
An Introduction to SLDL and Rosetta
(ASP−DAC 2000 extended abstract)

Steven E. Schulz, P.E.
Advanced EDA Technologist / Senior Member Technical Staff

CAD Flow, Methodology, and Architecture
WW ASIC Division / Texas Instruments USA

email: ses@ti.com

The Rosetta Stone (permanently displayed at the British Museum of Art) has played a pivotal role
in enabling scientists to translate across a number of widely varying languages used around the
world throughout our history. Through this mapping process, linguists have been able to more
fully understand the semantic meaning embodied in the written word of our culture. Similarly, the
Rosetta language (as we will refer to it in this text) represents a modern−day effort to map across
semantic domains within the electronics−centric systems engineering world, motivated by the
trend towards System−Level Integration, or System−on−a−Chip (SoC). Rosetta plays a key role
in the System Level Design Language (SLDL) industry standards initiative.

Rosetta has borrowed many concepts from numerous existing system−level research efforts
across Europe and the U.S., including declarative semantics, domain theories, partial
specifications, and parametric abstraction. However, what is new in Rosetta is the integration of
multiple domain theories into a common semantic framework, rather than attempting to force the
system description into a singular semantic. Why is this useful? Because using a "least common
denominator" (LCD) diluted approach to describing aspects of a system is necessarily lossy −−
with loss of conciseness, expressive power, and analytical power. A simple example would be to
mix analog and digital "views" of a complex IC into a single LCD semantic, say SPICE. Not only
would the merged SPICE syntax be difficult to express and difficult to understand for digital
functionality, analysis through SPICE simulation would have prohibitively long runtimes. Yet even
worse, much of the semantic meaning of the digital abstraction would be lost, so that a mux,
adder, or ALU would just be treated as more transistor voltage waveforms.

A system is composed of many views −− digital function, analog behavior, timing (e.g. delay,
latency, queuing), bandwidth or throughput, power consumption, cost, etc. Engineers usually
prefer to manage this complexity by focusing on specific modeling of one view at a time, then
studying this view in relationship to other views. In Rosetta, a model of a specific view into a
system is called a "facet". Modeling facets become more important when multiple facets interact
in some (possibly complex) way. Rosetta permits multiple facet models to be integrated together
−− both in terms of mixing portions of the system together, as well as mixing multiple
perspectives of the system together. This enables the engineer to consider more of the tradeoffs
involved when making a design decision that will directly impact the final product.

Of course, robust and concise modeling does little good if the models cannot be parsed and
analyzed by EDA tools. Rosetta, like the rest of SLDL, is based on a semantic foundation
intended to enable the use of formal methods to help ensure thorough coverage, and
compositional reasoning techniques for scalability to very large systems. Some of these methods
are well−proven, while others will require much more learning to exploit in commercial
applications. As part of the DARPA SLDL contract, a Java−based parser for Rosetta is now in
the final stages of development. This parser will enable EDA tool suppliers to actually prototype
with Rosetta / SLDL as a path towards commercially robust solutions over the next 1−2 years.

Some highlights of the Rosetta syntax:
� Pre−defined facet domains supporting semantic definitions for frequently−used views
� Facets may be user−defined, for highly flexible modeling of concerns
� Physical variables define externally visible component state, while logical variables

define local values (visibility may be exported to other facets)

� Terms in a facet define behavior using parameters and variables; the semantics of a
term are defined by its domain

� Facets are typed; pre−defined types support most common uses (numeric, records,
sets, sequences, arrays, functions, vectors, etc.)

� Assertion of a defined facet makes the claim that the facet is "True" in the system
� Complex behavior is modeled by combining facets (AND, OR, NOT, and IMPLIES)
� Facets may be combined across domains in the exact same way
� Structure is created by including and re−labeling facets within components
� Requirements are defined by using one or more requirements domains (logic, state−

based, discrete time, continuous time)
� Constraints are defined by using a constraints domain (many are possible: heat,

power, clockspeed, etc.); these will be defined through the System−level DCDL effort
� The complete system thus consists of components and facets, where the systrem

model describes:
� Assumptions on the external environment
� Definitions for the system
� Verifications describing and justifying system behavior

� Logic for a complete system model:
(Assumptions and Definitions) implies (Verifications)

While the syntax of Rosetta does borrow on several proven constructs found through experience
to be useful in VHDL, it is entirely separate from any HDL. Rosetta / SLDL is a systems
language, driven to be complementary with both Verilog and VHDL, as well as familiar software
programming languages (C, C++, Java). Rosetta does not compete with any of these, since no
other language describes declarative design constraints at the system level.

Rosetta supports the Phase I SLDL goals for a high−level, multi−domain constraints language
capability. Rosetta is complemented by the Design Constraints Description Language (DCDL)
effort, supported through OVI, VSIA, and VI. DCDL will provide the constraints content
semantics, while Rosetta enables an integrated semantic framework for applying these
constraints to different views of a system and analyzing the results.

So, what can industry expect for Phase II of SLDL? Much of the work is already beginning, as
the semantic foundation is being laid for describing diverse views of behavior and architecture in
a constraint−driven environment. The formally−based semantic model will serve as a
"backplane" for allowing all compliant system−level languages to communicate with each other,
whether they already exist today or have yet to be defined to meet future needs. It is imperative
that the electronics industry worldwide avoid a virtual "Tower of Babel" in the system design
arena. Much as the PC industry has benefited tremendously from alignment on the PCI bus
standard, enabling new "plug−in" cards that can communicate and coordinate activities, we too
should agree to leverage a common semantic backplane enabling various modeling domains to
work in harmony with each other. This level of interoperability is not easy to achieve, but is
critically important for the electronics industry to reap the full rewards of silicon advancement
through greatly enhanced design capability and productivity.

SLDL has been greatly supported by numerous industry consortia, and is now an integral part of
VHDL International and it’s vision to extend the capabilties and value of HDL−based design.
Critical support for SLDL is also provided courtesy of ECSI, VSIA, DARPA, MARCO, GSRC, and
OVI.

More information on SLDL, including requirements documents, workshop minutes and
presentations, industrial driving design examples, Rosetta white papers, summary slides, and
organizational structure can be found at <http://www.inmet.com/SLDL>.

	ASP-DAC2000
	Front Matter
	Table of Contents
	Session Index
	Author Index

