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ABSTRACT

The sequence-pair was proposed in 1994 as a representa-
tion of the packing of rectangles of general structure. Since
then, there have been e�orts to expand its applicability over
simple rectangles. This paper proposes a new way to rep-
resent the packing of a set of rectilinear blocks, including
arbitrary concave rectilinear blocks. Our idea is in rep-
resentation of a general block by a collection of rectangle
blocks with additional constraints. Some sequence-pairs of
rectangle blocks with such constraints may not be feasible,
i.e. there is no corresponding packing. A necessary and
su�cient condition of feasible sequence-pair is given by the
properties of the horizontal and vertical constraint graphs.
Furthermore, it is proved that any packing is represented by
a feasible sequence-pair. The condition includes dimensions
of blocks involved. However, for L-shaped blocks, an idea
is given to represent them only in terms of the topology of
the sequence-pair. A packing algorithm is designed as an
SA search of the generated sequence-pairs. Experimental
results show e�ectiveness of the proposed method.

1. INTRODUCTION

Recent advance of sub-micron technology makes it possible
to realize a big system on a single chip. Designing such
a huge VLSI layout is hard and so design reuse has been
attracting much interest. In the layout design of such VLSI
systems, blocks are not often simple rectangles. Therefore
packing algorithm for arbitrary shaped rectilinear blocks is
hoped. The following problem is the core of the practical
requirements.

Rectilinear block packing (RP) problem: Let M be
a given set of arbitrary rectilinear blocks. Pack M in the
smallest rectangular area. Here, packing of a set of blocks
is to place all the blocks without overlapping each other. 2

Rectilinear blocks can be classi�ed into two types of
blocks: convex rectilinear blocks and concave recti-
linear blocks. A rectilinear block is said to be convex
if any two points in the block have a shortest Manhattan
path inside the block. Otherwise, the block is said to be
concave.

If M is consisting only of rectangles, RP is called
rectangular-RP. The sequence-pair (seq-pair) [5, 7] and
BSG [6, 16] were proposed to represent rectangular-RP of
general structure. It was shown that they have properties
preferable for generating a solution space and search. As
for the seq-pair, every seq-pair is feasible, i.e. there is a
packing corresponding to any seq-pair. There is a seq-pair
which corresponds to the optimum packing. From an seq-
pair, the corresponding packing is obtained in O(n2) where
n= jMj. Their practicality has been proved in stochastic
search by experiments.
Intending to enhance the seq-pair and BSG to be able

to handle rectilinear blocks such as L-shaped, convex, and
concave ones, several ideas have been proposed. Their ef-
forts have been to represent the RP packings for generating
a solution space and search, by seq-pair [9], [13], [15], [17]
and by BSG [6, 16], [8], [12], [14], [18]. The only method
that can pack concave rectilinear blocks is [12]. However,
[12] and [6, 16], [8], [9], [13] cannot represent a certain class
of packings.
This paper gives a solution in the following fashion. A

new method for RP is proposed based on the seq-pair which
includes (1) to represent RP by seq-pair, (2) to give a proof
that any RP is represented by seq-pair, (3) to realize a
packing for a feasible seq-pair in cubic order, and (4) to
give a necessary and su�cient condition for a feasible seq-
pair.
The condition for (4) includes the dimensions of blocks.

However, it is shown that if the blocks are L-shaped and
rectangular, the condition is simpli�ed so as not to use di-
mensions of blocks.

2. PRELIMINARY

2.1. Sequence-pair

A sequence-pair [5, 7] for a set of n rectangular blocks is a
pair of permutations of the n block names. For example,
(abc; bac) is a seq-pair for block set fa; b; cg. It is easily
understood that the variety of the seq-pair for n blocks is
(n!)2.
A seq-pair imposes a horizontal/vertical (H/V) con-

straint for every pair of blocks as follows:

(� � a � �b � �; � � a � �b � �) !

(
the right side of a is

left of the left side of b
(a is left of b)

(� � b � �a � �; � � a � �b � �) !

(
the upper side of a is

below the lower side of b
(a is below b)

For example, sequence pair (abc; bac) imposes a set of H/V
constraints: fa is left of c, b is left of c, b is below ag.
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Figure 1. Example of oblique-grid and packing of
seq-pair (abc; bac)

The H/V constraints of a seq-pair can be intuitively
grasped using the oblique-grid notation. For example,
Fig.1(a) shows the oblique grid of seq-pair (abc; bac). It is
an n � n grid obliquely drawn on the plane which is con-
structed so that the �rst sequence is observed along the se-
quence of the positive slope lines from left to right and the
second sequence is observed similarly with respect to the
negative slope lines. It shows the H/V constraints: block c
is in the right quarter view range (between �45� and +45�)
of block a on the oblique grid, then c should be placed to
the right of a.
It has been proved in [5] and [7] that the set of H/V

constraints imposed by every seq-pair is feasible, and an
area minimumpacking under the constraint can be obtained
in polynomial time, and further, there is a seq-pair which
leads an (globally) area minimum packing. Then, the seq-
pair is easily utilized as a coding scheme of a stochastic
algorithm.
To construct an area minimum placement for a seq-pair,

1-D compaction is carried out under the H/V constraints
of the seq-pair. The blocks are greedily pushed to the left
and to the bottom as shown in Fig.1(b). The resultant
placement is called the realization of the seq-pair.
The realization can be obtained in O(n2) time by using

theH/V constraint graph which is constructed faithfully
to the H/V constraints. More in detail, Step 1 constructs
a vertex weighted directed acyclic graph whose vertex set
corresponds to the blocks and whose edge set corresponds to
the horizontal constraints in the direction from left to right.
The weight of each vertex is the width of the corresponding
block. Determine the X coordinate of each block by the
longest path length from the source node to the node of the
block. Step 2 determines the Y coordinate of each block in
a similar way using the vertical constraints in the direction
from bottom to top.

2.2. Previous researches for RP problem

In [6, 16], a method to pack L-shaped blocks based on BSG
is proposed: Partition each L-shaped block into two rect-
angles and place them onto two adjacent BSG-room. As
two adjacent BSG-room have a common BSG-line, these
two rectangles can be aligned by post-process easily. How-
ever, this method has a limitation that it cannot represent
a certain L-shaped block packing. So, the optimum pack-
ing may not be represented by this method. For exam-
ple, a packing shown in Fig.2(a) cannot be represented. As
rectangles b; c; d; e are above a1 and left of a2, they must
place onto BSG-rooms which are located upper-left direc-
tion. (BSG-rooms marked with ? in Fig.2(b)) But in these
limited BSG-rooms, relative positions of b; c; d; e in Fig.2(a)
cannot be represented. After all, relative positions shown in
Fig.2(a) cannot be represented by this method using BSG.
(Using seq-pair based method proposed in this paper, rela-
tive positions shown in Fig.2(a) can be represented easily,

a(a1)

(a2)

b c

d e

(a)Optimum packing
of L-shaped block a

and rectangles b; c; d; e.

a1 a2

? ?

? ?

? ?

(b)BSG-rooms, where Rect-
angles b; c; d; e must be placed
onto the room marked with ?

Figure 2. Example where BSG cannot represent the
optimum packing

for example, by (bcdea1a2; a1debca2).)
A more complicated method to pack L-shaped and T-

shaped blocks using BSG is proposed in [8], but by the same
reason, a certain packing cannot be represented. In [9], a
seq-pair based method using a complicated relationship to
pack rectilinear blocks is proposed, but overlaps may occur.
In [12], a BSG based method to pack rectilinear blocks

allowing concave blocks and preplaced blocks are proposed.
But this method may not represent the optimum packing
as the authors point out.
In [13], a seq-pair based method to pack rectilinear blocks

are proposed. Rectilinear blocks are partitioned into rectan-
gles and post-process aligns rectangles to rectilinear block
after the rectangle packing. This method can only pack
mountain-shaped rectilinear blocks.
In [14], a topology based convex rectilinear block pack-

ing using BSG structure is proposed. This method is very
complicated and a topology of initial packing cannot be
represented and packed by the same reason with [6, 16].
(\Topological compaction" can be done easily, by using the
proposed method in this paper.)
In [17], a method based on the seq-pair that can represent

any convex rectangle packings is proposed.
In [18], a BSG based method which treats each convex

rectilinear block as a sum of some rectangles is proposed.
This method is proved to be able to represent any rectilinear
packings. But multiple-BSG needs very big code space.

2.3. 1-D compaction using constraint graph

A useful method to compact the block placement in one
dimension uses constraint graph [1, 3]. The H-constraint
graph is made from initial positions of blocks. The set of
vertices of the constraint graph consists of one source vertex
and the others that correspond to the blocks. Edge (a; b)
whose weight is equal to the width of a is introduced if
block b is right of block a. Clearly, the weight of an edge is
positive. Positive edge (a; b) of weight x means \b should
be right of a by x or more than x". This constraint graph is
a directed acyclic graph with a single source. Compaction
is to set the X-coordinate of each block at the longest path
length from the source vertex to the vertex corresponds to
the block.
An extended version of constraint graph for compaction

contains negative weight edges and directed cycles. (Graph
contains any cycles is called \cyclic", and otherwise
\acyclic".) Using edges with negative weights and cycles
make it possible to represent conditions like \b should be
right of a by exactly x". In this paper, rectilinear block
packing will be achieved by using the concept of this ex-
tended version of constraint graph.
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Figure 3. Rectilinear block a is partitioned into
fa1; a2; a3; a4; a5g.

If a constraint graph is cyclic, positions that satis�es all
constraints imposed by the graph do not always exist. It
is known that such a position exists if and only if the con-
straint graph contains no positive cycles. A \positive
cycle" is a cycle whose sum of weights of edges is positive.
If a graph G(V;E) is acyclic, �nding the longest path

length to all vertices from source vertex needs O(jV j+ jEj)
time, using the algorithm for �nding longest path in DAG
(Directed Acyclic Graph) [4]. If a cyclic graph G(V; E)
contains no positive cycle, �nding the longest path length
to all vertices from source vertex needs O((b+1)T ) time [1]
where b and T are the numbers of negative edges and all
edges respectively.
There are other algorithms available to �nd the longest

path on a cyclic graph without positive cycles. One is to
apply Floyd's or Ford's shortest path algorithm [4]. How to
apply the shortest path algorithm to longest path search is:
Given constraint graph G, make a inverse graph Gr by in-
verting the sign of the weights of all edges in G, and �nd the
shortest path length to each vertex on Gr , and inverse the
sign of the path length. It is known that Floyd's algorithm

can �nd the shortest path on graph Gr in O
�
jV (Gr)j3

�
and Ford's algorithm can �nd the shortest path on graph
Gr in O (jV (Gr)j jE(Gr)j) if Gr contains no negative cycles.
Since negative cycles on Gr correspond exactly to positive
cycles on G, applying these algorithms can �nd the longest
path on G if and only if G contains no positive cycles. If
Gr contains negative cycles, Floyd's algorithm will only fail
but Ford's algorithm will con�rm the presence of negative
cycles before fail. So Ford's algorithm can be used to check
if G would contain positive cycles.

3. ALGORITHM FOR RP PROBLEM

As only rectangle blocks can be handled by seq-pair basi-
cally, rectilinear blocks are partitioned into rectangles. A
rectilinear block a can be partitioned into a set of sub-blocks
fa1; a2; ��; ang with horizontal or vertical lines (See Fig.3),
as other methods. Let sx(r) be the width of rectangle r and
sy(r) be the height of r. Since we can partition a rectilinear
block horizontally and vertically together, we can minimize
the number of sub-blocks [2] and it leads us to save the
computation time.
For simplicity, rotations and reections of rectilinear

blocks are assumed not to be permitted here. They are
discussed later.

3.1. X/Y-alignment

In [13] and [17], X and Y alignment procedures are needed
after rectangular packing based on the seq-pair to align sub-
blocks which are the part of a common rectilinear block.
But our method to align sub-blocks is di�erent from them

va2ra1�-1 ��

�1
ra5��

�5�-
5

�-
2 �� �2

ra3�-�1 �� 1

ra4

(a) Horizontal constraint
graph GH
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1�-
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ra3�-1 �� �1

ra4

(b) Vertical constraint
graph GV

Figure 4. Part of constrained graphs for the recti-
linear block shown in Fig.3

since the packing and the alignment are executed simulta-
neously. So it needs no post-process.
In order to pack and align simultaneously, special edges

called \relative position edge pair" are introduced.
When sub-blocks ai and aj are adjacent parts of a com-
mon rectilinear block a, relative position edge pair, which
consists of directed weighted edge (ai; aj) and (aj ; ai), is in-
troduced into both H/V constrained graphs. Directed edge
(ai; aj) on H-constrained graph is de�ned from ai to aj ,
and its weight is the di�erence from original X-coordinate
(before partitioning) of ai to that of aj . Directed edge
(ai; aj) on V-constrained graph is de�ned from ai to aj ,
and its weight is the di�erence from original Y-coordinate
of ai to that of aj . Directed edges (aj ; ai) on H- and V-
constrained graphs are de�ned similarly. Clearly, the sum
of the weights of the edges of relative position edge pair
is zero. Fig.4(a) is a part of H-constrained graphs for the
rectilinear block shown in Fig.3, and Fig.4(b) is a part of
V-constrained graphs.
By the compaction theorem described before, 1-D com-

paction using H- and V-constrained graphs which contain
all relative position edge pairs for each rectilinear block may
pack all rectilinear blocks without overlapping and with all
alignments of rectilinear blocks if there is a packing corre-
sponds to the constrained graphs.

3.2. Packing using constraint graphs

New horizontal and vertical constraint graphs are proposed,
which make it possible to pack and align all rectilinear
blocks simultaneously.
Horizontal constraint graph GH is de�ned as an edge-

weighted directed cyclic graph. Vertex set V (GH) consists
of one source vertex and one drain vertex and vertices cor-
respond to rectangular blocks. Edge set E(GH) can be
classi�ed into four kinds:

1. The edges from source vertex to the other, whose
weights are all zero.

2. The edges to drain vertex from the other (vi; vd), whose
weights are the width of rectangles correspond to vi.

3. The edges (vi; vj) correspond to horizontal constraint
imposed by the seq-pair, whose weights are the width
of rectangles correspond to vi. These edges are called
\H-constrained edges".

4. The edges of relative position edge pair, which have
been described before. 2

Vertical constraint graph GV is de�ned similarly.
Note that seq-pair constrained graphs for RP are vertex-

weighted directed acyclic graphs. If there is no relative
position edge pair in GH/GV , the weights of all the edges
from one vertex are the same and the weights can move to



the vertex. Then, the constrained graph can be transformed
to the constrained graph de�ned by [5, 7] for RP.
Then, we can get an algorithm \Rectilinear block packing",

using compaction on GH and GV below.

Algorithm: Rectilinear block packing�
input: block-sizes, seq-pair S
output: packing

�
step1-1: Make H-constraint graph GH from S.

step1-2: Determine the X coordinate of each rectangle
by the longest path length from the source vertex to the
vertex of the block.

step2-1: Make V-constraint graph GV from S.

step2-2: Determine the Y coordinate of each rectangle
by the longest path length from the source vertex to the
vertex of the rectangle.

As described in 2.3., applying the Ford's shortest path
algorithm makes it possible to check the presence of posi-
tive cycles and to �nd the longest path simultaneously in
O(jnj3) time. If Rectilinear block packing could be done,
all rectilinear blocks would be aligned and packed by the
compaction theorem described before.

3.3. Feasible seq-pair

If all blocks are rectangles, there always exists a packing
corresponds to each arbitrary seq-pair. But if any non-
rectangle blocks are contained, there may exist no packing
corresponds to some seq-pair. So \feasible seq-pair" can be
de�ned as:

Feasible sequence-pair: If there is a rectilinear block
packing which keeps all H/V-constraints imposed by the
seq-pair, then the seq-pair is said to be \feasible". And a
seq-pair which is not feasible is said to be \infeasible". 2

Note that in [13] and [17], \feasible seq-pair" is de�ned
as a seq-pair which can lead to a rectilinear block packing
after their post-processes, and it means the post-process is
the key for the feasibility.
Then we can get the theorem below.

Theorem 1 A seq-pair S is feasible if and only if both H-
and V-constraint graphs of S contain no positive cycles. 2

\positive cycle" is a cycle in a directed graph and the sum
of the weights of edges on the cycle is positive (bigger than
zero).
Proof: If the di�erence from X-coordinate of rectangle
a to X-coordinate of rectangle b is less than the weight of
H-constrained edge (a; b), it is clear that relative positions
of a and b violate the H-constraint imposed by seq-pair.
And if the di�erence from X-coordinate of rectangle ai to
X-coordinate of rectangle aj is less than the weight of one of
relative position edge pair (ai; aj), rectilinear block a is not
aligned on X clearly. So, if H-constrained graph contains
positive cycle, rectilinear block packing could not be exist,
and it means the seq-pair is infeasible. It is similar on V-
constraint graph.
If both constrained graphs GH ;GV have no positive cy-

cle, Rectilinear block packing can �nd the longest path by
applying Floyd's or Ford's algorithm. The packing which
keeps all the constraints imposed by GH and GV keeps all
the H- and V-constraint imposed by seq-pair S obviously,
and all the rectilinear blocks would align. It means the
seq-pair S is feasible.

b1

b2

b3

a

(a) packed with seq-pair
(b1ab2b3; b1b2ab3)

u

u
u ub1
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�sx(b1)
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sx(b1) Z
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Z
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sx(a)

(b)Horizontal constraint
graph of (a)

Figure 5. Example of di�erence between feasible
and infeasible seq-pair: If sx(a) � sx(b2), the seq-
pair is feasible. But if sx(a) > sx(b2), the seq-pair is
infeasible.

For example, if the rectilinear block shown in Fig.3
is the only block to be packed, the feasible seq-pair is
(a1a4a3a2a5;a1a2a3a4a5) or (a4a1a3a2a5;a1a2a3a4a5). Ei-
ther GH or GV of another seq-pair has positive cycle.
For another example in Fig.5, rectangle a and convex

rectilinear block b which is partitioned into fb1; b2; b3g are
packed by seq-pair (b1ab2b3; b1b2ab3) as shown in Fig.5(a),
and horizontal constraint graph GH of it is shown in
Fig.5(b). In GH, cycle b1; a; b3; b2; b1 whose sum of weights
is sx(a)� sx(b2) exists. If sx(a) � sx(b2), no positive cycles
exist and the seq-pair is feasible. However, if sx(a) > sx(b2),
cycle b1; a; b3; b2; b1 is positive, and the seq-pair is infea-
sible. It means that feasibility of a seq-pair depends on
the dimensions of rectangles. Note that if the seq-pair is
(ab1b2b3; b1b2b3a), there exist no positive cycles in GH and
the seq-pair is always feasible.

3.4. Optimality

The following theorem guarantees the optimality of the rec-
tilinear block packing.

Theorem 2 Rectilinear block packing with the minimum
area can be represented by a seq-pair.

Proof: From the rectilinear block packing with the min-
imum area P , rectangle packing P 0 can be got by parti-
tioning all rectilinear blocks. Seq-pair S can be got from
P 0 by \gridding operation" proposed in [5, 7]. H- and V-
constraint graphs of S clearly contain no positive cycle, so
S is feasible.

This theorem implies that the exhaustive search of feasi-
ble seq-pairs can �nd the optimum (minimum area) recti-
linear block packing.

3.5. Rotation and reection

In VLSI layout design, blocks are often permitted to reect
and rotate by 90�. Rotation of a rectangle is only an ex-
change of width and height, but rotation and reection of
rectilinear blocks need modi�cation on seq-pair.
Rotation and reection can be done with combining three

basic operations of seq-pair de�ned follows.

Op1: Reverse the order of the former permutation (Ini-
tially, �+). Then all blocks are reected by +45� line.�
(a1a2a3;a1a3a2)! (a3a2a1; a1a3a2)

�
.

Op2: Reverse the order of the latter permutation (Ini-
tially, �

�
). Then all blocks are reected by �45� line.�

(a1a2a3;a1a3a2)! (a1a2a3; a2a3a1)
�
.



a1
a2

a3

(a)Original
(a1a2a3;

a1a3a2)

a1

a2
a3

(b) 90�rotated
(a2a3a1;

a1a2a3)

a1
a2

a3

(c) 180�rotated
(a3a2a1;

a2a3a1)

a1

a2
a3

(d) 270�rotated
(a1a3a2;

a3a2a1)

a1
a2

a3

(e)Reected
by 0� line

(a1a3a2;
a1a2a3)

a1

a2
a3

(f) Reected
by 45� line

(a3a2a1;
a1a3a2)

a1
a2

a3

(g)Reected
by 90� line

(a2a3a1;
a3a2a1)

a1

a2
a3

(h)Reected
by 135� line

(a1a2a3;
a2a3a1)

Figure 6. Variation of seq-pair with rotations and
reections.

a ) al ar

a
)

al ar

Figure 7. L-shaped block a is partitioned into al; ar.

Op3: Exchange the former and the latter permutations
(Initially, �+ and �

�
). Then all blocks are reected

by 0� line.
�
(a1a2a3; a1a3a2)! (a1a3a2;a1a2a3)

�
.

For example, the sequence of Op1 and Op3 makes the
block rotate by 270� and the sequence of Op3 and Op1
makes the block rotate by 90�. The e�ects of the sequence
of operations are displayed in Fig.6.

4. L-SHAPED BLOCK PACKING

If we limit the rectilinear block to one which can be divided
into two rectangles by a vertical line, like L-shaped block (L-
block), a necessary and su�cient condition for feasible seq-
pair can be elegantly expressed regardless of the dimensions
of rectangles. Note that L-block packing with minimum
area can be clearly expressed by a feasible seq-pair.
This necessary and su�cient condition has already pre-

sented in [15]. But this condition is very important also for
rectilinear block packing problem because the condition is,
of course, a necessary condition for feasible seq-pair of rec-
tilinear block packing problem. Moreover as [15] is written
in Japanese, we describe the theorem for the condition here.
Suppose L-block a is partitioned by vertical line into two

rectangles al and ar as shown is Fig.7.

4.1. Feasible seq-pair

First, we enumerate three conditions for infeasible seq-pair.

(1) \Forbidden L-position": If al is not before ar in
either �+ or �

�
for any L-block a, we call this seq-pair has

Forbidden L-position. In other words, relative position
of al and ar is not as

S = (� � al � �ar � �; � � al � �ar � �):

(2) \L-intruder": If a rectangle x is between al and ar
on both �+ and �

�
for an L-block a, we call this seq-pair has

L-intruder, or \x is a L-intruder of a". In other words,
relative position of al, ar, and x is as

S = (� � al � �x � �ar � �; � � al � �x � �ar � �)

(3) \L-crossing": If both bl and br are between al and
ar on �+ and both al and ar are between bl and br on �

�
,

we call this seq-pair has L-crossing, or \a and b are L-
crossing". In other words, relative position of al, ar , bl,
and br is as

S = (��; al; ��; bl; ��; br; ��; ar ; ��; ��; bl; ��; al; ��; ar; ��; br; ��):

Theorem 3 Seq-pair S is feasible if and only if S has nei-
ther forbidden L-position nor L-intruder nor L-crossing.

This theorem implies a feasible seq-pair of L-block pack-
ing can be represented regardless of the dimensions of rect-
angles. As our proof of this theorem is rather complicated,
it is given separately in two subsections according to the
necessary part and su�cient part.

4.2. Proof of necessary condition of Theorem 3

We will prove here that if seq-pair S has either forbidden
L-position or L-intruder or L-crossing, there may be some
L-blocks that cannot be aligned.
If seq-pair S has forbidden L-position at L-block a, rela-

tive position between al and ar must not regular. So, the
L-block a cannot be aligned obviously.
If seq-pair S has L-intruder x between al and ar, rectangle

x is between al and ar horizontally, and al and ar cannot
be aligned horizontally.
As the proof for L-crossing is a little bit di�cult, we dis-

cuss in the lemma below:

Lemma 1 If seq-pair S has L-crossing between L-block a
and b, relative position of either a or b cannot be aligned.

Proof: We can decide without loss of generality that
seq-pair S is

S = (� � al � �bl � �br � �ar � �; � � bl � �al � �ar � �br � �):

If we denote the Y-coordinate of the lower line of rect-
angle r is y(r), the Y-coordinate of the upper line of r is
y(r) + sy(r). Since S implies that bl is below al and ar is
below br , we can get:

y(bl) + sy(bl) � y(al) (1)

y(ar) + sy(ar) � y(br): (2)

Suppose L-blocks a and b could be aligned though they
are L-crossing each other on S. Then, we can get:

y(al) < y(ar) + sy(ar): (3)

From equation (1) and (2) and (3), we can get

y(bl) + sy(bl) < y(br): (4)

Then, L-block b cannot be aligned, a contradiction.

4.3. Proof of su�cient condition of Theorem 3

We will prove here that if seq-pair S has neither forbidden
L-position nor L-intruder nor L-crossing, all L-blocks can
be aligned. We will prove by construction using Rectilinear
block packing.
First, Rectilinear block packing is executable because

step 1-1 and step 2-1 are obviously executable, and ex-
ecutability of step 1-2 and step 2-2 can be shown only by
the proof that both H- and V-constraint graph (GH ; GV )
have no positive cycles. Proofs that GH and GV have no
positive cycles are described in lemma 2 and lemma 3.
Path from a through c1; c2; ��; cm to b is denoted by

(a; c1; c2; ��; cm; b), and cycle from a through c1; c2; ��; cm
return-to a is denoted by (a; c1; c2; ��; cm; a).



Lemma 2 Vertical constraint graph GV (V;EV ) has no
positive cycles.

Proof: In L-block packing, as L-block a is decided to be
partitioned by vertical line into al and ar, one of \relative
position edge pair" in vertical constraint graph is from al
to ar and the other is from ar to al. We call the edge from
al to ar \right-s-edge" and the edge from ar to al \left-
s-edge" and either of them called \s-edge". Also we call
the edge imposed by V-constraint \v-edge".
Suppose that positive cycles exist in GV . It is clear that

GV without right-s-edge and left-s-edge contains no cycles.
Then, cycles on GV contains right-s-edge or left-s-edge.
The sum of the weights of any cycles consists of right-

s-edges (al; ar) and left-s-edges (ar; al) is exactly zero by
their de�nitions. Hence the positive cycle contains some
v-edges if exists.
Now, we call one of the cycles with the minimum length

that includes v-edge L . (Note that we do not mind whether
the sum of the weights of L is positive or not.) In the
following, we will show that L must not exist.
It is obvious from its de�nition that start vertex and end

vertex of two consecutive s-edges are the same, and that
v-edges are transitive. So, L is alternate s-edge and v-edge.
If we compare start vertex to end vertex of three kinds of

edges �+ decreases and �
�
increases in v-edges, with respect

to the order in �+ and �
�
. and both �+ and �

�
increase in

right-s-edges, and both �+ and �
�
decrease in left-s-edges.

Hence there exist no cycles with only v-edges and left-s-
edges, and there exist no cycles with only v-edges and right-
s-edges. L must contain at least one v-edge and at least one
left-s-edge and at least one right-s-edge.
Then there may be a v-edge on L whose predecessor is

a right-s-edge, and whose successor is a left-s-edge. We
assume this path is (al; ar; br ; bl). (Edge (al; ar) is a right-s-
edge, (ar ; br) is a v-edge, and (br; bl) is a left-s-edge.) From
the conditions for three kinds of edges, we can get

��1+ (al) < ��1+ (ar) > ��1+ (br) > ��1+ (bl) (5)

��1
�
(al) < ��1

�
(ar) < ��1

�
(br) > ��1

�
(bl) (6)

Note that none of v-edge (al; br), (al; bl), and (ar ; bl) ex-
ist because L is a cycle with minimum length. Since edge
(al; br) never exists, it is straightforward that ��1+ (al) <

��1+ (br). See Fig.8 for intuitive understanding.

If ��1
�

(bl) > ��1
�

(ar) (bl is in domain A or B on Fig.8),

v-edge (ar; bl) exists, a contradiction. Hence ��1
�

(bl) <

��1
�

(ar).
Here, we can classify the relative positions between al

and bl into four kinds.
If ��1+ (bl) < ��1+ (al) and ��1

�

(al) < ��1
�

(bl), (bl is in do-

main C on Fig.8), v-edge (al; bl) exists, a contradiction.

If ��1+ (al) < ��1+ (bl) and ��1
�

(al) < ��1
�

(bl), (bl is in do-

main D on Fig.8), bl is an L-intruder of ar ; al, a contra-
diction.
If ��1+ (bl) < ��1+ (al) and ��1

�

(bl) < ��1
�

(al), (bl is in do-

main E on Fig.8), al is an L-intruder of bl; br, a contra-
diction.
If ��1+ (al) < ��1+ (bl) and ��1

�

(bl) < ��1
�

(al), (bl is in do-

main F on Fig.8), a and b are L-crossing, a contradiction.

Next, we discuss about the existence of positive cycles
on H-constraint graph GH . There is a cycle with length
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constraint graph GH

two which corresponds to each L-block on GH by the same
reason on GV , and the sum of the weights of edges on the
cycle is all zero. There exist some cycles with more than
two edges is di�erent from the case of GV . For example, in
H-constraint graph of S = (al; bl; ar ; br; bl; al; br; ar), there
exists a cycle (ar; al; br; bl; ar), but the sum of the weights
of the edges of this cycle is also zero. The following lemma
holds.

Lemma 3 Horizontal constraint graph GH(V;EH) has no
positive cycles.

Proof: We call the edge imposed by H-constraint \h-
edge". In L-block packing, as L-block a is decided to be
partitioned by vertical line into al and ar, one of \relative
position edge pair" in horizontal constraint graph is from
al to ar and the other is from ar to al. We call the edge
from ar to al \reverse-edge" The edge from al to ar is
redundant because there exists an h-edge (al; ar) with the
same weight.
Suppose that positive cycles exist in GH . We call one

of the positive cycles with the minimum length C. In the
following, we will show that C must not exist.
It is clear that GH without reverse-edges contains no cy-

cles. Then, C contains any reverse-edges.
Pay attention to a reverse-edge (ar; al) on C. The next

vertex after al on C is called b. Check the relative positions
of b among al and ar on �+ and �

�
. First, (al; b) is an h-edge

because the predecessor on C is a reverse-edge, and reverse-
edges cannot adjoin by de�nition. Hence ��1

+
(al) < ��1

+ (b)

and ��1
�

(al) < ��1
�

(b). Here, we can classify the relative
positions between b and ar on �+ and �

�
into �ve kinds.

If b is equal to ar, cycle (ar ; al; ar) exists. C is exactly

equal to (ar; al; ar) because C never pass a vertex twice.
The sum of the weights of the edges on this cycle is
�sx(al) + sx(al) = 0, not positive, a contradiction.

If b is left to ar (�
�1

+ (ar) > ��1+ (b) and ��1
�

(ar) > ��1
�

(b)),

��1+ (al) < ��1+ (b) < ��1+ (ar) and ��1
�

(al) < ��1
�

(b) < ��1
�

(ar).
b is an L-intruder of al; ar, a contradiction.
If b is right of ar (��1+ (ar) < ��1+ (b) and ��1

�

(ar) <

��1
�

(b)), there exists h-edge (ar; b). Assume C =

(ar ; al; b; ��; ar), and replace (ar ; al; b) on C with (ar; b).
Compare the sum of the weights on cycle C0 = (ar; b; ��; ar)
and that on C. The sum of the weights of edges (ar ; al)
and (al; b) is �sx(al)+sx(al) = 0, and the weight of h-edge
(ar ; b) is positive. And the sum of the weights of the edges
on C0 is bigger than that on C. Then, C0 is positive weight
and fewer number of vertices than C, a contradiction.
If b is above ar (��1+ (ar) > ��1+ (b) and ��1

�

(ar) < ��1
�

(b))
can occur. Path (ar ; al; b) is called \up-path". The sum



of the weights of the edges on up-path (ar; al; b) is trivially
zero by de�nition.
If b is below ar (��1+

(ar) < ��1+
(b) and ��1

�

(ar) > ��1
�

(b))
can occur. Path (ar; al; b) is called \down-path. The sum
of the weights of the edges on down-path (ar; al; b) is triv-
ially zero by de�nition.
As there comes an h-edge next to a reverse-edge on C,

C can be divided into a set of h-edges SH and a set of up-
paths and down-paths Sud. Since the sum of the weights of
an element of Sud is all zero, and the weight of an element
of SH is all positive, and the sum of the weights of edges on
C is positive, jSH j > 0. Otherwise, the sum of the weights
of edges on C would be zero.
The predecessor of one of the h-edges eh in SH is an h-

edge ep because the latter edge of both up-path and down-
path is an h-edge. As h-edges are transitive, a cycle C0 can
be made by combining ep and eh. If we assume jSH j � 2,
C0 would be a positive cycle and made of fewer vertices,
a contradiction. (Note that if jSHj = 1, the sum of the
weights of the edges on C 0 would be zero, no contradiction.)
Hence jSH j = 1.
If we compare start vertex to end vertex of h-edge and

up-path and down-path, with respect to the order in �+ and
�
�
, both �+ and �

�
increase in h-edges, and �+ decreases and

�
�
increases in up-path, and �+ increases and �

�
decreases

in down-path. Hence any cycle contains both up-paths and
down-paths.
From the reasons before, C consists of exactly one h-edge,

and one or more than one up-paths, and one or more than
one down-paths. Then, there exists a point either a down-
path follows a up-path, or a up-path follows a down-path.
Without loss of generality, we assume up-path (ar ; al; br)

is followed by down-path (br; bl; c) on C. Then,

��1+ (al) < ��1+ (br) < ��1+ (ar) and (7)

��1
�
(al) < ��1

�
(ar) < ��1

�
(br): (8)

Now, we check the position of bl on �+ and �
�
. ��1

�

(bl) <

��1
�

(br) and ��1+ (bl) < ��1+ (br) because (br; bl) is a reverse-

edge. If ��1
�

(bl) < ��1
�

(al) and ��1+ (bl) < ��1+ (al) (bl is in
domain E on Fig.9), al is an L-intruder of br; bl, a contra-

diction. Else if ��1
�

(bl) < ��1
�

(al) and ��1+ (al) < ��1+ (bl) <

��1+ (br) !Jbl is in domain F on Fig.9), a and b are L-crossing,
a contradiction. Hence,

�
�1

�
(al) < ��1

�
(bl) (9)

!Jbl is in domain A, B, C, or D on Fig.9).
Next, we check the position of c on �+ and �

�
. As

(br ; bl; c) is a down-path, �
�1

+ (br) < ��1+ (c). Also from equa-

tion (7),

�
�1

+ (al) < �
�1

+ (br) < �
�1

+ (c) (10)

As (bl; c) is an h-edge, ��1
�

(bl) < ��1
�

(c). Also from equation
(9),

��1
�
(al) < ��1

�
(bl) < ��1

�
(c) (11)

Then, from equation (10) and (11), c is right of al and h-
edge (al; c) exists. Also, C includes (ar; al; br ; bl; c). By
skipping br and bl using h-edge (al; c), we can get a cycle
C0. Since the sum of the weights of the edges on down-path
(br ; bl; c) is zero and the weight of edge (al; br) and (al; c) is
the same, the sum of weights of edges on C 0 is the same to
that on C. Hence, C0 is a positive cycle with fewer vertices
than C by two, a contradiction.

Table 1. All seq-pairs of rectangle a and L-block b
which do not have forbidden L-position.

sequence-pair feasible ? reachable group
(a bl br ; a bl br) Yes group 1
(a bl br ; bl a br) Yes group 1
(a bl br ; bl br a) Yes group 2
(bl a br ; a bl br) Yes group 1
(bl a br ; bl a br) No (L-intruder) |
(bl a br ; bl br a) Yes group 2
(bl br a ; a bl br) Yes group 1
(bl br a ; bl a br) Yes group 2
(bl br a ; bl br a) Yes group 2

(a bl br ; a bl br)~www�half-exchangea and bl

(bl a br ; a bl br)
full-exchange

(=========)
a and bl

(a bl br ; bl a br)~www�half-exchangea and br

(bl br a ; a bl br)

Figure 10. Reachable seq-pair from (a bl br ; a bl br)
by half-exchange and full-exchange

Now, we can conclude that Rectilinear block packing is
proved to be executable. Time complexity of Rectilinear
block packing is dominated by the longest path search at
step 1-2 and step 2-2, and is O(n3) where n is the number
of rectangles. (See 2.3. in detail.)

5. EXPERIMENTAL RESULTS

The proposed algorithm is implemented using C language,
and tested on SUN Ultra-SPARC workstation. The Ford's
shortest path algorithm is used to check the positive cycles
and to �nd the longest path on horizontal and vertical con-
straint graphs. The solution space is searched by simulated
annealing method. Two kinds of adjacent seq-pair is used:

�+-exchange: exchange of two rectangles on �+, and

�
�
-exchange: exchange of two rectangles on �

�
.

If a randomly made adjacent seq-pair is infeasible, the seq-
pair is canceled and another adjacent seq-pair is made until
the seq-pair is feasible. (As this method to get an adjacent
seq-pair is time consuming, a solution space that consists
of feasible seq-pairs only or that uses adaptation technique
[10] is preferable.)
In [5, 7], \full-exchange", which exchanges two rectangles

on both �+ and �
�
, and \half-exchange", which is the same

as \�+-exchange" are de�ned to use for making adjacent
seq-pairs. But these adjacent seq-pair de�nitions are proved
easily that a certain seq-pair is not reachable from another
certain seq-pair. In Table1, all seq-pairs of rectangle a and
L-block b which do not have forbidden L-position are listed.
All the seq-pairs, except for an infeasible (L-intruder) one,
are classi�ed into group 1 and group 2, and a seq-pair of
group 1 is not reachable from a seq-pair of group 2. Adja-
cent seq-pairs in group 1 is displayed in Fig.10. (Note that
solution space with �+ and �

�
-exchange is not proved to be

reachable from a seq-pair to any other seq-pair.)
Fig.11(a) is a packing example of the same data as Fig.10

in [6], that consists of 10 L-blocks and 30 rectangles. (It is



(a) L-shaped blocks

(b) Pentomino

(c) 19 blocks
The area of bounding-box = 468
the area sum of all blocks = 353

CPU time = 13446[s]

Figure 11. Packing examples of rectilinear blocks

reected by X-axis.) This packing without block rotations
and reections takes 5 minutes.
Fig.11(b) is a packing example of 12 rectilinear blocks,

which includes a concave rectilinear block. These blocks
are known as \pentomino". Fig.11(c) is a packing example
of 19 rectilinear blocks, which is randomly handmade.

6. CONCLUSIONS

We have proposed a new method to pack a set of rectilinear
blocks allowing concave blocks, which has not been consid-
ered, based on the seq-pair. It has been proved that any
packing can be represented by it, hence the packing with
minimum area. A necessary and su�cient condition for
feasible seq-pair of rectilinear block packing have been pro-
posed and proved, And a necessary and su�cient condition
for seq-pair of L-shaped blocks also have been proposed and
proved regardless of the dimensions of rectangles. Experi-
mental results show e�ectiveness of the proposed method.
The proposed algorithm Rectilinear block packing uses

computational complexity of O(n3). However, it could be

improved to work in O(n2 log n). The proposed method is
useful not only for the packing of rectilinear blocks but also
for a group of blocks with �xed relative positions, which are
seen in PCB design problem often. Also a group of blocks
whose relative positions are limited in some extents can be
represented.
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