
Timing-Safe False Path Removal for Combinational Modules
Yuji Kukimoto Robert K. Brayton

Monterey Design Systems, Inc. University of California
Sunnyvale, CA 94089 Berkeley, CA 94720

kukimoto@montereydesign.com brayton@eecs.berkeley.edu

A combinational module is a combinational circuit that can be used
under any arrival time condition at the primary inputs. An intel-
lectual property (IP) module, if combinational, is one such exam-
ple. The false-path-aware delay characterization of a combinational
module without disclosing its internal structural detail is crucial for
accurate timing analysis of IP-based designs.

This paper addresses three related issues on delay characteri-
zation of combinational modules. We first introduce a new notion
called timing-safe replaceability as a way of comparing the timing
characteristics of two combinational modules formally. This notion
allows us to determine whether a new module is a safe replacement
of an original module under any surrounding environment with
respect to timing. Second, we consider false path detection of com-
binational modules. Although false path detection is essential in
accurate delay modeling, we argue that the conventional definition
of false paths such as floating mode analysis is not appropriate for
defining the falsity of a path for a combinational module since the
falsity is relative to an arrival time condition. A new definition of
false paths, termed strongly false paths, is introduced to resolve this
issue. Strongly false paths are those paths that are guaranteed to
be false under any arrival time condition, and thus uniquely defined
independent of arrival time conditions. Finally, we propose a new
algorithm that removes strongly false paths from a combinational
module by a circuit transformation. We prove that the resulting
circuit is a timing-safe replacement of the original.

A delay abstraction of a combinational module is a compact rep-
resentation of the delay information of the module, which carries
effective pin-to-pin delay for each primary-input/primary-output
pair. Constructing an accurate delay abstraction of a combinational
module is crucial in capturing its delay characteristics precisely.
Whether the delay abstraction maintains enough accuracy or not
has a direct impact on the accuracy of timing analysis using the
delay abstraction. An important requirement is that the delay ab-
straction needs to be valid under any surrounding environment since
we do not know a priori how this module is to be used.

In the past, delay characterization of combinational modules has
been done mainly by performing topological analysis, i.e. given a
combinational module, the delay between each input/output pair of
the module is characterized by the longest topological path between
the two terminals. Although this analysis is computationally effi-
cient, the resulting delay abstraction can be too conservative since
the analysis completely ignores false paths inside the module. Re-
cently we have proposed a novel delay characterization technique
for combinational modules, in which false paths inside the module
are correctly identified [6, 7]. This provides a delay abstraction
more accurate than the abstraction computed by topological delay,

This work was supported by SRC-98-DC-324. The first author was with University
of California, Berkeley.

yet still valid under any operating condition of the module1.
In this paper we address three problems of delay characteriza-

tion for combinational modules. We first develop a new framework
for comparing the timing characteristics of two combinational mod-
ules. A new notion called timing-safe replaceability is introduced
to determine when a module can be safely replaced with another
without slowing down the original timing behavior under any sur-
rounding environment. We also define when a path is categorized as
false for a combinational module. We show by an example that the
conventional definition of false paths such as floating mode analy-
sis [3] is relative to given arrival times at primary inputs, and that
it is possible for the same path to be false under a certain arrival
time condition, but not under another. In our new definition of false
paths, a path is said to be strongly false if and only if it is false un-
der any arrival time condition at primary inputs. Finally, supported
by the two preceding results, we propose a circuit transformation
technique to remove strongly false paths without deteriorating the
timing characteristic of the original module. This is a generaliza-
tion of the KMS algorithm [4] in the sense that strongly false paths
are removed without slowing down the module under any arrival
time condition at the primary inputs. We prove that a new module
constructed by the generalized KMS algorithm is a timing-safe re-
placement of the original. It is also shown that the original KMS
algorithm does not satisfy this notion of timing-safe replaceability
and thus potentially has a negative impact on circuit delay under
some environment.

The paper is organized as follows. Section 2 summarizes the
previous result on delay characterization of combinational modules
using functional required time analysis [6, 7]. Section 3 discusses
timing-safe replaceability of combinational modules. A new def-
inition of false paths, called strongly false paths, is introduced in
Section 4. We then discuss how strongly false paths can be removed
safely under the notion of timing-safe replaceability in Section 5.
Experimental results are presented in Section 6. Section 7 concludes
the paper.

Let be a single-output combinational module under analysis.
Let 1 and be the primary inputs and the primary
output of respectively. Consider delay from the primary inputs

to the primary output . The standard way to define the delay of a
module is by computing the earliest stable time of each output given
arrival times at all the primary inputs. The difference between the
output stable time and the arrival time of each input gives the delay
from the input to the output. This approach, however, is not appli-
cable to our setting since we do not know when the primary inputs
arrive. Our goal is to capture the timing characteristics of a given
module valid and accurate under any surrounding environment. To
achieve this the delay of a module is defined in a different way. We
first set a required time, say 0, to the output and analyze the
given circuit to see when the primary inputs are required so that
the output becomes stable by the required time. The delay from
an input to the output is then defined as the difference between the
required time at the output (0) and that of the input. This is

1The use of arrival-time independent path sensitization conditions such as the
Brand-Iyengar condition [2] can compute a false-path-aware delay abstraction valid
under any arrival time condition. However, delay overestimation can occur.

0-7803-5832-X /99/$10.00 ©1999 IEEE.

a

b

c

e

d

g

f

Figure 1: A Combinational Module

a

b

c

e

g

Figure 2: A Timing Safe-Replaceable Module 0

exactly the same problem as functional required time analysis in
[6].

Functional required time analysis gives , where
a set of timing tuples is given for each input vector. (denotes
the set of real values.) Given an input vector , each

-tuple 1 such that represents valid
required times at the inputs. The interpretation of a tuple is that
the output is guaranteed to be stable at 0 if the primary in-
put vector 1 arrives at or before 1

respectively. may contain more than one timing tuple for a
given input vector, in which case each of the timing tuples cap-
tures a different permissible signal arriving behavior at the pri-
mary inputs. The delay abstraction of is then defined as

1 1 . To com-
pute the delay abstraction of a multiple-output module, one can
apply the same analysis above to the transitive fanin cone of each
output independently.

Given an input vector and arrival times 1

1 , the signal stable time at the output can be deter-
mined by using the delay abstraction . Suppose that has
multiple timing tuples 1 for . For each timing tuple

1 1 the signal stable time at
under is computed as

max

Since all timing tuples are valid, the signal stable time at is
determined by taking the earliest time among ’s.

min min max

Suppose that we have a combinational module and another
combinational module that is claimed to be a sped-up ver-
sion of . Assume that they are single-output modules and
functionally equivalent. We are interested in verifying whether

is indeed no slower than . In other words, we need
to verify whether using instead of worsens the delay
through this module under some input vector and arrival times at
the inputs of the module. If there exist such a vector and arrival
times, is not a safe replacement of in terms of timing
since under that particular situation one can observe that in
fact deteriorates the performance of . Throughout this paper
we assume that the only timing property we need to preserve is
when the output of the module is stabilized. It is acceptable for
the output to be available earlier than in the original module, but it
should never become stable later.

Definition 1 is said to be a timing-safe replacement of
, , if there exists no (input vector, arrival

times)-pair at the inputs such that the output becomes stable later
in than in .

a

b

c

e

g

f

Figure 3: A Timing Non-Safe-Replaceable Module 1

Definition 2 Given two timing tuples 1 and 1 ,
1 1 if and only if 1 .

The following theorem states that, given two combinational
modules, whether one is a timing-safe replacement of the other can
be determined by checking if a certain property holds between their
delay abstractions.

Theorem 1 Let and be the delay abstractions of
and respectively. if and only if for ev-
ery input-vector/timing-tuple pair x 1 , there
exists an input-vector/timing-tuple pair x 1
such that 1 1 .

It is easy to see that is reflexive, transitive and anti-symmetric.
Aziz et al. [1] proposed a different notion of timing-safe replace-
ability, where each gate is given a minimum delay and a maximum
delay, and a circuit is called a timing-safe replacement if and only
if the delay range of the output is completely contained in the delay
range of the original circuit. Our definition is more relaxed since
the only delay property of interest is maximum delay. Therefore,
speeding up a circuit preserves timing-safe replaceability in our
definition while it may not in [1].

Based on this theory one can safely determine when a combina-
tional module can be replaced with another without increasing the
delay through the module under any environment.

Consider a circuit shown in Figure 1 taken from [2]. Assume
the unit delay model2. The delay abstraction of is:

000 3 2 3 2
001 2 2 2
010 3 2 2
011 2
100 2 3 2
101 2
110 2 2
111 2 2

where denotes that the availability of the corresponding input
is irrelevant to the stability of the output. The input-edge of path

is stuck-at-0 redundant and stuck-at-1
redundant. Figure 2 shows the circuit 0 obtained from by
removing the stuck-at-0 redundancy at the input edge of path .
The delay abstraction 0 of 0 is:

000 1
001 2 2 1
010 1 2
011 2
100 2 1
101 2
110 2 2 1
111 2 2

2To simplify the exposition of ideas we use the unit delay model all the way through
the paper. However, the theory developed here is general. Note that wire delay can
also be handled naturally by assuming the existence of a virtual buffer whose delay is
set to the wire delay.

It is easy to see that 0 . For example, under input vec-
tor 0 0 0 , has two timing tuples, 3 2 and 3 2 .

1 has a single tuple 1 for this vector, which gives
1 3 2 and 1 3 2 . All

the other input vectors also meet the condition of timing-safe re-
placeability. Therefore, 0 can always be used instead of under
any environment without having a negative impact on delay.

If we remove the stuck-at-1 redundancy of the input edge in-
stead, another circuit 1 shown in Figure 3 is obtained. The delay
abstraction 1 of 1 is:

000 2 2
001 2 2 2
010 2
011 2
100 2 2 2
101 2
110 2 2
111 2 2

1 since, for example, under input vector 0 0 0 has
a timing tuple 3 2 , but the only timing tuple 2 2 in

1 does not meet the safe replaceability condition, i.e. 2 2
3 2 . This implies that if

3 0 2 , the output becomes stabilized at 0 in while
under the same condition 1 only becomes stable at 2.

We will show by an example that the conventional definition of
false paths such as floating mode analysis [3] is not appropriate for
defining the falsity of paths in combinational modules. Specifically
we show that the same input-output path of a module can be true
under some arrival time condition at its primary inputs, while false
under another. Since a combinational module can be used under
any surrounding environment, we introduce a more stringent notion
of false paths, where a path is said to be strongly false if it is false
under any arrival time condition. We then illustrate how one can
systematically determine the strong falsity of a path.

Consider a circuit in Figure 1. Assume the unit delay model.
If the primary inputs and arrive at 1 0 and 1 respectively,
functional timing analysis guarantees that the output is stabilized
at 3. Note that the topological delay of this circuit under the
arrival time condition is 4 3 because of the path

. Since is available at 3, is false. Consider
another path . Given an input vector

0 0 0 , is true under this arrival time condition.
Now, let us analyze the same circuit under a different condition

where and arrive at 0 1 and 1 respectively. The output
is again available at 3. Therefore is false since otherwise

the output would become stable at 4. Note that was true
under the previous condition. , which was false before, is true
this time, for example, under input vector 0 0 0 .

These two cases clearly demonstrate that the falsity of a path
is relative to a given arrival time condition, and that the same path
can be false in one condition and true in another under an arrival-
time dependent path sensitization condition such as floating mode
analysis [3].

One can examine this circuit more systematically by examining
the delay abstraction of the circuit. The delay abstraction of this
circuit is already shown in Section 3. In this circuit () is the
only path of length 3 from () to . Therefore, the fact that the
delay abstraction has a timing tuple whose first (second) element is
3 means that, given the corresponding input vector, it is possible to
make () responsible for delay.

For example under 0 0 0 , when the arrival times
of and are 1 0 1 , the second

timing tuple 3 2 gives an earlier signal stable time of 3
at the output than the first timing tuple 3 2 giving the stable
time of 4. As described in Section 2, the timing tuple that
gives the earliest stable time can be used in determining the timing
behavior of the output. Since the delay from to the output in this
second timing tuple is 3, the corresponding path is true.
is false since the timing tuple indicates that input is irrelevant.
If 0 1 1 , however, the first timing
tuple gives an earlier stable time than the second, showing that
is true and is false. This analysis illustrates that once the delay
abstraction of a module is computed, false path analysis can be
performed under any arrival time condition only using the delay
abstraction.

We are now ready to introduce a new definition of false paths
for combinational modules.
Definition 3 Let be a single-output combinational module whose
primary inputs are 1 . Let be the primary output of the
module. The path set of length from , , is the set
of all input-output paths that start from and end at and whose
topological delays are .

Definition 4 is said to be strongly false if and only if the
delay abstraction of the module contains no timing tuple
where the delay corresponding to is greater than or equal to

under any input vector. Otherwise, is said to be not
strongly false.

The idea behind this new definition is that a path set is said
to be strongly false if all the paths in the set are false under any
arrival time condition. In this definition neither 3
nor 3 in the example is strongly false since it is
possible to sensitize these paths as we saw.

We also define a new class of false paths where the strong falsity
of a path set is claimed only under some value at the input.

Definition 5 is said to be strongly false for value 0 (1) at
if the delay abstraction of the module contains no timing

tuple where the delay corresponding to is greater than or equal
to under any input vector that has value 0(1) for .

Note: If is strongly false, it is strongly false for both
values 0 and 1 at .

3 is strongly false for value 1 at since under
1 there is no timing tuple where the delay from is 3. 3
is strongly false for value 1 at similarly.

The definition of strongly false paths is based on the false-
path-aware delay abstraction of a given module. However, it is
an expensive operation to compute the delay abstraction of a large
network. To alleviate this difficulty we have developed an algorithm
to determine whether a path set is strongly false or not without
computing the delay abstraction of the circuit. The main idea of the
algorithm is a reduction of the decision problem to a satisfiability
problem, which is then solved by a satisfiability checker. This
approach makes it possible to perform strong falsity checks of paths
on large networks. The detail of the algorithm is available in [5].
We confirmed the applicability of the algorithm by experiments,
which will be reported in Section 6.

Strongly false paths are the only paths that can be safely assumed
to be false for a combinational module since the actual environment
under which a combinational module is to be used is unknown.
Since they are never responsible for the stability of an output under
any arrival time condition, it is desirable if they can be structurally
removed from the module by a circuit transformation. If such a
transformation is possible, the resulting module is false-path-free
and thus can be analyzed accurately even with topological timing
analysis. Although this transformation is attractive, we do not want

to slow down the original circuit by the transformation especially
in the context of high-performance designs. Thus, the structural
transformation also needs to guarantee that the resulting module
is no slower than the original under any arrival time condition.
In this section we present an algorithm that removes strongly false
paths from a combinational module without increasing the delay
of the module under any arrival time condition, i.e. .

Keutzer, Malik and Saldanha [4] showed that redundancy is not
necessary to reduce delay. The motivating example for the work
was a carry-skip adder. This circuit has a single stuck-at redundancy,
but the direct removal of the redundancymakes a long false path true
thereby slowing down the circuit. The redundancy in the circuit is a
by-product of making its longest topological path false to improve
the performance. However, such a redundant circuit is problematic
since the existence of the fault causes the circuit to slow down,
but the fault is not detectable by conventional testing techniques.
A natural question is whether redundancy is necessary to reduce
delay in general. They resolved this issue negatively by giving a
constructive algorithm, commonly known as the KMS algorithm.

The KMS procedure [4] takes 1) a gate-level redundant com-
binational circuit and 2) arrival time for each primary input, and
returns a functionally equivalent irredundant circuit no slower than
the original under the given arrival times. The core of the algorithm
is 1) the isolation of long false paths by circuit duplication and 2) the
removal of the false paths by propagating a constant from the input
edges of the paths. After removing all long false paths, the longest
topological path is guaranteed to be true. Remaining redundancies
are then removed to obtain an irredundant circuit.

Given a combinational circuit whose longest topological paths
are false under a given arrival time condition, one can simply apply
the KMS procedure to obtain a false-path-free circuit which is no
slower than the original. The final circuit can then be used as a
replacement of the original without the risk of slowing down the
circuit.

This approach, however, has fundamental limitations to be used
for false path removal of combinational modules.

First, the KMS procedure takes an arrival time condition at the
primary inputs and works under this particular condition. There-
fore, it is not directly applicable to a combinational module since
the arrival times at the inputs are unknown. If a representative ar-
rival time condition is chosen and the procedure is applied under the
condition, the delay of the resulting circuit is not guaranteed once it
is used under a different arrival time condition. Second, redundancy
removal performed as the final step of the KMS algorithm can in-
crease delay even under the arrival time condition chosen for the
analysis if the delay of the circuit is examined for each input vector
separately. Keutzer et al. [4] argued that straight-forward redun-
dancy removal cannot slow down the circuit since the topological
longest path is true after false path removal. In this argument the
delay of a circuit is defined as the earliest time when all the primary
outputs are stabilized for all input vectors under a given arrival time
condition at the inputs. However, the delay of an output under an
input vector can increase as the result of redundancy removal al-
though it never increases so much as to increase the “delay” of the
circuit. Under the delay definition of [4] this local delay increase
for an input vector does not cause the increase of the “delay”. How-
ever, since there exists a surrounding environment of the module
which can detect this delay increase, it should be thought of as a
delay increase in the context of combinational modules.

This subsection shows why a simple-minded application of the
KMS algorithm is not appropriate to remove false paths from com-
binational modules.

1

0

a0

b0

a1
b1

c_out

mux

1

2

3

4

6
7

9

10

c_in

11

Figure 4: 2-bit Carry-Skip Adder

An example is a carry-skip adder. This is the circuit that mo-
tivated the entire research on the KMS algorithm. Figure 4 shows
a 2-bit carry-skip adder described in [4]. Assume a gate delay of
1 for the AND gate and the OR gate, and gate delays of 2 for the
XOR gate and the MUX gate. The selector input of the multiplexor
is stuck-at-0 redundant since under the existence of the fault, the
circuit simply degenerates into a ripple-carry adder, which is func-
tionally equivalent to the original circuit. The performance of the
circuit, however, is deteriorated by the fault since the ripple-carry
adder is slower than the carry-skip adder.

In [4] this circuit is analyzed under the condition where the carry
input arrives at 5 and all other inputs arrive at 0. In this
particular situation the longest topological delay is 11 by the path
of length 6 6 7 9 11 . Since this longest path
is false under the given arrival times, the KMS algorithm is invoked
to remove the path.

If the resulting circuit is used under the same arrival time con-
dition, it is guaranteed to be no slower than the original. However,
under a different arrival time condition it is possible that the perfor-
mance of the resulting circuit is worse than that of the original.

Let us analyze the same circuit under different arrival times
to see the problem. Assume that all the inputs arrive at 0.
The topological longest paths are now the paths of length 8 from

0 and 0 to 3. These paths are true under the arrival time
condition. Therefore if one simply follows the KMS procedure, any
redundancy can be removed arbitrarily without slowing down the
circuit, which results in a ripple carry adder. Notice that although the
effective delay from the carry input to the carry output has increased
in this transformation, the delay of 8 from 0 and 0 still determines
the circuit performance. Thus the transformation is valid under the
given arrival times. Now assume that the resulting circuit is used
where the carry input arrives at 5 and the other inputs arrive at

0. Obviously we now observe a larger delay of 11 instead of 8.
This example clearly shows that the delay non-increasing property
of the KMS algorithm is only guaranteed for a given arrival time
condition at primary inputs. In order to remove false paths from a
combinational module we are interested in a more robust algorithm
which never slows down the circuit under any arrival time condition.

Finally assume that the carry input arrives at 5 and all the
other inputs arrive at 0 again. The removal of the long false
path from the carry input to the carry output yields the circuit 0 in
Figure 5. Each of the fanin edges of 2 is stuck-at-1 redundant. If
one follows the KMS procedure, any of these redundancies can be
removed without slowing down the circuit. If the 0 edge is replaced
with a constant 1, the circuit 0 in Figure 6 is obtained. Now
that the 0 edge is not redundant any more, this is the final result of
the KMS procedure.

We are now ready to show that this redundancy removal in
fact increases the delay of the circuit even under the arrival time
condition analyzed, once the delay is determined for each input
vector separately. Consider the input vector 0 1 0 1

3The long path from considered in the previous case has length 6 and is no
longer the longest.

1

0

a0

b0

a1
b1

c_out

mux

1

2

3

4

9

10

c_in

11

Figure 5: 2-bit Carry-Skip Adder 0 before Redundancy Removal

1

0

a0

b0

a1
b1

c_out

mux

1

3

4

9

10

c_in

11

Figure 6: 2-bit Carry-Skip Adder 0 after Redundancy Re-
moval

0 0 1 0 0 . In the circuit before the redundancy removal, the path
0 2 9 11 is the longest true path. Therefore the

delay under this vector is 5. On the other hand, in the circuit after the
redundancy removal, the paths 1 1 3 9 11 ,
which were false before the redundancy removal, become true and
give delay 6 5 . Notice that there exists an input vector that
sensitizes the longest topological path from to of length
7 in both of the circuits. Therefore, the redundancy removal is
safe under the traditional definition of delay. However, if we need
to preserve the performance of the circuit under any surrounding
environment, redundancy removal can worsen the delay.

We argued that simple-minded application of the KMS algorithm
is not enough for our purpose. The first problem is that the KMS
algorithm only removes long false paths under given arrival times.
Because of this strategy, false paths not critical under the situation
remain in the circuit. To make matters worse, those paths can
become true long paths after redundancy removal thereby slowing
down the circuit under a different arrival time condition. Moreover,
since false paths removed by the KMS algorithm are not necessarily
strongly false, even false path removal alone can slow down the
circuit.

To alleviate this problem all long strongly false paths are re-
moved from each input by a circuit transformation. As a result,
the topological longest path from any input is responsible for delay
under some input vector and some arrival time condition.

The second problem is that the final redundancy removal in the
KMS algorithm can slow down a circuit if the delay of the circuit
is computed for each primary input vector. This is unacceptable
for combinational modules since there exists a surrounding envi-
ronment whose performance is deteriorated by this delay increase.
Therefore the redundancy removal is dropped intentionally.

We first illustrate the key idea of the algorithm using an example.
Consider again the circuit in Figure 1. We have already shown
that 3 is strongly false for 1 at in Section 4. This
means that if 1, this path is never responsible for the signal
stability at the output under any arrival time condition. Therefore,
the input edge of the path can be safely replaced with a constant 0
without slowing down the circuit. Notice that the path is fanout-

free and this modification cannot adversely affect the other paths.
Propagating this constant through the circuit is also a safe operation.
We already saw in Section 3 that the resulting circuit 0 in Figure 2
is a timing-safe replacement of .

If the original KMS algorithm is applied to in Figure 1 under
1 0 1 , is identified as false. One

can then choose either constant 0 or 1 to replace the input edge of
with. If a constant 1 is chosen, the circuit 1 in Figure 3 is

obtained, which is not a timing-safe replacement of as discussed
in Section 3. This example shows that strongly false paths are
the appropriate paths to be removed for combinational modules.
Keutzer et al. [4] only suggest that one pick the constant that gives
better simplification of the circuit. However, they use this choice
only as an optimization.

We are ready to prove the correctness of the transformation
formally.

Definition 6 The set of all paths beginning at an primary input
edge and ending at a primary output is called the path set of .

Definition 7 An -path disjoint circuit4 with respect to primary
input is a circuit where the path set of any primary input edge
from consists of either paths of length or paths of length

.

Given a combinational module, one can always construct a
module that is -path disjoint with respect to by fully preserving
the original functional and timing properties. The detail can be
found in [9]5. Let be a single-output combinational module
whose primary inputs are 1 . Let be an -path disjoint
circuit with respect to that is obtained from .
Lemma 1 If path set is strongly false for value
0 1 at in , the input edge of the path set is stuck-at- ¯ redun-
dant in .

Theorem 2 Suppose path set is strongly false for value
at in . Let be an -path disjoint circuit with respect

to obtained from . Let be the circuit obtained from
by substituting ¯ for the input edge of in . Finally
let ˜ be the circuit obtained from by performing a constant
propagation of ¯. Then ˜ .

Based on Theorem 2 one can design a procedure that takes
a single-output combinational module and removes strongly false
paths to create a timing-safe replacement module where the longest
topological path from any input is strongly false neither for 0 nor
for 1 at the input. The algorithm examines primary inputs one
by one by checking whether the longest topological paths from a
primary input are strongly false for either 0 or 1. If either is true, the
circuit is modified based on Theorem 2. This process is repeated
until no change is observed. To handle a combinational module with
multiple outputs the same procedure is applied to the transitive fanin
cone of each primary output separately and the resulting circuits
are merged into a single circuit by sharing isomorphic subcircuits.
This step is guaranteed not to change the timing characteristics of
the circuits6.

Refer to the 2-input carry-skip adder in Figure 4 again. The
analysis of strongly false paths on this circuit indicates that path set

6 is strongly false for value 1 at . Therefore, one can
safely assert a constant 0 at the input edge of the long path of length
6 from the carry input to the carry output. Note that the circuit is
already -path disjoint with respect to for 6. Figure 5
shows the resulting false-path-free circuit 0. 0 is a timing-safe
replacement of . 6 is not strongly false for value 0 at .
Therefore we cannot use 1 for constant propagation.

4This definition is a variation of -path disjoint circuits introduced in [9].
5The procedure in [9] is applicable by assuming that arrives at 0 and all

the other inputs arrive at . All the paths from the other inputs are ignored
effectively this way.

6As in [4] we assume that gate delay is independent of loads.

We implemented on top of SIS a procedure to check if a path set
is strongly false for a value (0 or 1) at the corresponding primary
input, and to remove such a path set structurally. The procedure
determines the strong falsity of a path set without constructing the
delay abstraction of a given module explicitly, and thus is applicable
to large networks. The original problem is reduced into a satisfia-
bility problem, which is then solved by a satisfiability checker. The
removal of a false path set is a simple structural transformation, and
thus takes negligible time compared with strong falsity checking.
We only summarize the result of a representative circuit, the largest
primary output cone of C7552. The cone has 194 primary inputs
and 1096 gates. Recall that the strong falsity of a path set is defined
for a single-output network. For each primary input the strong fal-
sity of the longest paths from the input was tested for both values
0 and 1, and the paths were removed if they are strongly false. We
found out that for 8 out of 194 primary inputs the longest paths
from each primary input are strongly false for either value 1 or 0
at the input. A strong falsity check for a primary input took 37.5
seconds in the average on DEC AlphaServer 8400 5/6257. These
strongly false paths were then removed by the proposed procedure.
The resulting circuit has 1216 nodes, only 11% area increase from
the original.

Three issues arising in delay characterization of combinational mod-
ules have been discussed in this paper. First we introduced a new
notion called timing-safe replaceability as a formal way of compar-
ing the timing characteristics of two combinational modules under
an unknown arrival time condition. Second, we argued that the
conventional definition of false paths is relative to a given arrival
time condition, and thus is not appropriate to define the falsity of a
path in a combinational module used in various surrounding envi-
ronments. This led to a new definition of false paths, called strongly
false paths, for combinational modules. Strongly false paths are the
paths that are false under any arrival time condition, and can safely
be assumed to be false for combinational modules. Finally, we
proposed a procedure to remove those false paths from a combi-
national module with a formal guarantee that the final circuit is no
slower than the original under any arrival time condition. We have
shown that the final redundancy removal in the KMS algorithm can
increase the delay of a circuit if the delay is defined for each primary
input vector separately. Therefore the proposed algorithm does not
make the circuit irredundant after false path removal. Thus, one of
the advantages of the KMS algorithm, i.e. removing redundancies
that cannot be detected by conventional testing, but can adversely
affect the timing of the circuit, is absent. Whether redundancies
can be removed without slowing down the circuit under this strict
definition of delay is still open.

[1] A. Aziz, R. K. Brayton, F. Balarin, and V. Singhal. Timing-
safe replaceability for combinational designs. In Proceedings
of TAU 95: ACM/SIGDA International Workshop on Timing
Issues in the Specification and Synthesis of Digital Systems,
pages 121–128, November 1995.

[2] D. Brand and V. S. Iyengar. Timing analysis using functional
analysis. IEEE Transactions on Computers,37(10):1309–1314,
October 1988.

[3] H.-C. Chen and D. H.-C. Du. Path sensitization in critical
path problem. IEEE Transactions on Computer-Aided Design

7We expect that this CPU time can be further reduced by incorporating existing
techniques for generating simplified SAT formulas developed for functional timing
analysis [8].

of Integrated Circuits and Systems, 12(2):196–207, February
1993.

[4] K. Keutzer, S. Malik, and A. Saldanha. Is redundancynecessary
to reduce delay? IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems, 10(4):427–435, April
1991.

[5] Y. Kukimoto. Timing Analysis and Optimization for High-
Performance Digital Circuits. PhD thesis, University of Cali-
fornia, Berkeley, October 1998.

[6] Y. Kukimoto and R. K. Brayton. Exact required time anal-
ysis via false path detection. In Proceedings of 34th Design
Automation Conference, pages 220–225, June 1997.

[7] Y. Kukimoto and R. K. Brayton. Hierarchical functional tim-
ing analysis. In Proceedings of the 35th Design Automation
Conference, pages 580–585, June 1998.

[8] P. C. McGeer, A. Saldanha, R. K. Brayton, and A. Sangiovanni-
Vincentelli. Delay models and exact timing analysis. In
T. Sasao, editor, Logic Synthesis and Optimization, pages 167–
189. Kluwer Academic Publishers, 1993.

[9] A. Saldanha, R. K. Brayton, and A. L. Sangiovanni-Vincentelli.
Circuit structure relations to redundancy and delay. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and
Systems, 13(7):875–883, July 1994.

	Main Page
	ICCAD99
	Front Matter
	Table of Contents
	Session Index
	Author Index
	Call for Papers

