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ABSTRACT
Unpredictable behavior of cache memory makes it diÆcult

to statically analyze the worst-case performance of real-time

systems. This problem is exacerbated in case of preemptive

multitask systems due to intertask cache interference, called

Cache-Related Preemption Delay (CRPD). This paper pro-

poses an approach to analysis of the tight upper bound on

CRPD which a task might impose on lower-priority tasks.

Our method determines the program execution path of the

task which requires the maximum number of cache blocks

using an integer linear programming technique. Experi-

mental results show that our approach provides up to 69%

tighter bounds on CRPD than a previous approach.

1. INTRODUCTION
Due to the growing gap of speed between processors and

memories, the impact of cache hits/misses on overall system

performance has been increasing. Indeed, cache memory im-

proves the average performance of systems and is employed

in most mid- to high-performance computer systems. How-

ever, its inherently unpredictable behavior makes it diÆcult

to statically estimate the tight bound on worst-case perfor-

mance of the systems. Especially, worst-case performance

analysis is extremely important for eÆcient implementation

of hard real-time systems in which real-time constraints have

to be satis�ed. There are a number of previous research ef-

forts, for example [1, 3, 9, 10], to estimate the tight bound

on worst-case execution time of a given task in a single-task

environment. However, they cannot directly be applied for

preemptive multitask systems because they do not take into

account intertask cache interference, called Cache-Related

Preemption Delay (CRPD). CRPD is the time required to

reload necessary data/code which was present in the cache
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but is displaced from the cache by the other tasks. One ap-

proach to avoid CRPD is cache partitioning [5, 15]. In this

approach, the cache is divided into several disjoint parti-

tions each of which is dedicated to a speci�c task. Although

cache partitioning makes it easier to analyze cache behav-

ior in a preemptive multitask environment, it causes serious

degradation of cache performance (therefore, degradation of

overall system performance) due to limited cache capacity

available to each task.

Some recent studies incorporated CRPD into schedulabil-

ity analysis of �xed-priority, periodic, preemptive real-time

systems [2, 6, 7]. They focus on estimation of worst-case

CRPD of instruction cache memory. In [2], CRPD which a

task � might impose on lower-priority tasks is estimated by

multiplying the number of cache blocks used by � by cache

re�ll time. This estimation implicitly assumes that whole

program code of � is loaded into instruction cache. Obvi-

ously, this is a pessimistic estimation because most programs

involve conditional statements in which the execution path

depends on input data, and therefore, not all of the pro-

gram code may be executed. Lee et al.'s work [6, 7] also

su�ers from this kind of pessimism although their work is

more sophisticated than [2].

This paper proposes a new approach to estimate a tight

bound on worst-case CRPD which a given task might impose

on lower-priority tasks. Our work determines the program

execution path of the task which uses the maximum number

of cache blocks using an Integer Linear Programming (ILP)

technique.

This paper is organized as follows. Section 2 presents

a few motivating examples and describes the path analy-

sis problem addressed in this paper. Section 3 formulates

the path analysis problem as an ILP problem. Section 4

presents experiments that demonstrate the e�ectiveness of

our approach. We conclude this paper with a summary in

Section 5.

2. PROBLEM DESCRIPTION
Consider a preemptive real-time system consisting of multi-

ple tasks, and let us assume the following situation.

1. A task �0 is running.

2. Another task �1 which has higher priority than �0 ar-
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Figure 1: A motivating example.

rives at time t, and preempts �0.

3. �1 �nishes execution, and �0 resumes execution.

In this case, the CRPD caused by �1 is de�ned by

CRT � j UCB(t) \ CB(�1) j (1)

where CRT denotes the cache re�ll time, UCB(t) a set of

useful cache blocks at time t, and CB(�1) a set of cache

blocks used by �1. A block is the minimum unit of informa-

tion that can be either present or not present in the cache-

main memory hierarchy [4]. We call a block in main memory

a memory block, and also call a block in cache a cache block.

A cache block is called useful at time t if the content of the

cache block is re-referenced before being displaced from the

cache in case no preemption occurs.

According to Formula (1), CRPD depends on a set of

useful cache blocks at the time of preemption, as well as a

set of cache blocks used by the preempting task. However, in

general, it is impossible to statically know the useful cache

blocks at the time of preemption because applications with

conditional behaviors may execute di�erent program paths

at run-time (and hence result in di�erent sets of useful cache

blocks). In this paper, we aim at tightly bounding worst-

case CRPD in order for designers to eÆciently implement

preemptive real-time systems. In order to guarantee real-

time constraints, we need to conservatively assume that all

cache blocks are useful at the time of preemption. Then, the

problem which we tackle in this paper is to determine the

upper bound of the number of cache blocks used by a given

task, i.e., the maximum number of elements of CB(�1) in

Formula (1).

In this paper, we only focus on CRPD caused by instruc-

tion cache misses, and CRPD for data caches are ignored.

Also, we assume that instruction caches are direct mapped.

For example, let us assume two tasks �0 and �1 whose

location in main memory and cache mapping are are shown

in Figure 1. The task �0 is running and all cache blocks

fc0; � � � ; c7g are useful. If �1 preempts, six cache blocks may

be displaced from the cache. Then, the six blocks have to

be reloaded into the cache after �0 resumes its execution.
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Figure 2: An example showing that longer execution

paths do not always result in longer CRPD.

However, this is a pessimistic scenario: not all of the six

useful cache blocks may be displaced. This is because, in

general, programs involve conditional statements (e.g., if-

then-else statements) in which the execution path depends

on input data, and therefore, not all of the program code

may be executed. For example, if program fragments located

in memory blocks m9 and m10 are mutually exclusive, only

�ve blocks need to be reloaded.

Let us consider another example. Assume that a task

is running and all cache blocks are useful. Further assume

that another task whose control structure is shown in Figure

2 preempts. In the �gure, nodes and edges denote basic

blocks and control-ow dependencies, respectively. The size

of the nodes represents the size of basic blocks (in terms

of the number of instructions). There are two execution

paths in the program. We see that the right path contains

more instructions to be executed. However, the left path

uses more cache blocks (i.e., four cache blocks) than the

right path (i.e., three cache blocks). Therefore, the left path

leads to longer CRPD than the right path even though the

execution path length of the left path is shorter.

In the above example, we see that CRPD caused by a task

depends on the program execution path of the task, and that

the length of the execution path it not a feasible metric to

estimate CRPD. Hence, in order to tightly bound worst-case

CRPD, we need to determine the program execution path

which uses the maximum number of cache blocks.

This paper proposes an ILP-based approach to determine

the program execution path which uses the maximum num-

ber of cache blocks. By solving the ILP problem, we can

obtain a tight upper bound on CRPD.

It is well recognized that static analysis of program paths

is in general undecidable and equivalent to the halting prob-

lem. However, it becomes decidable by posing the following

restrictions on programs: no recursion, no dynamic data

structure, and bounded loops [12]. These conditions hold

for many real-time systems, hence we assume these restric-

tions to make the problem decidable.

3. PROBLEM FORMULATION
3.1 Objective Function



This section describes an Integer Linear Programming (ILP)

formulation of our program path analysis problem. The ob-

jective of our formulation is to determine a program execu-

tion path which uses the maximum number of cache blocks.

Let xi be 1 if the cache block ci is used by the program, oth-

erwise 0. Then, the number of cache blocks used is de�ned

by

N�1X
i=0

xi (2)

where N denotes the number of cache blocks. Formula (2)

is the objective function of our ILP formulation to be max-

imized.

Obviously, xi's depend on both the program execution

path and the location of the program code. Let yj denote the

execution frequency of the basic block bj (i.e., the number

of times bj is executed), and B(ci) the set of basic blocks

which use the cache block ci. For example in Figure 2, B(c0)

is fb0; b1; b3g and B(c1) is fb1g. Since we assume that the

location of program code is �xed, B(c0) can be obtained

statically. Then, xi's are de�ned as follows.

xi =

8<
:

1 if
X

jjbj2B(ci)

yj > 0

0 otherwise

(3)

According to Formula (3), xi's are not linear functions.

However, they can be linearized in the following manner.

xi 2 f0; 1g (4)X
jjbj2B(ci)

yj � U � xi � 0 (5)

X
jjbj2B(ci)

yj + 1� xi > 0 (6)

Here, U is a large integer number1.

3.2 Constraints on Program Structure and Func-
tionality

Clearly, yj 's cannot be any value and are constrained by

the structure and functionality of the program. The rest

of this section describes the constraints all of which must

be satis�ed. The constraints are based on Li and Malik's

work in [8] and re�ned to handle more general cases. As an

example for explanation, we use the control-ow graph of a

program shown in Figure 3 where the basic block b0 is the

entry and b4 is the exit of the program. fk's are control-

ow dependencies between basic blocks, and zk denotes the

execution frequency of the control ow fk.

3.2.1 Control-Flow Frequency Constraints
For each basic block bj except the entry (the �rst basic

block) and the exit (the last basic block) of the program,

total execution frequency of incoming edges to bj must be

equal to the execution frequency of bj . Similarly, the total

execution frequency of outgoing edges from bj must be equal

to the execution frequency of bj . Let INj denote the set of

1
U cannot be smaller than

P
jjbj2B(ci)

for any ci. Note that

U is constant.
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Figure 3: An execution path analysis example.

edges coming to the basic block bj , and OUTj the set of

edges going from bj . Then, the following equations must be

satis�ed.

yj =
X

kjfk2INj

zk (7)

=
X

kjfk2OUTj

zk (8)

For example, the basic block b6 in Figure 3, the following

equations must be satis�ed.

y6 = z7 + z10 = z8 + z9 (9)

Special attention should be paid to the entry and the exit

of the program. Let us assume that the basic block bj is the

entry. The execution frequency of bj is de�ned as follows.

yj =
X

kjfk2INj

zk + 1 (10)

=
X

kjfk2OUTj

zk (11)

The extra one added to
P

fk2INj
zk denotes the control ow

given from the operating system. Note that INj may not

be empty, e.g., in case there is a branch to bj . Similarly, the

execution frequency of the exit basic block bj is de�ned as

follows.

yj =
X

kjfk2INj

zk (12)

=
X

kjfk2OUTj

zk + 1 (13)

The extra one added to
P

fk2OUTj
zk denotes the control

ow from the program to the operating system. OUTj may

not be empty, e.g., in case the last instruction is a condi-

tional branch.

For example in Figure 3, the following equations must be

satis�ed for the entry basic block b0.

y0 = z0 + z1 = 1 (14)



Formulas (12) and (13) implicitly assume that there ex-

ists only one exit basic block. It should be noted that this

assumption loses no generality. In case there are multiple

exit basic blocks, we introduce a dummy exit basic block in

which no instruction exists. Then, we insert a control-ow

edge from each real exit to the dummy exit, and regard the

dummy exit as an exit. On the other hand, there cannot be

more than one entry.

3.2.2 Loop Count Constraints
In Figure 3, there is a loop in function subroutine(). The

basic block b6 judges the condition of the loop, and f9 (f8)

is taken if the condition holds (does not hold). For the basic

blocks b6 and b7, there are constraints as follows.

y6 = z7 + z10 = z8 + z9 (15)

y7 = z9 = z10 (16)

Using only the above equations, the value of y7 (also z9 and

z10) cannot be determined because there is no information

on the loop count. Recall that every loop is assumed to be

bounded, i.e., the maximum number of iterations is known.

Let l denote the maximum number of iterations of the loop

in Figure 3. Then, there is a constraint on the loop count

as follows.

f9 � l � f8 (17)

If the number of iterations is exactly l, the constraint should

be

f9 = l� f8: (18)

3.2.3 Function Call Constraints
We assume that there is no jump across functions except

function calls. For each point of function calls in the pro-

gram code, the execution frequency of the function call edge

must be equal to that of the corresponding return edge.

For example in Figure 3, there are two function calls from

main() to subroutine(). One is called at the end of b2 and

the other is at the end of b3. In this example, there are

constraints on function calls as follows.

z3 = z5 (19)

z4 = z6 (20)

It should be noted again that there can exist multiple

exits.

3.2.4 Unreachable Basic Block Constraints
A basic block bj is unreachable if there is no incoming edge to

bj except the entry of the program, or all basic blocks which

precede bj are unreachable. Such unreachable basic blocks

should be removed by the compiler, but sometimes there

remain some unreachable basic blocks due to some reasons

such as lack of global optimization ability of compilers or

linkers.

For each unreachable basic block bj , there is an additional

constraint, i.e., yj = 0.

Table 1: Comparison of the number of cache blocks

between di�erent estimation methods

Program Conservative ILP-based CPU time

analysis analysis [sec]

crc 24 24 (1.00) 0.1

fir 51 50 (0.98) 0.2

qurt 30 30 (1.00) 0.1

qurt-kernel 26 21 (0.81) 0.1

wavelet 12 8 (0.67) 0.1

laplace 11 11 (1.00) 0.1

tv-ctrl-1 39 12 (0.31) 1.8

tv-ctrl-2 39 18 (0.46) 7.2

tv-ctrl-3 39 21 (0.54) 33.0

tv-ctrl-4 39 24 (0.62) 163.8

tv-ctrl-5 39 27 (0.69) 423.2

tv-ctrl-10 39 35 (0.90) 9,062.3

tv-ctrl-15 39 38 (0.97) 21,910.5

4. EXPERIMENTS
This section presents a set of experiments demonstrating

the e�ectiveness of our approach. In our experiments, we

used the SPARC instruction set architecture [14] with a

2KB direct-mapped instruction cache as a target processor.

The block size of the memory hierarchy was set to be 32

bytes. The benchmark programs were collected from sev-

eral sources: crc, fir, and qurt are from [13]; wavelet and

laplace from [11]; tv-ctrl from [16].

The experiments were achieved by the following step.

First, each benchmark program was compiled into assem-

bly code using Sun WorkShop Compiler C ver. 4.2 with the

level-two optimization option. Next, a control-ow graph

was constructed from the assembly code, and then, con-

straints for the ILP problem were derived. Finally, the ILP

problem was solved with a public domain ILP solver, named

lp solve
2. The ILP solver was executed on a 233MHz Pen-

tium processor with a 64MB memory.

To the best of knowledge, there is no previous work that

exploits program path analysis for bounding CRPD. There-

fore, our CRPD analysis method was compared with a con-

servative method which assumes that whole program code

is executed regardless of conditional statements. The exper-

imental results are summarized in Table 1. The �rst column

shows the name of benchmark programs. The qurt-kernel

benchmark is a kernel of qurt computing roots of quadratic

equations, and is executed three times in qurt. The tv-ctrl

benchmark contains an unbounded loop whose body is exe-

cuted once when an input data is given. In the experiments,

we assumed that the loop is bounded, and varied the upper

bound on the loop count from 1 to 15. The program name

tv-ctrl-n in Table 1 denotes that the maximum loop count

is set to n.

The second column in the table gives the number of cache

blocks estimated by the conservative method. The third col-

umn presents the number of cache blocks estimated by our

method. The �gures in parenthesis give the ratio describ-

2
ftp://ftp.es.ele.tue.nl/pub/lp solve



ing how tight our method analyzes CRPD compared with

the conservative method. In many cases, our method ob-

tains tighter bound than the conservative method. For crc,

qurt, and laplace, our method generates the same results

as the conservative one. Although there exist some condi-

tional statements in crc, qurt, and laplace, those state-

ments are in loops or subroutines that are executed several

times, and all paths of the conditional statements can be

covered. In fir, there remains an unreachable basic block,

and this is why our method generates tighter bound. In

tv-ctrl, there are a large number of conditional statements

in a loop. Therefore, our method leads to much tighter

bound on CRPD when the number of iterations of the loop

is small. For tv-ctrl-1, our method obtains 69% tighter

bound.

The last column in Table 1 shows the CPU time re-

quired to solve the ILP problems. For all programs ex-

cept tv-ctrl, solutions were found within a second. Since

tv-ctrl contains much more conditional statements than

the other benchmark programs, it takes much longer time

to solve the ILP problems for tv-ctrl. For large appli-

cation programs including a lot of conditionals, it may be

impossible for ILP solvers to yield the exact solutions in a

reasonable amount of time. However, we believe that our

approach is still e�ective because of the following reason: In

general, there is a trade-o� between the quality of solutions

and the CPU time. Many ILP solvers (e.g., lp solve) em-

ploy iterative or branch-and-bound search algorithms and

are capable of generating all intermediate solutions during

the search. Therefore, we can run the ILP solvers as long as

time permits in order to obtain tight CRPD estimations.

5. SUMMARY
Unpredictable behavior of cache memory makes it diÆcult to

statically analyze the worst-case performance in the design

of real-time systems. This problem is exacerbated in case of

preemptive multitask systems due to intertask cache inter-

ference, called Cache-Related Preemption Delay (CRPD).

This paper proposed an approach to analysis of a tight up-

per bound on CRPD which a task might impose on lower-

priority tasks. Our work determines the program execu-

tion path of the task which requires the maximum number

of cache blocks. We formulated the path analysis problem

as an Integer Linear Programming (ILP) problem, and the

tight bound on CRPD is obtained by solving the ILP prob-

lem. Experimental results show that our approach provides

up to 69% tighter bounds on CRPD than a conservative

approach. We expect that our approach will yield tighter

bounds on CRPD for real-time applications that have many

conditionals.

Our paper currently assumes only direct-mapped instruc-

tion caches. Our ongoing and future work will extend the

analysis to handle set-associative instruction caches as well

as data caches. We also plan to incorporate this work into

schedulability analysis of preemptive multitask systems.
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