
Abstract Buffer insertion is an effective approach to
achieve both minimal clock signal delay and skew in high
speed VLSI circuit design. In this paper, we develop an opti-
mal buffer insertion and sizing scheme. Particularly, due to the
buffer to buffer delay is a convex function of buffer positions
in a clock tree, we show that the minimal clock delay can be
obtained by equalizing derivatives of this convex function, and
the minimal skew can be obtained by equalizing delay func-
tions of different source to sink paths. Based on this theory, we
further develop a three-stage method to initially insert buffers
in a given clock routing tree, minimize delay by optimizing
buffer positions, and minimize skew by buffer level augment
and buffer size refinement. The presented algorithm achieves
both minimal delay and skew in real clock tree design.

1. Introduction

In the coming century, the clock rate of microprocessors will
approach multi-GHz. This trend will last as process technology
moves into the deep submicron level. The drastically increased
requirement for high performance and high speed VLSI circuits
has posed challenges to the design of high speed clock network,
where clock delay and skew minimization has been a critical prob-
lem. Clock delay and skew can be optimized by good routing strat-
egy [1][2] and effective buffer insertion [3][5]. Early research
[1][2] have proposed algorithms to minimize skew by properly
balance the length of the path from source to sinks. To further
reduce the clock signal delay and transmission line effect, buffer
insertion is necessary. The objective of buffer insertion is to find
the proper buffer numbers, sizes and placement in a given clock
tree.

The fix-position algorithms proposed in [6][7] insert buffers
at either branching nodes in a clock tree or directly after the
branching nodes. However, the optimal buffer positions for mini-
mal delay do not necessarily reside on those places as shown by
our optimal buffer position theory in this paper. Algorithms pro-
posed in [6][8] insert the same number of buffers in each source-
to-sink path. They further assume the buffers at the same level
have the same size. Undoubtedly this buffer insertion strategy
helps to reduce skew sensitivity to process variations [9], but this
strategy requires an almost balanced routing tree topology. Other-
wise, it can not effectively reduce the skew to any specified toler-

ance. The balanced buffer insertion scheme [10] attempts to
partition the clock tree into several subtrees such that every subtree
has equal path-length and all source-to-sink paths have an equal
number of levels. This scheme requires an equal path length rout-
ing tree. In many real design situation, it is impossible to construct
an equal-path-length tree or well-balanced tree in a routing plane if
there exist pre-placed cell modules [15]. Furthermore, an equal-
path-length clock tree does not guarantee the minimal delay and
skew due to the fact that circuit delay depends not only on the path
length but also on the circuit topology [16].

In practical IC design, the delay and skew are usually deter-
mined by the system specification. It is unnecessary to achieve
zero skew [11][12]. This paper endeavors to solve the optimal
buffer insertion problem from both theoretical and practical design
points of view. In contrast to the previous research, we aim to
establish our buffer insertion theories, methodologies and algo-
rithms based on real circuit design settings, where the clock rout-
ing tree is neither well balanced nor equal-length.

2. Definitions and Delay Model

We start by giving a synopsis of the basic definitions which
will be used throughout this paper.

2.1 Definition
A tree is denoted byT(V,E), whereV is the set ofnodes andE

is the set ofedges.
Definition 1(Unbuffered routing tree): An unbuffered routing

tree (Figure 1(a)) is a directed binary treeT(V,E), which consists
of wire setE and node setV={{ s0} ∪ SI ∪ IN}, where s0 is the
uniquesource node,IN is the set ofbranching nodes (orinternal
nodes) andSI is the set ofsink nodes.

Definition 2 (Buffered routing tree): After buffers have been
inserted into the routing tree, the tree is called abuffered routing
tree BT (Figure 1(b)), where the inserted buffers become the new
nodes, calledbuffer nodes in the tree. The node setV of BT is then
indicated by {{s0} ∪ SI∪ IN ∪ BN}, whereBN is the set of buffer
nodes.

Definition 3 (Wire): A wire ev (ev ∈ E) is a directed edge (u,v)
(u,v∈ V), where the signal propagates fromu to v.Node u is called
theparent of nodev, and nodev is called thechild of nodeu.

Definition 4 (Path): Apath P(v0,vn) from nodev0 to node vn in
tree T is a sequence of nodesv0, v1, v2,..., vn∈V and wires ,

,..., ∈V such that linksvi-1 and vi, where ,

.
Definition 5 (Buffer layer): In a clock treeT, if k buffers are

inserted into a source-to-sink pathP(s0,si), we say that there arek-
layer (k-level) of buffers on pathP(s0,si). From sources0 to sinksi,
the j-th (j=1,2,...,k) buffer is calledj-th layer (level) buffer.

2.2 Delay Model

The delay model used in this paper is given in Figure 2. A

 * This research is supported in part by AirForce Office of Scien-
tific Research grant F49620-96-1-0341, NSF NYI Award MIP-
9457402 and project 69806004 supported by NSFC.

ev1
ev2

evn
evi

evi
evj

≠

i j i j≠, ,∀

Buffer Insertion for Clock Delay and Skew Minimization*

X. Zeng1, 2, D. Zhou1, Wei Li1

1Department of Electrical and Computer Engineering
University of North Carolina at Charlotte, NC 28223

2Department of Electronic Engineering
Fudan University, Shanghai 200433, China

wire in a clock tree is modeled by a distributedRC line (Figure
2(a)), which is further modeled by the equivalentπ-model [13] as
shown in Figure 2(b) (assuming properly segmented). Resistance
re and capacitancece of wire e are given by Eqns. (1) and (2),
respectively.

 (1)

 (2)

where le >> we, andle andwe are the length and width of the wire
e, respectively. The constant parameters,rs ca andcf, are the sheet
resistance, area capacitance and fringe capacitance of a unit-width
unit-length wire segment, respectively. From the above definition,
termsr0 andc0 respectively denote the resistance and the capaci-
tance of an unit-length wire. The buffer is modeled by a standard
RC network (Figure 2(c,d)), wheredb, rb andcb are buffer’s intrin-
sic delay, output resistance and input capacitance, respectively.

For calculating the delay of wireev which enters nodev from
its parent node, Eqn.(3) is used for the approximation, where
and are the resistance and capacitance of the wireev, and C(Tv)
is the lumped capacitance of the subtreeTv rooted at nodev.

 (3)

Supposing a pathP(v0,vn) consisting of a number of n wires ,

,..., , the path delay ofP(v0,vn) is given by Eqn. (4).

 (4)

Eqn.(4) is the well known Elmore delay [4]. Buffer delayτb is
given by the following equation,

 (5)

whereCb is buffer’s load capacitance, anddb is taken as a non-
zero value in our discussion and experiment.

3. Delay and Skew Minimization by Buffer Insertion

In this section, we first formulate the buffer insertion optimi-
zation problem, and then present the three-stage approach to
achieve both delay and skew minimization.

Buffer Insertion Problem: Given a routed clock treeT0 and
the buffer size range from the maximum valuerbmax to the mini-
mum valuerbmin, determine the number of the inserted buffers,
their positions and sizes such that clock delay and skew are mini-
mized.

To solve the above defined buffer insertion problem, one
strategy is to fix the number of buffers first, sayk buffers in each
path, and then to find the optimized buffer positions and sizes. We
call this problem ak-level buffer insertion problem. We only need
to consider thisk-level buffer insertion problem since we can
change the value ofk from 1 to a desired number and repeat the
same procedure to find the optimal value ofk. Considering the
number of buffers is upper bounded by a very small number in
practical application, we actually do not need to run this procedure
many times. Therefore, in the following,k is assumed to be a fixed
value.

Figure 3 sketches our proposed three-stage buffer insertion
approach for thek-level buffer insertion problem.

1) Initial Buffer Insertion
The initial buffer insertion algorithm insertsk level of buffers

in each source-to-sink path for a given unbuffered clock treeT0.
The algorithm generates a buffered clock tree calledBT.
2) Delay Minimization

Without adding more buffers or changing buffer sizes, clock
delay is minimized by moving buffer positions. The objective of

v

s0

b1

bi

bi+ 1

bj

:
.

:
:

.

 (a) Unbuffered routing tree (b) Buffered routing tree

ev

u

s0

 :

Figure 1. A clock tree before and after buffer insertion.

RC re

ce/2 ce/2

Buffer db
rb

cb

(d)(c)

(a)
(b)

Figure 2: Delay model (a) A distributedRC line; (b) The
equivalentπ-model; (c) A clock buffer; (d) Buffer model.

r e le() r s le we⁄⋅ r0le= =

ce le() calewe 2cf le we+() cawe 2cf+()= le c0le=+=

r ev
cev

τ ev() r ev

cev

2
------ C Tv()+

 ⋅=

ev1

ev2
evn

τ v0 vn(,) τ evi
()

i 1=

n

∑=

τb db rb Cb⋅+=

Initial Buffer Insertion

 BT

Delay minimization

by buffer position optimization

Skew minimization

by adding buffers and
changing buffer size

 BTD

Input T0, k

Output BTDS

Figure 3.Three-stage clock delay and skew optimization approach.

this stage is to generate a minimal delay buffered tree calledBTD.
3) Skew Minimization

In this stage, the sizes and positions of the buffers on the min-
imum delay path are kept unchanged. We use buffer sizing, and if
necessary, add more buffers to minimize skew. The result of this
stage is a tree with minimal delay and skew, calledBTDS.

In the following sections, we present details of the above
three procedures.

4. Initial Buffer Insertion

The initial buffer insertion procedure was presented in our
previous paper [16]. Here we briefly describe it for the purpose of
a self-contained paper. The procedure is a top-down (from source
to sinks) and level-by-level method to insertk level of buffers in
each source-to-sink path. All the buffers are chosen the same mid-
dle size. The following theorem was proved in [16] for this algo-
rithm.

Theorem 1: The proposed level-by-level initial buffer inser-
tion procedure inserts the same number of buffers in each source-
to-sink path.

5. Delay Minimization by Buffer Position Optimization

To achieve the minimum delay, an optimal solution of deter-
mining the number and position of buffers for driving a long uni-
form wire was developed in the previous work [14]. However,
clock tree delay minimization by buffer placement is challenged
by the fact that buffer position in one path affects the performance
of the other paths. We minimize clock tree delay in a path by path
fashion. To illustrate the complexity of this problem, we start by
examining the problem of buffer placement in a single path in a
buffered tree. We first derive a theory of the optimal buffer posi-
tion and then show the need for splitting a buffer when minimizing
the path delay. Based on this theory, an iterative algorithm is con-
sequently proposed to minimize the delay of a buffered clock tree.

5.1 Single Path Delay Minimization

We now investigate how to achieve the optimal position
when one buffer is moved between two branching nodes and all
other buffers are fixed at their current position. Especially, we
establish a theory for the optimal placement of buffers in a single
path for achieving the minimal delay.

5.1.1 Buffer Position Optimization for Delay Minimization

Without loss of generality, consider one portion of a path
P(s0,si) from sources0 to sinksi in a buffered clock tree, as shown
in Figure 4. Between bufferBj-1 andBj there are ()
branching nodes,v1, v2,..., vm-1. Between bufferBj andBj+ 1 there
are () branching nodesvm+1, vm+2,..., vm+q-1. Let v0,
vm and vm+q denote the three buffer nodes. Suppose bufferBj
locates betweenvm-1 and vm+1. Let x1 and x2 denote the wire
length ofe(vm-1, vm) ande(vm, vm+1), respectively. The wire length
of e(vm-1, vm+1) is a constantLj in the given routing tree, i.e.,

 (6)
Using the delay model described in Section 2, the delay

, from bufferBj-1 to bufferBj, can be written as a func-
tion of x1 in Eqn.(7).

 (7)

Similarly, the delay from bufferBj to bufferBj+ 1 can
be written as a function ofx2 in Eqn.(8).

 (8)

Note that parameters are constants for the

given path. Combining Eqns. (7) and (8) we obtain in
Eqn. (9), the delay fromv0 to vm+q, which is a quadratic function
of variablex1.

 (9)

The minimum delay of is achieved when , i.e.
the following equation holds.

 (10)

The position of bufferBj for minimal delay is therefore given by

 (11)

We have the following optimal buffer position theory for delay
minimization.

Theorem 2 (Optimal Buffer Position Theorem): Given a
buffered clock tree, the path delay of a source-to-sink path
achieves its minimum when the derivatives of all delay functions
between two consecutive buffers on the path are the same.

From Theorem 2, a buffer can be continuously moved to its
optimal position for delay minimization. However, if the optimal
position is not in between the two adjacent branching nodes, the
buffer may need to be moved over branching nodes. In such a case,
the delay function is no longer a continuous function of the buffer
movement. Hence, when a buffer is moved over a branching node,
special treatment should be applied to ensure continuity of the
delay function. In the following, we analyze this problem using the
circuit theory.

5.1.2 Buffer Splitting Theory

Consider a generic case shown in Figure 5, according to The-

orem 2 bufferBj will be moved continuously to the right along the
wire in order to reduce the path delay. But when the buffer hit the
branching node , further movement needs to be treated specifi-
cally. In this subsection, we discuss how to split a buffer into two
smaller buffers, when it is moved down through a branching node
to maintain the continuity of the delay function. In figure 5, before

buffer splitting, for the delay portion contributed by

bufferBj’s output resistance and input capacitance is given
by

(12)

whereRP is the resistance of pathP(v0,vm), CP1 and CP2 are

.
Bj-1 Bj Bj+1

v1 vm-1 vm vm+1 vm+q-1 vm+q

x1 x2

Figure 4. A buffered path.

sis0 v0

m 1– m 1≥

q 1– q 1≥

x1 x2+ L j=

τ v0 vm,()

f 1 x1() τ v0 vm,() α1x1
2 β1x1 Γ1+ += =

τ vm vm q+,()

f 2 x2() τ vm vm q+,() α2x2
2 β2x2 Γ2+ += =

α1 α2 β1 β2 Γ1 Γ2, , , , ,
τ v0 vm q+,()

f x1() τ v0 vm q+,()=

α1x1
2 β1x1 Γ1 α2 L j x1–()2 β2 L j x1–() Γ2++ + + +=

f x1() f ′ x1() 0=

f ′
1 x1() f ′

2 x2()=

x1

β2 β1– 2α2L j+

2 α1 α2+()
---------------------------------------=

.
Bj-1 Bj+ 1

Bj Bj1

Bj2

v0 v1 vm-1 vm vm+1 vm+q-1vm+q

x1 x2

vm’

Figure 5. Buffer splitting technique.

vm′

τ v0 vm q+,()
r bj

cbj

τ1 Rpcbj
r bj

Cp1 Cp2+()+=

lumped capacitance of the two subtrees rooted at node . After
buffer Bj is moved onto branches 1 and 2 directly after the branch-

ing node , it is split into two buffersBj1 and Bj2. For

 the delay portion contributed by bufferBj2’s input

capacitance and output resistance is

(13)

where is the input capacitance of bufferBj1. To ensure the

continuity, should equal to , which results in the following

two conditions in Eqn.(14) and Eqn.(15).

 (14)

 (15)

Suppose . We obtain the size relationship of the two
split buffers in Eqn. (16).

, (16)

where denote the transistor gate length of bufferBj,

Bj1 andBj2, and denote their gate width.

Theorem 3 (Buffer Splitting Theorem): In a buffered clock
tree, when a buffer is moved down over a branching node, if it is
split into two buffers with their sizes satisfying Eqn. (16), all path
delays in the clock tree remain the same.

5.1.3 Algorithm for Single Path Delay Minimization

Using Theorem 2 and 3, we develop an iterative algorithm for
single path delay minimization. The algorithm repeatedly selects a
buffer on the path from source to sink and tests if the path delay
can be reduced by changing buffer position. If the delay is
reduced, the buffer is moved to the new position. Otherwise, it
stays in its original position. When the last buffer on the path is
tested, the algorithm goes back to the first buffer and starts a new
iteration until the delay can not be further reduced. Formally, the
single path delay minimization (SPDM) algorithm is given in
Table 1.

5.2 Delay Minimization for Clock Tree

The algorithm for tree delay minimization is based on the sin-
gle path delay minimization. However, tree delay minimization is
much more difficult to handle than single path delay minimization,
because one path minimization affects the performance of the oth-
ers which may have already been minimized. An effective algo-
rithm should be developed to ensure the convergence of the
minimization process.

5.2.1 Tree Delay Minimization Algorithm

Suppose there areq paths in a buffered clock tree. LetPmin

denote the minimal delay path and denote the minimal delay.
Let Pi denote thei-th path to be minimized and be the delay of

path . The algorithm is as follows.
Step1. Sort all paths inBT (buffered tree) according to their delay
in an ascending order ;

Step2.For i = 1 toq
Minimize delay ofPi using the single path delay minimization
algorithm with buffer moving constraints (discussed in Section
5.2.2);
Step3. Repeat Step1 and Step2 until can not be further
reduced.

5.2.2 Moving Constraints for Monotonous Delay Reduction

SupposePi is the current path for delay minimization. To
ensure the delay monotonously decreasing and the convergence of
the algorithm, three constraints are enforced in the buffer moving
process:
A. If a buffer on pathPi is also on pathPmin, it can not be moved.
B. From source to sink on pathPi, the first buffer which is not on
pathPmin can not be moved down along the path.
C. On pathPi other buffers which are not in case A and B, can be
moved both up and down, but can not be moved up through the
branching nodes and will be split into two buffers when moved
down through the branching nodes.

Figure 6 illustrates the above constraints. In this example,
P(s0, s1) is the minimal delay pathPmin. Suppose we optimize path
P(s0, si) by moving buffers on this path. According to the buffer
moving constraints, bufferB11 can not be moved. BufferBi1 can
only be moved towards branching nodev1, but can not be moved
throughv1. Buffer Bi1 can not be moved towards branching node
v4, since such a movement will increase the capacitive load of the
subtree rooted at bufferB11, which will increase the previously
optimized minimum delay. BufferBi2 can be moved betweenv4
andv5, but can not be moved overv4, and will be split into two
buffers when moved throughv5.

The tree delay minimization algorithm optimizes the tree
delay in a path by path fashion using the single path delay minimi-
zation algorithm (SPDM). After the tree delay minimization we
obtain a buffered tree with minimal delay, calledBTD.

6. Skew Minimization Strategy

Skew minimization is achieved by increasing buffer size or
adding more buffers (if necessary) to the paths such that delays on
these paths decrease towards the minimum delay. To ensure this

vm′

vm′

τ v0 vm q+,() τ2

cbj2
r bj2

τ2 Rp cbj1
cbj2

+() r bj2
CP2+=

cbj1

τ2 τ1

cbj
cbj1

cbj2
+=

r bj
CP1 CP2+() r bj2

CP2=

CP1 γ CP2=

Wbj1

γ
1 γ+
------------Wbj

= Wbj2

1
1 γ+
------------Wbj

= Lbj1
Lbj2

Lbj
= =

Lbj
Lbj1

Lbj2
, ,

Wbj
Wbj1

Wbj2
, ,

τmin
τPi

Pi

τP1
τmin() … τPi

… τPq
< < < <

τmin

 Table 1. Algorithm of single path delay minimization.

Input : Path P(s0,si) (There’sk buffersB1, B2,..., Bk on this path from sources0 to
 sinksi);

: buffer moving step;

Output : Optimized pathP(s0,si);

Procedure PathDelayMinimization (P(s0,si), k)
← Calculate path delay;

move_flag← 1;
while (move_flag = 1)

move_flag← 0;
 fori ← 1 to k do

← Calculate path delay, if bufferBi is moved up ;

 if < then

 Move bufferBi up ;

 move_flag← 1;
else

← Calculate path delay, if bufferBi is moved down ;

 if < then

Move bufferBi up ;

 move_flag← 1;
 end if;
 end if;

end for;
end while;

end Procedure;

∆X

τmin

τ ∆X

τ τmin

∆X

τ ∆X

τ τmin

∆X

strategy do not increase the minimum delay, the sizes and posi-
tions of the buffers on the minimal delay path inBTD are kept
unchanged. Also we will setup several constraints for buffer sizing
and buffer adding to guarantee the convergence of the algorithm.

6.1 Skew Minimization Algorithm

Step 1. Sort all the paths inBTD according to their delay in an
ascending order ;

Step 2. For i = 2 toq
On the current pathPi, find the subpath for buffer sizing or buffer
adding. Reduce the delay of pathPi with respect to the minimum
delay by sizing or adding buffers;
Step 3. Repeat Step1 and Step 2 until the skew specification is
met.

The above algorithm minimizes skew path by path. Once a
path is optimized, all the buffers on that path will have their sizes
and positions fixed such that later optimized paths will not
increase the delay of the previously optimized paths.

For example, in Figure 7,P(s0, s1) is the minimal delay path.
Buffer sizing has been done for pathP(s0, sq). SupposeP(s0, si) is
the current path under consideration of sizing. Since bufferB11 is
on the minimal delay path and the size of bufferBi1 has been opti-
mized, on subpathP(vi,si) only buffersBij andBim are the candi-
date buffers, which could be done sizing for the skew
optimization.

 Eqn. (17) tests whether the delay of the considered path can
be reduced to satisfy the specified skew tolerance by setting all the
candidate buffers to the maximum buffer sizerbmin. If Eqn. (17)
holds, changing buffer size is enough to meet the skew specifica-
tion. Otherwise, more buffers need to be added into this path.

 (17)

In Eqn.(17), suppose there arem candidate buffers for buffer siz-
ing. TermCj denotes the lumped capacitance of the subtree rooted
at the j-th buffer, rbj denotes the buffer’s output resistance, and

 is the specific skew tolerance. If buffer sizing suffices, spe-
cific buffer sizing algorithm is given below.

6.2 Buffer Sizing Procedure

Suppose there arem candidate buffers on the subpath for siz-
ing. Along this subpath, from top to bottom, the procedure
increases the candidate buffer size one by one to the maximum
until the current path delay is smaller than the minimal delay of the
tree. Then, the size of this current buffer is determined by Eqn.
(18),

 (18)

where is the number of buffers having been

increased to the maximum size and is the size of the
current buffer under consideration (labeled as then-th buffer).
Note that due to the buffer structure is the cascaded inverters [17],
when buffer size is changed, its input capacitance remains the
same, only its intrinsic delay and output resistance change. And we
assume buffer intrinsic delay varies directly as its output resis-
tance.

6.3 Adding Buffer Strategy
When all buffers in the candidate subpath are increased to

their maximum size and the skew is still beyond the specification,
additional buffers are added to the subpath. A four-step strategy is
proposed for the buffer adding algorithm.
Step 1. Apply the Layer Defined Initial Buffer Insertion algorithm
to add one more layer buffer to the candidate subpath;
Step 2. Apply the tree delay minimization algorithm to optimize
the positions of the buffers on the candidate subpath;
Step 3. Apply the buffer sizing algorithm to optimize the sizes of
the buffers on the subpath;
Step 4.Repeat Step 1 to Step 3 until the tolerable skew is within
the specification.

7. Results and Conclusions

The presented algorithm was implemented in C language on
SPARC 20 workstation. The clock routing is generated using the
algorithm in [15], where routing obstacles exist, besides the rout-
ing trees are not well balanced and not equal length. Table 2 shows
the technology parameters used in our experiment. We tested a
6mm x 6mm chip and a 1cm x 1cm chip. In each test case, the
routing trees have the number of sinks 50, 100, 300 and 500,
respectively.

Table 3 presents results of delay and skew before and after
buffer insertion. Different number of the inserted buffer layers
were tested and the optimal buffer layers were found. In the table,
the delay is measured as the signal propagation time from the
source to the sinks, i.e., the summation of the Elmore delays of the
subtrees and the buffer delays along a source-to-sink path. The
results show that the reduction of both delay and skew using the
proposed method are in one order of magnitude. For all of the
tested cases the skew is reduced to within the scope of 100ps
which is necessary for running the clock network at multi-GHz.

In this paper, we derived an optimal buffer placement theory
for delay minimization based on the Elmore delay model. We

s0 Bi2

Pmin

sq

Bim

B23

v1

v2

B12

B11

B24

v3

v4
v5Bi1 si

s2

s1

Figure 6: Delay minimization by buffer position optimization.

τP1
τmin() … τPi

… τPq
< < < <

τmin

rbj r bmin–()C
j

j 1=

m

∑ τpi
τmin– τskew–≥

τskew

rbj r bmin–()C
j

j 1=

n 1–

∑ r bn r̃ bn–()C
n

+ τPi
τmin–=

n 1– 1 n m≤ ≤()
r bmin r̃ bn

Pmin

vi

si

s1

sq

Bim
Bij

B11

Pi

s2

Bqm

Bqj

Bi1

s0

Figure 7: Buffer sizing for skew minimization.

show that the optimal buffer placement for delay minimization is
achieved when all delay functions have the same derivative values.
Consequently, we developed a delay minimization algorithm
which gives the minimal clock delay. A skew minimization
scheme to minimize the skew of the clock signal is further expati-
ated. To achieve the minimal skew, we also derived a formula to
calculate the optimal size of the inserted buffers in the meantime.
Since our approach is carried out in the manner of path by path, it
can be easily used for a more general case where the signal arriv-
ing time to each individual sink is specified to be different.

Acknowledgment

The authors wish to thank Mr. Haksu Kim for his valuable
discussions and providing us with the test input examples.

References

[1] M. A. B. Jackson, A. Srinivasan and E. S. Kuh, “Clock routing
for high-performance ICs”,27th ACM IEEE Design Automation
Conference, pp.573-579, 1990.
[2] A. Kahng, J. Cong and G. Robins, “High-performance clock
routing based on recursive geometric matching”, 28th ACM IEEE
Design Automation Conference, pp.332-337, 1991.
[3] B. Wu and N. Sherwani. “Effective Buffer insertion of Clock
Tree for High-Speed VLSI Circuits”.Microelectronics Journal,
23:291-300, July 1992.
[4] W.C. Elmore, “The Transient Response of Damped Linear
Network with Particular Regard to Wideband Amplifier,”J.
Applied Physics, 19, pp. 55-63, 1948.
[5] J. Lillis, C.K. Chen and T.T. Lin, “Optimal Wire Sizing and
Buffer Insertion for Low Power and a Generalized Delay Model”,
Proc. IEEE Int. Conf. on Computer-Aided Design, pp. 138-
143,1995.
[6] S. Pullela, N. Menezes, J. Omar and L. Pillage, “Skew and

Delay Optimization for Reliable Buffered Clock Trees”,Proc.
IEEE Int. Conf. on Computer-Aided Design, pp. 556-562,1993.
[7] L.P.P.P. van Ginneken. “Buffer placement in distributed RC-
tree networks for minimal Elmore delay”.International Sympo-
sium on Circuits and Systems, pp. 865-868, 1990.
[8] Y. P. Chen and D.F. Wong, “An algorithm for zero-skew clock
tree routing with buffer insertion”,Proc. European on Computer-
Aided Design, pp.219-223, 1994.
[9] J. Cong, L. He, C.K. Koh and P. H. Madden. “Performance
optimization of VLSI interconnect layout”.INTEGRATION, the
VLSI Journal, 21:1-94, 1996.
[10] Joe G. Xi and Wayne W. M. Dai, “Buffer Insertion and Sizing
Under Process Variations for Low Power Clock Distribution”,
ACM/IEEE Design Automation Conference, pp. 491-496, 1995
[11] F. Anceau, “A synchronous approach for clocking VLSI sys-
tems”,IEEE J. Solid-State Circuits, vol. SC-17, pp. 51-56, 1982.
[12] J. P. Fishburn, “Clock skew optimization”,IEEE Trans. Com-
puter, vol. 39, pp. 945-951, July 1990.
[13] N. Sherwani, “Algorithms for VLSI Physical Design Automa-
tion,” 2nd edition,Kluwer Academic Publishers, pp. 400-402,
1998.
[14] S. Dhar and M.A. Franklin, “Optimum Buffer Circuits for
Driving Long Uniform Lines”,IEEE J. of Solid-State Circuits, vol.
26(no.1), pp.32-40, Jan. 1991.
[15] H. Kim and D. Zhou, “An Automatic Clock Tree Design Sys-
tem for High-Speed VLSI Designs: planar clock routing with the
treatment of obstacles”,International Symposium on Circuits and
Systems, 1999 to appear.
[16] D. Zhou, W. Li and X. Zeng, “An Effective Buffer Insertion
Algorithm for High-Speed Clock Network”, submitted toIEEE
Design Automation Conference, 1999.
[17] D. Zhou and X.Y. Liu, “On the Optimal Drivers of High-
Speed Low Power ICs”,International Journal of High Speed Elec-
tronics and Systems, vol. 7(no.2), pp. 287-303, 1996.

Table 2: Technology parameters.

Table 3: Results before and after buffer insertion.

Sheet Resistance 0.14Ω/❑ Area Capacitance 0.08 fF/µm2 MaxBuffer output R 5Ω MaxBuffer input C 0.01 pF MaxBuffer intrinsic delay 100 ps

Wire Width 10µm Fringe Capacitance 0.03 fF/µm MinBuffer output R 100Ω MinBuffer input C 0.01 pF MinBuffer intrinsic delay 30 ps

Chip Sink#

Longest
Path

Length
(cm)

InitiallyIns
erted

Buffer
Layer

Before Buffer Insertion
Delay Skew
(τ0) (τs0)

After Delay&Skew
Minimization

Delay Skew
(τ) (τs)

Delay&Skew
Improvement

Impv1 Impv2

Chip1

50 2.24 4 4422.08 430.62 707.48 47.25 6.25 9.11

100 2.06 4 5668.06 169.39 674.31 52.27 8.41 3.24

300 2.01 5 11445.65 124.60 710.10 48.82 16.12 2.55

500 2.32 4 14794.05 1248.53 660.70 72.32 22.39 17.26

Chip2

50 3.39 4 9932.96 917.30 790.55 58.70 12.56 16.63

100 3.42 5 14727.49 891.29 831.38 66.97 17.71 12.41

300 3.39 4 27055.19 659.11 1106.18 87.89 24.46 7.50

500 3.27 4 36485.87 889.18 1325.29 84.11 27.53 10.57

 *all delay and skew data are in ps. ,Impv1 τ0 τ⁄= Impv2 τs0
τs⁄=

	Main Page
	ISPD'99
	Front Matter
	Table of Contents
	Session Index
	Author Index

