
Memory Architecture for Efficient Utilization of SDRAM:
A Case Study of the Computation/Memory Access Trade-Off

Thomas Gleerup
tmg@it.dtu.dk

Hans Holten-Lund
hahl@it.dtu.dk

Jan Madsen
jan@it.dtu.dk

Steen Pedersen
sp@it.dtu.dk

Technical University of Denmark
Department of Information Technology

DK-2800 Lyngby, Denmark

ABSTRACT
This paper discusses the trade-off between calculations and mem-
ory accesses in a 3D graphics tile renderer for visualization of
data from medical scanners. The performance requirement of this
application is a frame rate of 25 frames per second when render-
ing 3D models with 2 million triangles, i.e. 50 million triangles
per second, sustained (not peak). At present, a software imple-
mentation is capable of 3-4 frames per second for a 1 million tri-
angle model.
By using direct evaluation of certain interpolation parameters in-
stead of forward differencing, writing back parameters to SDRAM
is avoided. In software, forward differencing is usually better, but
in this hardware implementation, the trade-off has made it possi-
ble to develop a very regular memory architecture with a buffer-
ing system, which can reach 95% bandwidth utilization using off-
the-shelf SDRAM. This is achieved by changing the algorithm to
use a memory access strategy with write-only and read-only
phases, and a buffering system, which uses round-robin bank
write-access combined with burst read-access.

Keywords
Memory architecture, 3D graphics, case study.

1. INTRODUCTION
Medical scanners such as CT (Computed Tomography), MR
(Magnetic Resonance), and PET (Positron Emission Tomography)
are in use in many hospitals for diagnostic and surgery planning
purposes. The interpretation of the two-dimensional output of
these scanners is difficult even for highly skilled physicians. To
improve the quality and time consumption of the analysis of the
two-dimensional “slices”, it is desirable to be able to render a
three-dimensional image of the data in real time.
A surface model consisting of triangles can be generated from the
two-dimensional images that are output from the medical scanner.
Such a model typically contains about two million triangles that
have to be rendered in real time. This leads to a very high, sus-
tained triangle rate of 50Mt/s (million triangles per second) at
25f/s (frames per second).
A tile-based rendering algorithm has been implemented in soft-

ware [5]. This highly optimized software achieves a frame rate of
about 3-4 f/s on a dual Pentium III 500MHz Windows NT PC
when rendering the Buddha [9] model containing 1 million trian-
gles, see fig 1. The Buddha model is commonly used for 3D
graphics benchmarks. For comparison, a model of a hip joint is
shown in fig. 1. This model has been generated from sub-sampled
CT data to get a model with a low triangle count (32,000) to allow
real-time rendering in software. Models like this are used in [3]
for surgery planning.
Although the performance of the software is higher than what is
achievable using game-oriented 3D hardware accelerators, it is
evident that considerable speed-up is needed to reach 50Mt/s.
High-priced systems from e.g. Silicon Graphics are able to deliver
the required performance, but the goal of this work has been to
develop a PC-based cost-effective solution. The low cost will en-
able each physician to have his own 3D workstation, which can
also be used for administrative purposes in a familiar environ-
ment.
The rest of the paper is organized as follows. Section 2 describes
the 3D graphics system and discusses the trade-off between cal-
culations and memory access. Section 3 motivates the use of
SDRAM and briefly states the basic properties. Furthermore, the
employed memory architecture is presented together with simula-
tion results. Section 4 presents the synthesis and simulation results
of the current implementation of parts of the 3D graphics system.
Finally, section 5 gives some concluding remarks.

Figure 1: Buddha model [9] containing 1 million triangles and
hip joint [3] containing 32,000 triangles, both rendered with
the Hybris software [5]. The grid super-imposed on the Bud-
dha indicates the tile size of the renderer (32 by 32 pixels).

2. 3D GRAPHICS SYSTEM
The job of the tile rendering algorithm [1] is processing and ren-
dering millions of triangles to create the final image on the screen,
as seen in fig. 1. As the triangles may be arbitrarily transformed,
we do not know where on the screen a triangle may be placed.
Since the screen has been divided into tiles (see Buddha in fig. 1),
we have to determine to which tiles a triangle belongs. When all
triangles belonging to a tile have been identified, we can start ren-
dering the tile by filling in the pixels covered by each triangle
with specific color values. The pixels are held in the tile buffer
while processing the tile, and later written to the display buffer.
Another renderer based on this idea is presented in [6], however,
they do not solve the bandwidth problems of the triangle heap,
which will be discussed later.
Rendering a triangle requires the following steps. First, the ge-
ometry is transformed to screen coordinates, and a lighting equa-
tion is evaluated at each vertex. Then, the triangle interpolation
parameters are calculated, and the triangle is inserted into the tri-
angle heap (data structure for storing triangles). After all triangles
have been processed this way, the tile renderers can begin to proc-
ess the triangles in the triangle heap. The rendering pipeline is
shown in fig. 2.
Rendering a triangle is done by determining which screen pixels
are touched by the projected triangle, and which color to set them
to. To do this we interpolate parameters for each triangle (edges,
colors, depth). A triangle has three edges, which are connected by
their vertices. Interpolation starts from the topmost triangle vertex.
The parameters are first interpolated along the edges of the trian-
gle, to determine starting interpolation values for interpolation
along each scanline. Fig. 3 illustrates interpolations for rendering
a triangle. While interpolating the parameters along scanlines,
each parameter is checked against the current value in the tile
buffer, and the final pixel value is written back to the tile buffer.
Because of the high bandwidth requirement of this read-modify-
write cycle, we use high-bandwidth on-chip memory for the tile
buffer. This also allows for arrangement in parallel of the triangle
rendering, as several tile buffers can be in use at once.
Since the order of the triangles is not known, the triangles must be
sorted according to which tile they belong prior to processing each
tile. The sorting, which facilitates the use of a small local memory
for the tile processing, is done by inserting the triangles into the
triangle heap. If a global frame buffer had been used (one large
tile), the triangle heap would not be necessary. However, this
would make parallel tile processing impossible, and requires very

high-bandwidth memory for the frame buffer, yet this is how most
current PC 3D graphics hardware works, e.g. Nvidia Gforce 256
with 256 bits wide DDR SDRAM. A global frame buffer is best
suited for rendering large triangles.
In this paper, we focus on the implementation of the back-end of
the tile-based renderer. The parts not covered by this paper are the
geometry transformation, culling, clipping and triangle setup,
which occur prior to insertion into the triangle heap.
A connection to a host computer via a PCI bus is used to transmit
triangle geometry data to the 3D renderer’s memory. Prior to
transmission to the renderer, the host computer generates triangle
geometry data from the volumetric data of the medical scanner,
using an iso-surface extraction algorithm [7].

2.1 Direct Evaluation versus Forward Differ-
encing
When interpolating the parameters required for rendering a trian-
gle, we can choose either direct evaluation or forward differencing
to evaluate the interpolated parameters.
To evaluate an interpolation of a parameter between two values,
the difference quotient, ∆p/∆x, has to be calculated. Now, we can
interpolate the values between the two endpoints by directly
evaluating the equation: p(x) = p0 + x ∗ ∆p/∆x. To cover N inter-
polated values, direct evaluation requires N additions + N multi-
plications.
Alternatively, we can interpolate the values between the two end-
points by incrementally adding the difference quotient, starting
from the first value. Equations: p(0) = p0, p(x) = p(x-1) + ∆p/∆x.
This is called forward differencing, and only N–1 additions are
required. Thus, we have saved one addition and N multiplications.
However, in more complex algorithms, such as rendering of trian-
gles in 3D, the savings are even greater, although additional setup
calculations are required.
The above example suggests that forward differencing is superior
to direct evaluation, and this is usually true when an algorithm is
implemented in software. However, when implementing an algo-
rithm in hardware, only looking at the number of arithmetic op-
erations doesn't tell the whole story, because memory issues are
not taken into account. Memory issues are still important for
software, but the memory architecture of the computer cannot be
changed to optimize the software.

Scanner Data
ISO Surface

Model
Generation

3D Surface
Model Data

3D
Transforma-

tion, Lighting,
Projection,
Clipping

3D Surface
Model Data

PCI

3D
 G

ra
ph

ic
s

Sy
st

em
H

os
t

Medical
Scanner

Back-endFront-end

Rendering To display

(Fig. 4 & 5)

Figure 2: 3D graphics system. The back-end is shown in more
detail in fig. 4.

Sc
an

lin
e

nu
m

be
r

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

X

Y

s1

s2

s3

ds
dx

Currently
rendered

span

ds
dy

ds
dz

Z

Figure 3: Interpolations when drawing a triangle on the
screen.

When using forward differencing, the current parameters have to
be stored and later restored when the next data values are to be
computed. In the simple example above, this is not really an issue,
but in a highly complex hardware system using SDRAM, this
read-modify-write behavior can have a very severe impact on per-
formance.
In the tiled triangle renderer, one approach is to use forward dif-
ferencing, and write the current values back to the triangle heap
when reaching the tile border. This will allow the tile below to
continue the interpolation from the values of the previous tile.
While this works fine in software, the memory writes create
problems for the hardware implementation. This is fixed by only
using forward differencing within each tile, initialized by direct
evaluation interpolation of parameters from the triangle heap. Fig.
4 shows how triangles are written into the triangle heap, and read
from SDRAM by the triangle renderer. The extra calculations
necessary for direct evaluation in hardware outweigh the cost of
storing intermediate parameters. Note that in this case the pa-
rameters could not be stored on-chip since a large number of tri-
angles may cross a tile boundary. The tiled approach allows the
renderer to extensively utilize forward differencing without the
memory overhead of parameter write-back, with a low overhead
for direct evaluation.

PixelsSDRAM
Triangle Heap

Triangle
Setup, Sorting Rendering

Double Buffer

Triangle

Vertices
To display bufferTile Buffers

Figure 4: Overview of 3D graphics back-end.

3. OBTAINING HIGH BANDWIDTH
UTILIZATION
This section will discuss the memory architecture that is used in
the back-end of the 3D graphics pipeline (fig. 2 & 4) to utilize
almost the full bandwidth of SDRAM. However, we will do this
by taking a more abstract view on the architecture to make it more
easily understandable.

3.1 Substantial Memory Requirements
Mainstream 3D accelerator boards claim to have high perform-
ance but in reality these boards are not capable of providing the
required performance for large 3D models due to the PCI/AGP
bus. To obtain a high, sustained triangle rate, the memory for the

3D model must reside on the accelerator board to avoid the
PCI/AGP bottleneck. The memory requirement of this application
is approximately 200MB, which implies the use of SDRAM due
to cost constraints. The required bandwidth in some parts of the
3D-graphics pipeline is 1,600MB/s making memory bandwidth
the performance bottleneck [4].

3.2 SDRAM Properties
SDRAM has a high potential bandwidth, but in practice, the
bandwidth utilization is low due to the random-access nature and
read-modify-write dependencies of an application. E.g., a
100MHz 64-bit SDRAM has a burst-access bandwidth of
800MB/s versus a single-word random-access bandwidth of only
100MB/s [8]. In addition, the latency of read- and write operations
is asymmetric.
The reason that the random-access bandwidth is low for SDRAM
(in contrast to SRAM) is that it takes some cycles to open a mem-
ory page for reading or writing. Consecutive accesses to the same
page can be performed at full clock speed, e.g. 100MHz. Most
SDRAMs are divided into four banks, which can each have a
memory page open. This can be exploited to achieve very high
bandwidth utilization by accessing the banks in a round-robin
manner, thus hiding the page open/close operations.

3.3 Algorithm Properties/Requirements
The 3D-graphics rendering algorithm used in this application has
a number of properties, which should be satisfied for the HW/SW
architecture transformation to be effective:
1. The input data is a (long) stream of unsorted data records.
2. The algorithm operates on groups of data that need to be

sorted prior to these operations.
3. The algorithm should be rewritten to allow for write-only

and read-only phases, i.e. trading in more calculations by
using direct evaluation instead of forward differencing.

In addition, some hardware-architectural properties should be sat-
isfied:
4. SDRAM is used.
5. Memory bandwidth is the performance bottleneck.
6. Input data should be organized such that SDRAM burst mode

can be utilized.

Bucket Heap

Double-Buffered
64-bit SDRAM

(4 banks)

Memory
Controller

(writes in
bursts of 4)

1M randomly
tagged records,
0<=Tag<=1023

Payload

Tag

10 246 bits

PE1:
 0-127
256-383
512-.....

......

Read-Ahead
BufferOutput data

memory
Memory

Controller

PE2:
128-255
384-511
764-.....

.....

PE1

PE2

Local
Memory

Memory
Controller

(Reads in
full-page bursts)

Read-Ahead
Buffer

Local
Memory

Double-Buffered

Setup & Sort

Parallel Processing
Elements

Divide into 8
buckets by looking

at the 3 most
significant bits of

the tag
(2 buckets per

bank).

FIFO for Bank 2
tag 512-767, bucket 4+5

FIFO for Bank 0
tag 0-255, bucket 0+1

FIFO for Bank 1
tag 256-511, bucket 2+3

FIFO for Bank 3
tag 768-1023, bucket 6+7

Figure 5: Read- and write buffer principle. See fig. 6 for memory layout of the bucket heap SDRAM.

3.4 Hardware Architecture
Fig. 5 shows a conceptual diagram of the back-end of the 3D-
graphics rendering system (fig. 4). To illustrate the workings of
the system, a simple, abstract example is used, in which the in-
coming data consists of records with a 10-bit address tag. The in-
put data records are sorted into eight buckets according to their
tag; tags 0-127 go into bucket 0, tags 128-255 into bucket 1, etc.
The bucket data are written to the SDRAM bucket heap in bursts
of four. When all the data records have been sorted into buckets,
the buckets are read from the bucket heap and processed individu-
ally, in this case by two processing elements running in parallel
using their own local working memory. When the operations on a
bucket is done, the results are transferred to an external SDRAM.
The buffering system will be explained in the following sections.

3.5 Memory Read Access Strategy
The memory for each bucket in the bucket heap is allocated in
large chunks (called a bucket buffer), typically an entire SDRAM
page at a time as shown in fig. 6. When a bucket buffer is full, an
empty buffer is allocated and linked to the full buffer. This LIFO
organization can be used in the tile renderer, because it doesn't
matter in which order the triangles are rendered within a tile.
By using the burst mode of SDRAM, almost 100% bandwidth
utilization can be achieved when reading from the memory using
the layout in fig. 6. Evidently, there will be a small overhead when
changing to a new bucket buffer, because a new memory page
(probably) has to be opened, but this is negligible compared to the

bucket buffer size, which is limited by the page size of e.g. 256
elements.
To reduce unused space in the buffers, the bucket buffer size can
usually be set lower than this to match the bandwidth utilization
of the write side of the memory. In the case of the tile renderer
implementation, the unused space accounts for about 6% on aver-
age, which is a low price to pay to obtain high bandwidth utiliza-
tion.

3.6 Memory Write Access Strategy
In general, the arrival order of the data in the stream is unpredict-
able. Writing the data directly to the SDRAM in the layout of fig.
6 would cause severe page thrashing and therefore very low
bandwidth utilization (app. 50%) if no cache or buffering were
used. Therefore, we have to conceive a method of accessing the
memory that can somehow avoid wasting memory cycles because
of page open/close operations.
Such a method is illustrated in fig. 5. The idea is to alternate be-

tween writing to each bank, thus hiding the page open/close op-
erations. This requires a queue for each bank and a stage to de-
termine to which bank the incoming data records belong. This in-
formation, as well as the number of already used locations in each
bucket buffer, is held in an on-chip memory until the frame is
complete. After that, the bucket pointers are written to memory in
one or several bursts depending on the number of buckets.

3.7 Simulation of Write Buffering
To examine the trade-off between FIFO size and bandwidth utili-
zation, the write access strategy described above has been simu-
lated by a C program. The simulation is done by applying 25,000
random pseudo-triangles to the buffering system, which is mod-
eled by four circular arrays with corresponding push- and pop-
functions. The number of different buckets (tiles in the tile ren-
derer) is 768. The outcome is the number of cycles used, which
can be converted to a bandwidth utilization figure.
From queue theory, it is known that the probability of a full queue
is smaller if a fixed capacity is distributed on fewer queues. For
that reason, it may be more efficient if the four FIFOs were joined
to only two FIFOs, so that one FIFO holds data for bank 0 and 2,
and the other for bank 1 and 3. If this is done, a four-bank
SDRAM will be able to operate in an 8-1 or 16-1 manner, de-
pending on the memory type. The 8-1 notation means that 8 cy-
cles are used on data transfer and 1 cycles are spent waiting for
page open/close.
The results of the simulations are shown in fig. 7, where the
bandwidth utilization is plotted as a function of total buffer size
measured in bursts; i.e. the total size of the physical buffer would
be four times larger for a burst length of four.
Curve (a) is hypothetical, as it is not possible to operate in 4-0
mode using only two buffers. It is included to confirm the queue
theory statement above. Curve (b) charts the bandwidth utilization
of the proposed configuration shown in fig. 5. As expected, this
curve lies below the hypothetical (a) curve, but above all other
configurations except for buffer sizes of 16 and below. As a refer-
ence, curve (f) shows the bandwidth utilization when not using
any buffering.

Column

R
ow

/P
ag

e

2550

0

Bucket 2 (Tag: 255-383)

Bucket Pointers

Bucket 0 (Tag: 0-127)
Bucket 1 (Tag: 128-254)
Bucket 0 (Tag: 0-127)

4095

FULL

0

0

0

0

1

2

3

10

Ba
nk

1 1

3

1

1

2

2

3

0H
ig

he
r

ad
dr

es
se

s

Figure 6: Memory layout of the bucket heap SDRAM in fig. 5.

4

8
16 32 64 128 256 512

40%

50%

60%

70%

80%

90%

100%

1 10 100 1000
Total buffer size (number of write bursts)

(a)
2 buffers
(4-0)

(b)
4 buffers
(4-0)

(c)
2 buffers
(16-1)

(d)
2 buffers
(8-1)

(e)
2 buffers
(4-1)

(f)
No buffer
(4-5)

Figure 7: Memory bandwidth utilization as a function of
buffer size. The input data is assumed totally randomized. The
numbers in parentheses refer to (Write Cycles – Wait Cycles).

3.8 Input Data Correlation
The preceding simulation has assumed that the data arrive com-
pletely randomized. Due to the nature of the 3D model, this might
not be true. As a 3D scene usually consists of different objects,
there will generally occur some clustering of the triangles. The
degree of this phenomenon is very difficult to predict and will
vary greatly depending on the scene. Even so, the four-buffer
system’s sensitivity to this issue has been simulated. The cluster-
ing effect is modeled by a probability p that the next triangle is for
the same bucket buffer as the previous. The results are shown in
fig. 8.

It is difficult to decide what is the best trade-off, but if we conser-
vatively assume that p = 50% and that we want at least 95%
bandwidth utilization, a total buffer size of 64 elements is required
(i.e. 16 for each FIFO).

As we have seen, the proposed scheme is quite simple, yet quite
effective and efficient. However, it might be improved by using a
shared buffer for all the queues, which would minimize the prob-
ability of a FIFO running full or empty. This would require extra
memory for bookkeeping in addition to control overhead. Consid-
ering the good results of the simple solution, we have not pursued
this further.

4. RESULTS
The rendering stage of the back-end (lower part of fig. 5), except
some minor modules, has been synthesized with Synopsys Design
Compiler 1998.08 using STMicroelectronic's HCMOS7 0.25µm
library [2].
The total area of the rendering stage, which does not employ par-
allel processing elements, is 13.7mm2. The area of the sort/setup
stage of the back-end is estimated at 13.2mm2. This estimate is
based on adding up the area of synthesized sub-modules for all
major components.
The triangle heap in this system consists of 2x64Mbyte 128-bit
100MHz SDRAM modules in a double-buffer configuration for
maximum throughput. Each buffer can hold around 1 million tri-
angles corresponding to 2 million triangles in the 3D model prior
to backface culling (removal of back-facing triangles, which are
not visible).
The write buffer for the triangle heap uses 2.63Kbyte on-chip
RAM for bookkeeping purposes (bucket pointers and number of

available spaces), and 4Kbyte total in the four FIFO's. The read-
ahead buffer uses 8Kbyte.
The ASIC needs app. 483 pads, making the design pad-dominated
and leaving a large amount of silicon area that could be used for
more tile rendering processors running in parallel, or it could be
used to implement the front-end on the same chip.
At 100MHz, the performance has been simulated to be 58 f/s
when rendering the Buddha [9] in fig. 1 at a resolution of 1024 by
768 pixels with a tile size of 32 by 32 pixels. The triangle rate is
64.1Mt/s in the front-end, 31.6Mt/s in the sort/setup stage of the
back-end, and 15.4Mt/s in the rendering stage of the back-end.
Note that these numbers are sustained (not peak) rates for a very
large actual 3D model.

5. CONCLUSION
This case study has shown that there is an important trade-off
between calculations and memory accesses, which is much more
prominent in the hardware implementation than in the software
implementation.
Specifically, the hardware implementation of the tile renderer uses
more compute-intensive direct evaluation of certain parameters –
instead of forward differencing – to avoid writing back parameters
to the SDRAM. This trade-off has made it possible to develop a
very regular memory architecture, which can reach 95% band-
width utilization using off-the-shelf SDRAM.
The on-chip memory requirements for the buffering system are
quite low. The presented curves (fig. 7 & 8), which are based on
modeling and simulation of the buffering system, make it possible
to find the optimal trade-off between buffer size and bandwidth
utilization.

6. REFERENCES
[1] Foley, van Dam, Feiner and Hughes, “Computer Graphics, Prin-

ciples and Practice, Second edition”, Addison-Wesley, 1990.
[2] Thomas Gleerup, “ASIC for 3D Graphics Pipeline Back-End”,

Master's Thesis, Technical University of Denmark, Dept. of In-
formation Technology, Lyngby, Denmark, 1999.

[3] Hans Holten-Lund, Mogens Hvidtfeldt, Jan Madsen and Steen
Pedersen, “VRML Visualization in a Surgery Planning and Diag-
nostics Application”, Web3D+VRML2000 Symposium, Mon-
terey, February 2000.

[4] Hans Holten-Lund, Jan Madsen and Steen Pedersen, “A Case
Study of a Hybrid Parallel 3D Surface Rendering Graphics Ar-
chitecture”, SASIMI 1997 Proceedings.

[5] Hybris software renderer, http://www.it.dtu.dk/~hahl/hybris.html.
[6] Michael Kelley, et.al., “A Scalable Hardware Render Accelerator

using a Modified Scanline Algorithm”, Siggraph Proceedings,
1992.

[7] W.E. Lorensen & H. E. Cline, “Marching Cubes: A High Resolu-
tion 3D Surface Construction Algorithm”, Computer Graphics,
vol. 21, no.3, pp. 163-169, July 1987.

[8] Micron Technology Inc., “Synchronous DRAM Data Sheet,
64Mb SDRAM”, rev. 10/98, Micron Technology Inc., 1998.

[9] The Stanford 3D Scanning Repository, http://www-
graphics.stanford.edu/data/3Dscanrep/.

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

0% 20% 40% 60% 80% 100%

Probability that the next triangle is for the same buffer

8

16

32

64

128

256

512

Total buffer
size (number
of write
bursts)

Figure 8: Memory bandwidth utilization for various total
buffer sizes as a function of the probability that the next tri-
angle is for the same bucket buffer.

http://www.it.dtu.dk/~hahl/hybris.html
http://www.it.dtu.dk/~hahl/hybris.html
http://www.it.dtu.dk/~hahl/hybris.html
http://www-graphics.stanford.edu/data/3Dscanrep/
http://www-graphics.stanford.edu/data/3Dscanrep/

	Main Page
	CODES'00
	Front Matter
	Table of Contents
	Session Index
	Author Index

