
Energy Estimation for 32-bit Microprocessors

C.Brandolese, W.Fornaciari, F.Salice, D.Sciuto
Politecnico di Milano, DEI

Piazza L. Da Vinci, 32
20133 Milano, Italy

brandole, fornacia, salice, sciuto@elet.polimi.it

ABSTRACT
Estimation of software power consumption is becoming one
of the major problems for many embedded applications. The
paper presents a novel approach to compute the energy of an
Instruction Set, through a suitable functional decomposition
of the activities involved during instruction execution. One
of the main advantages of this approach is the capability
to predict the power �gures of the overall Instruction-Set
starting from a small subset. A formal discussion on the
statistical properties of the model is included, together with
its application on �ve commercial 32-bit microprocessors.

1. INTRODUCTION
The presence of software in embedded applications is be-
coming more and more pervasive. The intrinsic complex-
ity of CPU cores and the lack of low-level details from mi-
croprocessor suppliers, makes it hard to predict the overall
power consumption from a system-level design perspective.
Therefore, there has been a relevant research e�ort in the
past years, to identify possible analysis methodologies capa-
ble of evaluating the software power by avoiding the use of
EDA tools developed for the hardware to analyze the archi-
tectural blocks composing the microprocessor. In fact, this
process is time-consuming and produces data diÆcult to be
properly interpreted without further analysis of the module
correlations [1; 2; 3]. Recently promising approaches have
been proposed, working at the instruction-level, based on
the characterization of the Instruction Set via a set of phys-
ical measurements when the microprocessor is exercised with
long runs of the same instructions [4; 5; 6]. Nevertheless,
despite these strategies generally produce good results espe-
cially in term of relative precision, the validity of the models
and the signi�cance of the experimental data are typically
not justi�ed under a statistical viewpoint and the need of
performing an exhaustive set of measurements represents a
major obstacle in extending the analysis towards new mi-
croprocessors.
The proposed approach here reported focuses on 32-bit general-

purpose microprocessors and is still based on an instruction-
level characterization of the software. However, our solu-
tion partially overcomes the above limitations since it is in-
dependent of the speci�c microprocessor architecture, the
overhead of the physical measurements is dramatically re-
duced and the signi�cance of each analysis step has been
statistically evaluated. These properties have been achieved
by analyzing and decomposing the instruction execution in
terms of functionalities, rather than focusing on the physical
blocks composing the microprocessor architecture.
The paper is organized as follows. Section 2 introduces the
general theoretical model, namely the strategy to function-
ally decompose the instruction execution and its use to esti-
mate the static energy associated with the instructions. Sec-
tion 3 is devoted to the practical application of the method-
ology, by considering a compared analysis of �ve commercial
microprocessors. Finally, some conclusions are drawn in sec-
tion 4.

2. MODEL IDENTIFICATION

2.1 Model definition
The problem of the identi�cation of a functional model for
the energy consumption at the instruction level is investi-
gated, considering the relation that exists between the pro-
cessor architecture and a set of functionalities.

Definition 1. A functionality is a set of activities aimed
at a speci�c goal and involves, partially or totally, one or

more units that can be identi�ed in the structure of a generic
microprocessor.

Definition 2. Two functionalities F1 and F2 are space-
disjoint if the activities accomplished by F1 involve di�erent
structural units than those that F2 requires.

Definition 3. Two functionalities F1 and F2 are time-

disjoint if F1 accomplishes its activities at a di�erent time
than F2 does.

According to de�nitions 1, 2 and 3, the activities associated
with an instruction can be modeled as the union of some
speci�c disjoint functionalities. More in detail, the prob-
lem of model identi�cation consists in determining the set,
whose cardinality is k, of disjoint functionalities involved in
the execution of a generic instruction, the average current
absorbed by each functionality during its activation (ifj)
and the relation between functionalities and each instruc-
tion (as;j � 0) such that the current drawn by each instruc-
tion can be approximated with a linear combination of the
currents related to the functionalities.

Definition 4. A model is compatible if and only if the

current absorbed by each instruction can be expressed as a
linear combination of the currents associated with a set of
disjoint functionalities.

As an example, consider a simple decomposition in two func-
tionalities: fetch & decode and execute. These two phases
are time-disjoint even if the they are not space-disjoint:
some of the activities necessary for fetch & decode, in fact,
are also performed during the execute phase. To verify the
compatibility property, the covariance matrix that de�nes
the model must be computed and the principal components
analysis should be applied [7]. These data reveal whether
or not the identi�ed functionalities are reasonably indepen-
dent, and, in this case, how much each of them contributes
to the complete model. A compatible model is said to be
feasible if the energy associated with any instruction is not
less than zero. Furthermore a model is said to be reliable if it
is both compatible and feasible and its estimator is unbiased.

Definition 5. Let d(q) be some data depending on a set
of parameters q and let q̂ = f(d(q)) be the estimated value
of the parameters. The function f(�) is an estimator for

a given system, and q̂ are the estimated parameters, if and
only if it is unbiased that is E [q̂] = q, where E [q̂] is the
expectation value of q̂.

The adopted model identi�cation procedure is structured on
a sequence of steps:

� Identi�cation of a functional decomposition, referring
to a generic processor instruction architecture and de-
tecting disjoint functionalities.

� Identi�cation of the relation between each instruction
and the set of functionalities involved. For instance,
the instruction MOV CX,10 (Intel 80486DX2) is charac-
terized by a register writing, while ADD CX,10 implies
a computation and a register writing. This step leads
to an over-constrained linear system.

� Estimation of the current associated with each func-
tionality using the least square method.

Letm be the cardinality of the instruction set S. The energy
associated with instruction s 2 S can be expressed as:

es = Vdd � is � nck;s � � (1)

where is is the average current per clock cycle absorbed by
instruction s, Vdd is the supply voltage, nck;s is the total
number of clock cycles and � is the clock period. If ifj is
the contribution, in terms of current consumption, of the
functionality j and as;j expresses the contribution of the
functionality j in the execution of instruction s, the total
current is absorbed by instruction s can be expressed as:

is � nck;s =
kX

j=1

(ifj � as;j) + rs (2)

where rs is a residual due to modeling errors. Taking into
account q � m instructions whose energy characterization
is known, a linear system of q equations in k unknowns (the
functionality currents) is obtained. In such a system the
coeÆcients as;j are known since they are derived from the
analysis of each instruction in terms of the functionalities
of the model. The procedure to determine the value of the
parameters as;j is presented in section 3.2.

2.2 Mathematical model
Let S be the set of all instructions of a given micropro-
cessor, SL � S be the learning-set constituted by the in-
structions used to tune the model and SG = S � SL be the
generalization-set. Let k be the number of identi�ed func-
tionalities and let mL > k be the cardinality of the energy-
characterized learning-set SL. Then, let A be the mL � k
matrix whose entries are the activation coeÆcients as;j , IF
be the k � 1 column vector whose entries are the unknown
currents ifj , and IN be the mL � 1 column vector whose
elements are the known terms is � nck;s. The linear system:

IN = A� IF (3)

represents the available knowledge on the variables that have

to be estimated. Let bis be an estimate of is and cIF be an
estimate of the real parameters IF. The minimization of the

square error kIN � cINk2 leads to the equation:

cIF = (AT �A)�1 �A
T � IN (4)

In order to estimate the model parameters cIF, the columns
of matrix A must be linearly independent: this guarantees
that the model is identi�able with respect to the measure-
ments available. In fact, two columns are linearly dependent
if the same two functionalities are involved, with the same
weight as;j , in the characterization of all the instructions in
the learning-set. In this case, the two functionalities are not
disjoint and could be conveniently merged in a single, new,
functionality. When two or more columns are linearly de-
pendent, there are two possible ways to solve the problem:
changing the instructions in the learning-set or modifying
the functional decomposition either increasing or reducing
the model granularity.

2.3 Model characterization
Equation 4 gives the set of estimated parameters based on
the relations between current measurements and as;j . This
set of parameters constitutes a reliable model if its estimator
is unbiased (de�nition 5). Combining equations (2) and (3)
and indicating with R = frsg the residual vector, leads to
the complete model, summarized in the equation:

IN = A� IF+R (5)

Solving the system (5) in the least square sense yields:

cIF = (AT �A)�1 �A
T � IN (6)

Indicating with A� the Moore-Penrose pseudo-inverse and
substituting the expression for IN, equation (6) becomes:

cIF = IF+A
� �R (7)

This equation represents the relation between estimated and
actual parameters. The model is completely characterized,
from a statistical point of view, when both the expectation
value and the variance of its parameters are calculated. Ap-
plying the de�nitions of expectation value and variance to
the speci�c model gives:

E
hcIFi = E [IF] +A� �E [R] (8)

V AR
hcIFi = E

�
(A� �R�A� �E [R])2

�
(9)

By assuming the residual is a gaussian noise G(0; �2), where
0 is the expectation value and �2 is the variance, the follow-
ing relations hold:(

E [R] = 0

E
�
R�RT

�
= �2 � I (10)

The second relation implies that E
�
R�RT

�
is a diagonal

matrix and thus E [ri � rj] must be 0 for i 6= j and �2 for
i = j. Under these assumptions, the estimator is unbiased,
that is:

E
hcIFi = cIF (11)

V AR
hcIFi = �2 � (AT �A)�1 (12)

Nevertheless, �2 is unknown since it depends on the residual
vector R. The value of �2 has thus to be replaced with an

estimate �̂2. By indicating with bR = cIN� IN the vector of
the estimated modeling errors, an estimator of the variance
is:

�̂2 = kbRk2=(m� k) (13)

where, again, m is the number of samples and k is the num-
ber of parameters of the model. The method is applicable if
and only if the distribution of the residuals obtained is the
gaussian G(0; �2). The mean value of the residuals:

�R =
1

m
�
mX
s=1

rs (14)

depending on a statistical model is a statistical variable and
has an expectation value and a variance given by:

E [�r] = �r (15)

V AR [�r] = �4=m (16)

To test the null hypothesis �r = 0 with a 95% con�dence
level, according to a Z0:95 test, the following inequalities
must be satis�ed:

�1:96 � �2p
m

� �r � +
1:96 � �2p

m
(17)

3. EXPERIMENTAL RESULTS
This section collects the experimental results obtained using
the proposed model on a set of �ve commercial micropro-
cessors. The �rst paragraph is an analysis of the character-
istics of assembly languages aimed at the extraction of the
functionalities. In the remaining paragraphs, the identi�ed
model is applied on a set of processors and its accuracy and
generalization capabilities are shown.

3.1 Identification of functionalities
The goal of this �rst analysis is to extract the functionali-
ties into which the execution of a generic instruction on a
generic microprocessor can be decomposed. A �rst simple
decomposition leads to two disjoint functionalities: fetch &
decode and execute. It is intuitive that the fetch & decode,
denoted in the following as F&D, can be considered atomic
in the sense that the tasks it performs need not to be further
di�erentiated. The execute, on the other hand, performs a
number of tasks that greatly di�er from instruction to in-
struction and thus a more detailed modeling is necessary.

An accurate analysis [9], supported by the measured power
consumption �gures reported in the following sections, has
led to the following conclusions:

� A single functionality, denoted as F&L, performs arith-
metic, logic, comparison, etc. integer operations.

� Data transfer operations may or may not access mem-
ory and this, intuitively, a�ects the power consump-
tion. The functionality L&S (Load/Store) is respon-
sible of memory read/write and stack operations. The
data transfers that operate on registers are accounted
for introducing the functionality WrR (Write Regis-
ter). It is worth noting that reading a register does
not signi�cantly alter the power consumption with re-
spect to a write operation.

� Conditional or unconditional jumps and procedure calls
require some peculiar operations and are thusmodeled
with a functionality, denoted as Br (Branch).

� Floating-point instructions are usually performed by a
speci�c arithmetic unit. At a functional level of ab-
straction, this unit is not distinguishable from an in-
teger ALU. For this reason the A&L is used to model
these operations also.

� String operations are usually performed repeating data
transfer and/or compare operations with an implicit
register used as a counter. Their power consumption
can thus be modeled by means of a combination the
previously de�ned functionalities.

A generic microprocessor can thus be decomposed in the �ve
functionalities listed in table 1.

Functionality Activities
F&D Fetch and Decode
A&L Arithmetic and Logic
WrR Write Register
L&S Load and Store
Br Branch

Table 1: A possible functional decomposition

The functionalities stimulated by an instruction not only
depend on the operation but also on the addressing mode.
Table 2 shows the relation between some common addressing
modes and the functionalities involved. Note that the com-
putation of an address is not functionally associated with
A&L but rather with L&S or Br. The completion of an in-

Addressing mode Functionalities

Register [WrR]
Relative L&S
Indexed L&S
Auto-increment L&S, A&L, WrR
Indexed and o�set L&S

Table 2: Addressing modes and related functionalities

struction requires both executing an operation and access-
ing zero or more operands. According to the decomposi-
tion into op-code and addressing mode, the characterization
of each instruction is obtained by computing the union of

the set of functionalities associated with the operation and
the sets of functionalities relative to the addressing mode
of each operand. For instance, consider the instruction ADD

R3,(R2)+: the ADD operation stimulates F&L, the destina-
tion operand R3 uses WrR and the source operand (R2)+

uses L&S, A&L and WrR. The functionalities stimulated
by the complete instruction are thus fA&Lg [fWrRegg [
fLd&St; A&L;WrRegg = fLd&St;A&L;WrRegg.
According to the previous analysis, the functionalities ex-
tracted represent a possible partition of the tasks performed
by a generic microprocessor. This partition is compliant to
de�nitions 1 and 4 and is an acceptable basis for the math-
ematical model. However, its correctness from a statistical
point of view ought to be veri�ed by computing the covari-
ance matrix and then applying the principal components
analysis. This technique aims at showing that the param-
eters are independent of each other and that all give a sig-
ni�cant contribution to the model. For each processor, 500
randomly selected learning-sets of 8 characterized instruc-
tions have been used to calculate di�erent estimates of the
parameters. The outcome is a matrix with 5 columns (the
parameters) and 500 rows (the samples). The �rst step con-
sists in computing the normalized correlation matrix (a 5�5
matrix) in which the main diagonal elements are all ones.
O�-diagonal elements, being much smaller than 1.0, indicate
that the selected parameters are nearly independent as the
model requires. The principal components are the eigenvec-
tors of the correlation matrix and their relative contribution
to the overall model is expressed by the corresponding eigen-
values. The mean values, over all the available processors, of
the normalized eigenvalues, represent the relative contribu-
tion of each parameter (i.e. functionality) and are reported
in table 3.

F&D Br WrR A&L L&S

0.0789 0.0784 0.1336 0.1980 0.5111

Table 3: Relative contribution of the di�erent functionalities

According to these results, no functionalities can be ne-
glected without a�ecting the accuracy of the resulting model.
Table 3 points out that the contribution of F&D and Br is
less important compared to the remaining units. Never-
theless, a more detailed analysis indicates that some speci�c
functionalities, due to their low impact on the overall model,
might be neglected for some processors, but not in general.
In the next paragraphs the mathematical model will be built
according to the proposed functional decomposition.

3.2 Instruction characterization methodology
Once a functional model has been identi�ed, the instruc-
tion set must be characterized by assigning a value to the
coeÆcients as;j corresponding to the �ve functionalities pre-
viously determined. To clarify the procedure adopted for in-
struction characterization, consider a decomposition in F&D
and Exec . In this case, the equation for instruction s is:

as;F&D � ifF&D + as;Exec � ifExec = is � nck;s (18)

Characterizing an assembly language on the basis of this de-
composition, consists in assigning the two coeÆcients as;F&D
and as;Exec for each instruction s. Since the power consump-
tion depends on the number of cycles taken to fetch, decode

and execute the instruction, a reasonable choice is:(
as;F&D = nck;s;F&D

as;Exec = nck;s;Exec
(19)

where nck;s;F&D and nck;s;Exec indicate the number of clock
cycles needed for the Fetch & Decode and the Execution
functionalities of instruction s, respectively. In a more com-
plex model, constituted by F&D and k�1 disjoint execution
functionalities (F&L, WrR, etc.) the sum of these k�1 co-
eÆcients should equal the number of clock cycles needed
for execution. By indicating with if1 the F&D and with
if2; : : : ; ifk the k � 1 execution functionalities, the follow-
ing relations must be satis�ed:(

as;1 = nck;s;F&DPk

j=2
as;j = nck;s;Exec

(20)

Based on the analysis presented in the previous paragraph,
it is straightforward to state whether or not a functionality
is involved in the execution of a given instruction. As a
consequence, instructions can be characterized by means of
activation coeÆcients bs;j 2 f0; 1g, where bs;j = 1 indicates
that the j-th functionality is involved in instruction s. To
satisfy equation (19), the activation coeÆcients bs;j and the
coeÆcients as;j must be related by the equation:

as;j =

(
bs;j � nck;s;F&D j = 1

bs;j � ws j 6= 1
(21)

where the weight ws is given by:

ws =

(
0

Pk

j=2 bs;j = 0

nck;s;Exec
ÆPk

j=2 bs;j otherwise
(22)

In the following paragraphs, this methodology is applied to
a set of microprocessors and its adaptability and generaliza-
tion properties are shown.

3.3 Estimation
The Intel i80486DX [8] is used to present the approach. Ta-
ble 4 shows the average currents drawn per clock cycle for a
subset of instructions along with the number of clock cycles,
the total current (which is proportional to the total energy)
and the characterization in terms of the �ve functionali-
ties identi�ed. The coeÆcients as;j , are obtained by using
equations (21) and (22). The results, relative to 18 energy
characterized instructions of the sample microprocessor, are
shown in �gure 1. The value of the functionalities currents
and standard deviations are reported in table 5. To verify
the correctness of the gaussian noise hypothesis, residuals
have to be analyzed. The Z0:95 test con�rms that the gaus-
sian noise assumption holds: in fact, the mean estimated
error �R = 9:94 � 10�11 falls in the range Z0:95 = �40:75.
The accordance between actual data and estimated data is
thus satisfactory and similar results, reported in table 6 have
been obtained for all other microprocessors analyzed.

3.4 Generalization
To verify the generalization capabilities of the model this
procedure has been repeated a signi�cant number of times:

1. select a learning-set such that the least square problem
is non-singular and well-conditioned;

2. solve the problem;

Figure 1: Intel i80486DX power estimates

bs;j

Instruction n
c
k

is � nck F
&
D

B
r

W
rR

A
&
L

L
&
S

ADD DX,BX 2 313.6 1 0 1 1 0
CMP [BX],DX 3 776.0 1 0 0 1 1
JMP label 4 1119.0 1 1 0 0 0
JZ label 2 355.9 1 1 0 0 0
MOV [BX],DX 2 521.7 1 0 0 0 1
NOP 2 275.7 1 0 0 0 0

Table 4: Instruction characterization of Intel i80486DX

3. estimate the currents for the generalization-set ;

4. measure the average learning and generalization errors.

It is important, to ensure the accuracy of the results, that
the learning-set yields to a well-conditioned system. A prob-
lem is well-conditioned if:

rcond(AT
L �A) � 0:01 (23)

where AL is the sub-matrix of A associated to the learning-
set, rcond(�) denotes the reciprocal of the condition number
in the 1-norm and 0:01 is a reasonable, arbitrary, threshold.
The procedure has been repeated varying the learning-set
cardinality. For each learning-set size, 100 di�erent, ran-
domly selected, learning-sets have been used. Despite the
randomness of the learning-sets used, the accordance be-
tween the actual currents and the estimates is good. This

Functionality Current (mA) STD
F&D 421.41 48.43
Br 355.06 26.98
WrR 228.48 46.46
A&L 228.33 38.27
L&S 505.99 39.90

Table 5: Functionality currents and estimated STDs

procedure has been repeated for 500 times for each proces-
sor leading to a con�rmation of the results just reported:
the average error obtained (absolute value) is less than 9%.
The model allows thus the extrapolation, with a good con�-
dence of the power consumption of an instruction not in the
learning-set. Concerning the analysis of real-world software,
a commercial 16 synchronous/asynchronous links controller
adopted as test vehicle in the SEED ESPRIT project[10]
has been used to stress the methodology. Two micropro-
cessor implementations have been considered based on the
ARM7TDMI and MC68000 cores, producing and average
relative error of 2.77% and 4.4%, respectively.

Processor F&D Br WrR A&L L&S
ARM7 is 5.7 14.3 13.0 18.3 13.9

Std 1.1 0.7 0.5 0.6 0.7
i960JF is 362.0 261.9 302.2 320.0 380.6

Std 8.5 13.1 8.0 8.1 8.9
i960HD is 970.4 692.8 804.8 775.4 1026.3

Std 17.9 28.4 18.5 18.6 46.5
MB86934 is 218.2 0.0 194.7 175.9 190.6

Std 9.0 0.0 19.2 18.7 21.4

Table 6: Currents and standard deviations

4. CONCLUSIONS
The paper presented a model to characterize instructions en-
ergy consumption of 32-bit microprocessors. As con�rmed
by the experiments performed, the proposed modeling ap-
proach shows good generalization properties and allows the
extrapolation of the power consumption of uncharacterized
instructions. The adopted approach deals with the static
aspects of the power consumption, ignoring dynamic e�ects
such as pipeline
ush/re�lls and caching, whose e�ects in
many cases are hidden by the measurement error. The pro-
posed model can be thus used as the basis for a more com-
prehensive power estimation methodology.

5. REFERENCES

[1] E.Macii, M.Pedram and F.Somenzi, "High-Level Power
Modeling, Estimation, and Optimization," IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 17, n. 11, pp. 1061{1079, 1998.

[2] T.Sato, M.Nagamatsu and H.Tago "Power and performance
simulator: ESP and its application for 100MIPS/W class
RISC design," Proc. of IEEE Symposium on Low Power
Electronic, pp. 46{47, San Diego, CA, October 1994.

[3] P.Landman and J.Rabey "Black-box capacitance models for
architectural power analysis," Proc. of International Work-
shop on Low Power Design, pp. 165{170, Napa, CA, April
1994.

[4] V.Tiwari, S.Malik and A.Wolfe "Power Analysis of Embed-
ded Software: a First Step towards Software Power Mini-
mization," IEEE Transactions on VLSI Systems, vol. 2, n.
4, pp. 437{445, 1994.

[5] V.Tiwari and M.T.C. Lee "Power analysis of a 32-bit Em-
bedded Microcontroller," VLSI Design Journal, 1996.

[6] J.Russell, M.F.Jacome "Software Power Estimation and
Optimization for High Performance, 32-bit Embedded Pro-
cessors," Proc. of International Conference on Computer
Design, Austin, TX, October 1998.

[7] A.Papoulis "Probability, Random Variables and Stochastic
Processes," McGraw-Hill, 1984.

[8] V.Tiwari, S.Malik, and A.Wolfe "Power Analysis of the Intel
486DX2," Internal report CE-M94-5, Princeton University,
June 1994.

[9] J.L.Hennessy and D.A.Patterson "Computer Architecture -
A Quantitative Approach, II ed.," Morgan Kaufmann Pub-
lishers, 1996.

[10] A.Allara, M.Bombana, W.Fornaciari and F.Salice "A Case
Study in Design Space Exploration: The TOSCA Environ-
ment Applied to a Telecom Link Controller," IEEE Design
& Test of Computers, to appear, 2000.

	Main Page
	CODES'00
	Front Matter
	Table of Contents
	Session Index
	Author Index

