and Signal Processing, April 1993.

[16] G. Berry, “The Constructive Semantics of Pure Esterel”, draft pap
(http://www-sop.inria.fr/meije/esterel/esterel-eng.html), Jul. 1999.

[17] S. Edwards, “Compiling Esterel into Sequential Code”,Proc. 7th Int.
Workshop on Hardware/Software Codesign (CODES-99), May 1999.

	Main Page
	CODES'00
	Front Matter
	Table of Contents
	Session Index
	Author Index

