
Co-Design of Interleaved Memory Systems

Hua Lin and Wayne Wolf
Department of Electrical Engineering

Princeton University
Princeton, NJ 08544

{hualin, wolf}@ee.princeton.edu

ABSTRACT
Memory interleaving is a cost-efficient approach to increase
bandwidth. Improving data access locality and reducing memory
access conflicts are two important aspects to achieve high
efficiency for interleaved memory. In this paper, we introduce a
design framework that integrates these two optimizations, in order
to find out minimal memory banks and channels required in the
embedded system under performance restriction. Several
important techniques, loop and data layout transformations for
data access locality, extracting data streams, conflict cache miss
reduction as well as data placement and optimally reordered
access for interleaved memories, are incorporated in the design
framework. Experiments show that our co-design method results
in substantially less hardware requirement compared to the
implementations without optimization.
Keywords
Interleaved memory systems, data access locality, memory access
conflict, in-dimension-stride vector, extracted data stream,
optimally reordered access.

1. INTRODUCTION
In an interleaved memory system, multiple memory banks are
connected to a single bus (channel) and differentiated by the lower
bits of the address bus (Figure 1). They share the bus by time
division and overlapping the operations. Examples of interleaved
memory systems can be found in the supercomputer area, such as
CRAY X-MP [1], or by looking into the Rambus technology [2].
Interleaved memories achieve high bandwidth with reduced
design cost, most significantly, the package pins, which is
desirable for the cost-sensitive embedded systems where high data
throughput are also required.

Design of an application specific interleaved memory system is a
HW/SW co-design problem. Software design issues include data
placement and access scheduling for data locality improvement
and access conflict reduction. Hardware design issues include
allocation of memory channels and banks and partitioning of the
memory space. These hardware and software design decisions
interact with each other. For example, increasing interleaving may
require new data placement to reduce memory conflicts, whereas

a new data placement may also inadvertently increase cache
conflicts.

Memory access conflicts can severely impair the effective
bandwidth of interleaved memories. When an access request is
directed to a busy bank, it will be on hold until that bank is ready
for new access. In the mean time, subsequent memory accesses
are also hindered from being processed. Buffer designs [3, 4] may
alleviate the bandwidth loss, however, the hardware cost is
prohibiting. We consider no-buffer design in this work. To
effectively utilize the bandwidth, memory access sequence needs
to be evenly distributed across the memory banks, i.e. has good
distributivity.

For a high performance memory system, cache and wide-word
design are also indispensable factors. These features require good
data locality which also tends to introduce sequential accesses to
the memory banks. More reasons that prefer data locality could
be: (1) Wide-word design is cheaper and more simple than
interleaving to improve bandwidth; (2) Good data locality means
less cache misses, less memory accesses and less possible
conflicts. (3) For the cache with write-back policy, conflict cache
miss will also cause memory access conflict (dual conflicts). This
is because the number of cache line sets usually is no less than
that of memory banks, thus the write back and fetch for the same
cache line will also be mapped to the same memory bank.
(Assume same line size, modular-2 address space. Write-through
is not considered for its high bus traffic.) If the memory access
has constant dual conflicts, the memory system will behave as if
at most two memory banks were in working at any time. For these
reasons, we optimize the data access locality before the
distributivity optimization in our design framework.

Figure 1: 4-way interleaved memory

Conflict analysis for vector streams [3, 5] has been well studied in
supercomputer area. However, these analyses are mostly based on
static vector stream model. In the real-time system, data streams
are affected by program execution, cache behavior and access
scheduling. Its dynamic characteristic should be considered and
can be taken advantage of in the real-time system design. For
example, because of the presence of cache, data access may not
always go to the main memory. In the sample code in Figure 2,
the data access for x[i,j] will be masked by that for x[i,j+1]
because of group reuse. Also, the data access for a single
reference x[i,j+1] will not always go to main memory because

Address
LSBsMSBs

Data

of self reuse. We use the term extracted data stream to refer to the
data stream that actually reaches the main memory.

do i = 1, N-1
 do j = 1, N-1
 x[i,j]=0.5*(x[i+1,j]+x[i,j+1])
 y[i,j]=0.5*(y[i+1,j]+y[i,j+1])
enddo

Figure 2: An example

Assume the latency for a single memory bank is nc clock cycles in
this paper. If the number of memory banks in a channel is larger
than nc (super-interleaving), the maximal bandwidth of the
channel will not increase, but the access conflicts may be reduced,
so the effective bandwidth can be improved. When the number of
memory banks in a channel reaches a certain large number,
adding new channels to the memory system to increase bandwidth
will be more cost-efficient. The requirement for memory channels
and banks depends on the workload and how efficiently they can
be utilized. In our design procedure, we start from an estimated
minimal hardware configuration, and increase the number of
memory banks or channels with corresponding data placement
and access scheduling, until the execution time restriction is met.

In traditional memory design for embedded systems, interleaving
has received little consideration. Wuytack et al. [6] studied the
memory bandwidth minimization to achieve the minimal number
of parallel memories or memory ports required. With interleaved
memories, this problem could be quite different. To reduce
memory conflicts, various methods [7, 8, 9, 10, 11] have been
proposed. A new method, optimally reordered access, is proposed
in this paper.

The next section introduces the architecture model for our work.
Section 3 details our design framework, which covers the data
locality and distributivity optimizations as well as the process to
determine the minimal memory requirement. We show some
experimental results and summarize our work in the last section.

2. ARCHITECTURE MODEL
In this work, we assume that data streams have relatively regular
pattern and are tractable in computing the extracted data streams.
Multimedia processing or wireless communications are examples
of such applications.

A simplified architecture model is shown in Figure 3. The
address generator works concurrently with the processor. When
the processor is working on the current (nth) loop iteration, the
address generator prefetches the data needed in the next ((n+1)th)
iteration from main memory to cache, and selectively writes back
the data produced in the previous ((n−1)th) iteration from cache to
main memory. The selected cache lines for write back are those
where conflict misses are predicted to happen later on. The loop
iteration here can also be an iteration packet, a certain number of
consecutive iterations, in order to achieve best scheduling result.
The main memory could consist of multiple channels.

Figure 3: Architecture model

This model reduces the processor’s waiting time by prefetching
and selectively flushing the cache. The memory performance
requirement is estimated by assuming load balancing in the data

path, i.e. the data access time is equal to the data processing time.
Data processing time is estimated by assuming zero waiting time
for data retrieving to or from the memory. Selectively flushing the
cache minimizes the chances of dual conflicts, which has been
proved very effective to improve the memory performance by our
experiments. Prefetching and flushing are statically scheduled by
the compiler for the extracted data streams. Apparently, the
estimation accuracy of the extracted data streams will affect that
of the memory performance. The cache design incorporates
necessary features, such as non-blocking for prefetching, flushing
tag indicating a cache line’s flushing status, etc. Obviously, the
configuration of the cache architecture will have impact on the
memory system performance. To focus on important facets of the
main memory design, we assume the cache structure is fixed with
suitable parameters in this paper.

The timing for the above scheduling is not absolute and may have
overlapping. For example, when the processor is working on the
nth iteration, the address generator may still be prefetching the
data needed in the nth iteration. The purpose is to reduce the
cache size required as long as the data dependence relationships
are observed.

3. DESIGN FRAMEWORK
In this section, we first give the outline of our design framework,
and then we step through important algorithms in the procedure.

3.1 Overview of the Design Framework
The design framework has the following steps:
(1) Loop and data layout transformations to improve the data

access locality.
(2) Cache miss analysis to find the extracted data streams; data

layout improvement to reduce conflict cache miss.
(3) Estimation of the lower bounds of the required memory

channels and banks.
(4) Starting from the lower bounds, improve the data placement

and schedule the data access to reduce memory conflicts,
and see if the performance restriction is met. Increase the
number of memory channels or banks if necessary until the
performance restriction is met.

3.2 Definitions and Assumptions
The following definitions and symbols are used in this paper
except otherwise indicated. Take the loop nest in Figure 2 as an
example. Each iteration of the loop is indexed by a pair of values
of the index variables i and j, which corresponds to a vector in a
two-dimension space. We call it a loop point. The iteration space
is the set of all the loop points. The indexing of the reference
x[i+1,j] can be expressed as:









=








=








=+=







 +
0
1

 , ,
10
01

 with
1

c
j
i

IAcAI
j

i

where I is an iteration point, A is the reference matrix, and c is the
offset vector. The dimension size vector D is the vector used to
compute the address of an array element relative to the array’s
base address. For example, the address of x[i, j] is computed as
[i, j]⋅D relative to the address of x[0, 0]

We assume that the array indexing and loop boundary expressions
are affine, and reference matrices, offset vectors and iteration
spaces are known at the compiling time. Because the code for a
loop nest is usually small, instruction cache misses are few during
the course of execution of the loop nest. Therefore, we ignore the
instruction stream in the optimization procedure.

Processor Cache Interleaved
Memory

Address
Generator

n n+1
n−1

3.3 Improving Data Access Locality
To achieve data access locality, the innermost iterations of a loop
nest should be accessing array elements through the fastest
changing dimension of the array. Define In-dimension Stride
Vector (ISV) as the distance vector between two loop points that
access data in the same dimension of an array. The idea is as
follows. If ISV exists, then: 1) Transform the layout of the array
such that the dimension related to the ISV sits in the position of
the fastest changing dimension which is the compiler’s default
configuration. 2) Transform the loop so that

Td = [0, 0, ... , 0, 1]T Eq. (1)
where T is a transformation matrix, d is the ISV, i.e. the iterations
related with the ISV become the iterations of the innermost loop.

Let’s take a look at the sample code in Figure 2. For the reference
x[i,j]’s first dimension, the ISV is [1, 0], i.e. two loop points
with distance vector [1, 0] will access adjacent data in x[i,j]’s
first dimension. Suppose the compiler uses row major. In order to
utilize the ISV [1, 0] for data access locality, we need to switch
the first and second dimension of array x, and also switch the
outer and inner loop nest. Now consider the second dimension of
array x, the corresponding ISV is [0, 1]. If we still assume row
major, to utilize the ISV [0, 1], we do not need any
transformation.

For two loop points I1 and I2 that access adjacent data in the r-th
dimension of an array, we have (∅: don’t-care; superscript T:
transpose; Ar: sub-matrix of A with r-th row removed):

(AI1 + c) − (AI2 + c) = [0, ... , 0, ∅, 0, ..., 0]T

⇒ A(I1 − I2) = [0, ... , 0, ∅, 0, ..., 0]T

⇒ Ar(I1 − I2) = 0

Lemma 1: The ISV space for the r-th dimension of an array with
reference matrix A is the null space of Ar.

In our algorithm, all possible ISV’s for each array reference are
calculated and considered. Suitable transformations are chosen in
consideration of the entire program for global optimization.

The ISV imposes partial restriction of the loop transformation
matrix as shown in Eq. 1. In order to construct a valid
transformation matrix, we also developed algorithms to test the
existence of valid transformation matrix, and construct it if it
exists. Please refer to our work [12] for details of the algorithms.

Combined loop and data layout transformations for data locality
appeared in previous work [13, 14]. In Cierniak and Li’s work
[13], the method to search the data layout and transformation
matrix was relatively weak. Kandemir et al. [14] gave an
algorithm that was close to the idea of ISV. However, they still
did not establish a systematic method to construct the valid loop
transformation matrix.

3.4 Finding Extracted Data Streams
Extracted data streams are important for data access scheduling
and memory bandwidth estimation. In the presence of cache, data
access in the extracted streams consist of the memory bus traffic
caused by cache misses. So the basic technique used here is cache
miss analysis. The extracted data stream is different from the
traffic caused by cache miss in that it is well recorded with its
source, timing and attribute (read or write).

Since cache miss analysis has been extensively studied in Ghosh’s
work [15], we do not further discuss it here. Instead, we look at
the example in Figure 2. If array x and y do not interfere with
each other in the cache, and the cache is large enough to hold

several rows of array x and y, we can expect that there is a write
back stream for reference x[i,j], a read stream for x[i+1,j]
from the second row of array x, a read stream for x[i,j+1] for
the first row of array x, and so to the references to array y.

After the cache miss analysis, data placement improvement will
be applied if excessive conflict cache miss is found. This is also
described in Ghosh’s work [15].

3.5 Estimating the Minimal Configuration
Suppose the accesses in the extracted data streams are sent to the
memory with no delay and processed with no conflict, the
bandwidth required in this situation is a lower bound of the real
configuration required. The lower bound is a starting point for the
following interactive design procedure.

To estimate the lower bound, the critical part of the program (bus
traffic vs. execution time) is chosen. Sum up the number of
accesses in the extracted data streams for this part of program, and
denote it as nALL. Suppose the execution time restriction is TPROC
memory clock cycles, then the lower bound for the required
memory channels is

 PROCALLch Tnn = Eq. (2)

If the lower bits of the address line are used to address the
channels, nch is rounded to the next larger number that is a power
of 2.

Now that the workload for each channel is known, the minimal
number of banks in each channel can be determined by









= c

PROC

chALL
b n

T
nn

n Eq. (3)

and rounded to the next larger number that is a power of 2.

3.6 Reducing Access Conflicts
Changing data placement will change the destination memory
banks to be visited. Reordering the access sequence will change
the access time. Both are effective to reduce access conflicts. In
our work, we apply both methods for better result.

3.6.1 Data Placement
Kurian et al. [11] proposed module partitioning and data
placement method in their work. The address generation can be
difficult in the implementation of their method. We use array
padding, merging and address offsetting in our work. These
methods are effective and more applicable.

For a single data stream, if it is not successfully optimized for data
access locality, it will access main memory in each iteration. If the
bank stride for the access stream is an odd number, the accesses
will visit all the banks. If it is an even number, we change the
dimension size of the array so that the bank stride changes to odd
number.

Suppose the line width of the memory bank is w bytes. The bank
stride s for consecutive accesses from a single reference is:








 −
=







 +−+
=

w
IIAD

w
cAIDcAID

s
)()()(21

T
2

T
1

T
Eq. (4)

Here I1 and I2 are two consecutive iteration points. If both are
inside the innermost loop, I1 − I2 = [0, 0, …0, 1]T. The dimension
size of the vector is the depth of the loop nests. At the boundary of
the innermost loop, I1 − I2 = [0, …, 0, 1, IL− IH]T, where IL and IH
are the lower and upper bounds of the innermost loop
respectively. Boundary situation is only considered when
|IL− IH| << nb, where nb is the number of memory banks.

If s is an even number, we need to find a minimal padding for the
fastest changing dimension of the array, such that with the
changed dimension size vector D1, the following holds:

1
)(21

T
1 +=

−
s

w
IIAD Eq. (5)

For one-dimension array, the above padding is not applicable and
more sophisticated padding method is needed. We do not further
discuss it here.

For multiple data streams working concurrently, the following
methods can be applied to reduce conflicts:
(1) Array merging. Two streams become a de facto single stream.
(2) Base address offsetting. For example, Denoting z→n as access

from array z visiting bank n, by offsetting the base address of
array y, the data stream

x→1,y→1,x→2,y→2,x→3,y→3,x→4,y→4, …
can be changed to

x→1,y→5,x→2,y→6,x→3,y→7,x→4,y→8, …
which has better distributivity.

3.6.2 Optimally Reordered Access
Multiple streams can cause severe conflicts. Loop fission is a
simple method to separate data streams where applicable. Corral
[7] and Lee [8] studied methods to reorder the data access. Their
methods are suitable for multiple vector streams that access the
same subset of memory banks. The method optimally reordered
access proposed here is effective for arbitrary data streams.
Let’s see how fast it can achieve when the access order is re-
arranged. Consider a single channel with nb banks indexed from 0
to nb −1. For a data stream { }∞

=1iis with a period length of p, where

si is the bank number to be addressed, consider the section of one
period S={ }p

iis 1=
. The total number of accesses to bank i is denoted

as vi. Let vmax= { }()1
0

bmax −
=

n
iiv , and denote Bmax as the set of banks

that receive accesses for vmax times. We have:

Lemma 2: The minimal time to finish the accesses in the stream S
is either p or nc ⋅ vmax, whichever is larger.

Proof: Suppose t is the time used to finish the access sequence S.
Apparently, t ≥ p. Because the stream is periodic, and the minimal
interval to access the same bank is nc, t ≥ nI⋅vmax, or
t ≥ max(p, nI⋅vmax). Next, we construct a schedule to prove that the
minimal time is achievable.

si1 sj1 sk2 …
si2 sj2 sk3 …
si3 sj3 sl1 …
si4 sk1 … …

Figure 4: Schedule table
As shown in figure 4, the schedule table has vmax rows and
unspecified number of columns. Fill in the table the accesses in
column major, from top to bottom and left to right, with the
following rules: 1) Accesses to the same bank are filled in
consecutively. 2) Accesses to the banks in the set Bmax are filled in
first, followed by accesses to other banks.
Schedule the table in row major, from left to right and top to
bottom with the following rule: if the number of accesses in a row
n ≥ nc, then schedule all the accesses in this row; otherwise,
schedule all the accesses in this row followed by nc − n time slots
with no access request. We can see that there is no conflict in this
schedule and it achieves the minimal time. The proof is
straightforward and we skip it here. ♦

As an example, the following data stream
x→1,y→1,x→2,z→1,x→3,y→3,x→4,z→3, …

can be reordered to
x→1,x→2,x→3,x→4,y→1,y→3,z→1,z→3, …

for reduced conflicts.

The periodic attribute of the data stream is for simplicity of the
proof so that the ending cycles of the access sequence do not
complicate the proof of “minimal time”. For sufficiently long
sequence where the several ending cycles are negligible, the claim
in Lemma 2 is practically true for non-periodic sequence.

From Lemma 2 we can easily prove: the minimal reordered access
time tmin for a data stream S which is mixed from multiple streams

Si (i = 1, ..., k) will have () ()∑
=

≤
k

i
itt

1
minmin SS . It is known that

multiple streams are the main cause of conflicts. However, with
reordered access, the situation is reversed because data access
from multiple streams will have no worse distributivity than that
of individual streams.

3.6.3 Implementation
The effectiveness of the reordered access depends on the
distributivity of the accesses in the data stream. For this reason, in
our design work, we first improve the distributivity of the data
streams by data placement, then schedule the access with the
reordered sequence.

Let’s look at the same data stream as the above:
x→1,y→1,x→2,z→1,x→3,y→3,x→4,z→3, …

We first offset array z’s base address such that the accesses from
array z: z→1, z→3 change to z→2, z→4. Then the data stream is
reordered to

x→1,x→2,x→3,x→4,y→1,z→2,y→3,z→4, …
which shows better result than a direct reordering.

Data placement is double checked to prevent inadvertently
introducing conflict cache miss. When this happens, new
placement is applied. The least common period of multiple
streams is the unit for the reordered access scheduling, which
corresponds to the iteration packet mentioned in section 2. If the
packet length is too long for the cache to hold the prefetched data
and not to evacuate useful data at the same time, we need to split
one period into several sections and schedule each of them, and
possible conflicts between sections should be counted. If there are
multiple channels in the system, they can be configured as
symmetrically parallel or interleaved. The reordered access
scheduling is a direct extension from the proof of Lemma 2 for
either configuration.

3.7 Allocating Channels and Banks
For a given memory configuration, Lemma 2 tells us the minimal
data access time that can be achieved after applying reordered
access. If the performance requirement is not met, we need to
increase the number of memory channels or banks. At the same
time, algorithms in section 3.6 that depend on the memory
configuration will be reapplied.

Figure 5 shows the interactive procedure to determine the number
of memory channels (nch) and banks (nb). In the pseudo code, nmax
is the maximal number of banks allowed in a channel, TPROC is the
the execution time restriction, and tmin(nb, nch) is the reordered
data access time as a function of nb and nch, which can be
determined by Lemma 2. Start from the lower bound of (nb, nch)
estimated in subsection 3.5, do the following

vmax

Filling-in
direction

Scheduling
direction

while tmin(nb, nch) > TPROC do
 if nb < nmax then
 nb ← 2nb

else
nb ← nc, nch←2nch (or nch←nch+1)*

endif
enddo

* Depends on system configuration for multiple channels
Figure 5: Optimization procedure

If the number of memory banks in the channel reaches nmax and
the execution time still cannot be met, new channels are added in
order to increase the memory bandwidth. At the same time, the
number of memory banks in a channel is reset to nc, which is the
minimal number to reach the full bandwidth of a channel.

4. EXPERIMENTS AND SUMMARY
In the experiments, we first ran some benchmarks to verify the
effectiveness of the optimization procedure with known memory
configuration. After that, we tested our co-design framework to
find the minimal memory requirement under the execution time
restriction.

The benchmark programs were compiled with DLX compiler, and
the memory traces were sent to the trace-driven simulator
DineroIII [16]. We modified DineroIII so that it can output the
trace of the bus traffic. The memory access in the trace output is
then assumed to be issued to the memory as fast as possible in
order to measure the maximal memory performance achievable by
a powerful processor.

In Figure 6, DCT is the fast DCT from MMSG [17] on a 352*288
image (2 bytes/pixel), FS is the full-search motion estimation on
the same image, and MUL is a 256*256 (byte) matrix
multiplication. The data cache is 16kB in size, 2-way associative
and with a line size of 32 bytes. The main memory is single-
channel with a latency of 4 clock cycles, n banks and 32 bytes in
line size. The bars in the figure indicate relative performance.

Figure 6: Performance comparison

DCT and FS work on memory blocks, thus have fairly good data
locality. However, the results for the un-optimized (original)
programs are not good. The trace output for DCT and FS shows
that dual conflicts are responsible for about half of the
performance loss. Another half comes from conflict cache miss
which can be eliminated by proper data placement in the memory.
The result also shows that, increasing the number of memory
banks does not necessarily increase the performance that much
without proper optimization. The un-optimized MUL shows poor
memory performance because of poor data locality and layout.

Table 1 shows the result of the co-design procedure to find the
minimal memory requirement when the program execution time is
given. The first number in the pair is the number of memory
channels required, the second is that of the memory banks. The
result clearly shows the difference between a direct hardware
implementation and a well-refined co-design.

Cycle=32768 Cycle=65536
DCT FS MUL DCT FS MUL

Un-optimized 2, 4 2, 8 157, 32 1, 4 1, 8 79, 32
Optimized 1, 2 1, 2 17, 4 1, 1 1, 1 9, 4

Table 1: Experimental result

Our work focused on locality and distributivity optimization for
the memory access in order to achieve minimal memory cost. The
framework left much room for further exploration. For example,
the cache structure can be a variant in the design, or the
scheduling with consideration of other resources in the system
may improve the overall performance. Our framework could be a
good starting point for further improvements in the co-design of
interleaved memory systems.

5. ACKNOWLEDGMENTS
This work was sponsored by the National Science Foundation and
the New Jersey Center for System-on-Chip Technology.

6. REFERENCES
[1] CRAY X-MP Series Mainframe Reference Manual. Cray

Research Inc. HR-0032, Nov. 1982
[2] http://www.rambus.com/
[3] R. Raghavan, J. P. Hayes, “Reducing interference among

vector accesses in interleaved memories”, IEEE Trans.
Comput., Vol. 42, No. 4, pp. 471-483, Apr. 1993

[4] K. A. Robbins, S. Robbins, “Buffered banks in multi-
processor systems”, IEEE Trans. Comput., Vol. 44, No. 4,
pp. 518-529, Apr. 1995

[5] W. Oed, O. Lange, “On the effective bandwidth of
interleaved memories in vector processor systems”, IEEE
Trans. Comput., Vol. C-34, No. 10, pp. 949-957, Oct. 1985

[6] S. Wuytack, F. Catthoor, G. de Jong, B. Lin, H. De Man,
"Flow graph balancing for minimizing the required memory
bandwidth", Proc. IEEE 9th Int. Symp. System Synthesis
(ISSS'96), La Jolla, CA, Nov. 1996, pp. 127-132.

[7] A.M. del Corral, J.M. Llaberia, “Minimizing conflicts
between vector streams in interleaved memory systems”,
IEEE Trans. Comput., Vol. 48, No. 4, pp.449-456, Apr. 1999

[8] D.L. Lee, “Memory access reordering in vector processors”,
IEEE Symp. High Performance Comput. Architecture,
Raleigh, North Carolina, Jan. 1995, pp. 380-389

[9] D. H. Lawrie, “Access and alignment of data in an array
processor”, IEEE Trans. Comput., Vol. C-24, pp. 1145-1155,
Dec. 1975

[10] B. R. Rau, “Psudo-random interleaved memory”, Proc. 18th
Int. Symp. Comput. Architecture, Toronto, Canada, May
1991, pp. 74-83

[11] L. Kurian, B. Choi, P.T. Hulina, L.D. Coroor, “Module
partitioning and interleaved data placement schemes to
reduce conflicts in interleaved memories”, Proc. Int’l Conf.
Parallel Processing, Vol. 1, pp. 212-219, 1994

[12] http://www.ee.princeton.edu/~hualin/seminar.ppt
[13] M. Cierniak, W. Li, “Unifying data and control

transformations for distributed shared memory machines”,
Proc. SIGPLAN’95 Conf. Programming Language Design
and Implementation, Jun., 1995

[14] M. Kandemir, J. Ramanjujam, A. Choudhary, “Improving
cache locality by a combination of loop and data
transformations”, IEEE Trans. Comput. Vol. 84, No. 2, pp.
159-167, Feb. 1999

[15] S. Ghosh, "Cache Miss Equations: Compiler Analysis
Framework for Tuning Memory Behavior", Ph.D. Thesis,
Dept. of Electrical Eng., Princeton University, Nov. 1999.

[16] M. Hill, A. Smith, “Evaluating associativity in CPU caches”,
IEEE Trans. Comput., Vol. 38, No. 12, pp.1612-1630, Dec.
1989

[17] http://www.mpeg.org/MPEG/MSSG/

0

20

40

60
80

100

DCT FS MUL

Original, n=4

Optimized, n=4

Original, n=16

Optimized, n=16

	Main Page
	CODES'00
	Front Matter
	Table of Contents
	Session Index
	Author Index

