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Abstract
We extend the partial inductance concept by replacing the

magnetic interaction between open filaments i and j by that be-
tween filament j and a (finite) closed loop, formed by connecting
the endpoints of a filament pair (i-i0). The secondary filament i0

is constructed by radial projection of filament i onto a cylindri-
cal shell around filament j. We show that, although individual
partial inductance values are modified, the inductive behaviour
of the full circuit is invariant. Mutual inductances of distant fila-
ments are particularly reduced, because the far field of a conduc-
tor loop falls off much faster than that of a single filament. There-
fore, it is expected that subsequent removal of such transformed
off-diagonal elements from the partial inductance matrix has less
effect on the overall inductive properties, so our method provides
a tool to enhance robustness under matrix sparsification. We call
our method “virtual screening”, because the screening filaments
fi0g are not physically present. Symmetry of the inductance ma-
trix is preserved for orthogonal networks only.

We also present an extension of our method to a more gen-
eral class of shells. This allows a detailed comparison of the vir-
tual screening method and the “potential shift-truncate method”,
introduced with spherical equipotential shells [Krauter et al.
ICCAD’95] and extended to ellipsoidal equipotential shells re-
cently [Beattie et al. IEDM’98]. We find strong similarities, but
also differences. An interesting result is the fact that the virtual
screening method with tubular shells applied to orthogonal net-
works can be interpreted as a generalization of the potential shift-
truncate method to non-equipotential shells, which also implies
that preservation of stability is guaranteed.

Some numerical results, sustaining the ideas behind our
method, conclude the paper.

1 Introduction
In deep submicron technology feature sizes decrease, clock

speeds get higher and chips get larger and more complex. There-
fore, parasitic inductive effects in on-chip interconnects are play-
ing an increasingly important role. The high degree of complex-
ity of the circuits renders the modelling of such phenomena a
non-trivial task. Current paths may be rather erratic, depending

on the details of the signals present. This implies that descrip-
tion of inductive effects in terms of well-defined simple geomet-
ric structures is ruled out beforehand.

Layout-to-circuit extraction aims at transforming the physical
description of an integrated circuit to a highly reduced electrical
lumped circuit representation, which may subsequently be han-
dled by circuit simulators such as SPICE. This objective is at first
sight incompatible with the distributed character of inductive phe-
nomena, as self and mutual inductances are defined for closed
current loops only, and these may span a major part of a cir-
cuit. The partial inductance concept [1] provides a handle to this
problem. Unclosed conductor segments can formally be treated
as magnetically coupled lumped circuit elements. The practical
problem, however, is the fact that this results in networks with
a high degree of connectivity. This implies that the associated
partial inductance matrix is densely filled, which strongly dimin-
ishes the efficiency of numerical methods which have proven to
be useful forRC-problems.

The most efficient method applied thus far for reduction
of a system of partial inductances to a reduced (smaller) one
is GMRES with multipole acceleration, as implemented in
FastHenry [2]. This method is, however, in its present form far
too slow to be useful for full circuits, which may comprise up to
well over one million transistors. Attempts to sparsify the induc-
tance matrix by merely discarding relatively small elements often
has an unacceptable effect on the circuit properties, and may even
lead to loss of passivity.

We analyse the latter problem from a conceptual point of view,
starting from the interpretation [1] of partial inductances in terms
of magnetic flux enclosed by loops extending from conductor
segments to infinity. The method we develop in this paper re-
places such loops by finite ones, without modifying the inductive
behaviour of the full circuit. Such finite loops are formed by as-
suming that the current induced in filamenti by that in filamentj
has a return path on a cylindrical shell around filamentj, rather
than at infinity. This is reminiscent of the “potential shift-truncate
method” [3] [4], where an equipotential shell around a filament
screens its magnetic vector potential.
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Our method, although derived with a cylindrical shell, allows
the use ofany shell with axial symmetry. This includes the
equipotential shells mentioned above, as these are rotational el-
lipsoids. This raises the question whether an equipotential shell
has a special status. Furthermore, the interpretation of the poten-
tial shift-truncate method in terms of shell currents appears to be
quite different from the model which arises from our construc-
tion. In order to deal with these issues, we present an alternative
derivation of our method, which reveals the connection with the
potential shift-truncate method in an unambiguous way.

In Sec. 2 we summarize key aspects of the partial inductance
concept, as far as these are relevant in this paper. In Sec. 3 a mod-
ified partial inductance matrix is constructed, using a cylindrical
shell. Invariance of the overall inductive behaviour is proven and
issues concerning the practical application of the transformation
are discussed. In Sec. 4 the same results are obtained starting
from a gauge transformation of the vector potential generated by
a current element. We derive expressions for cylinders, as well
as ellipsoidal equipotential shells. Using these results, the po-
tential shift-truncate method and its connection with the virtual
screening approach is analysed in Sec. 5.

A simple transmission line model is analysed numerically in
Sec. 6, in order to illustrate the ideas underlying our method.

2 Flux related issues of the PEEC approach
2.1 Interpretation of partial inductance elements

In the magnetoquasistatic regime the inductive properties of a
circuit can be formulated [1] in terms of the interaction between
conductor segments carrying uniform current densities. These
segments are building blocks of the full conductors. The coupling
between such segments is characterized bypartial inductances

L(p)
i j =

1
I j

����Z b

a
A i j �dl i

���� ; (1)

whereA i j represents the vector potential due to currentI j in seg-
ment j, at some length coordinatel i on segmenti, averaged over
its cross sectionai . This may be written in a more symmetric
form in terms of the magnetic interaction of infinitesimally thin
filaments, averaged over the cross sections of segmentsi and j
respectively:

L(p)
i j =

1
aiaj

Z Z
daidaj

(
µ0

4π

Z Z ��dl i �dl j
���� r i� r j
��
)

; (2)

wherer i andr j are the position vectors of infinitesimal filaments
dl i anddl j . Without loss of generality we continue our discussion
for filaments only, because the procedure developed in this paper
amounts to replacingf: : :g by a linear combination of such terms.

Ruehli [1] relates the partial inductance which characterizes
interaction between unclosed conductor filaments to the magnetic
flux enclosed by aloopwhich extends from a conductor filament
to infinity. We summarize this interpretation, as it forms the basis
for our introduction of a modified partial inductance matrix. Such
a construction is visualized in Fig. 1.
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Figure 1: The partial inductance L(p)
i j between filamentsi and

j is related to the magnetic flux due to current Ij bounded by
the contour Γi j , visualized as a shaded area. [1]

Filamenti is supplemented by filaments extending from its end
points to infinity, perpendicular to filamentj. A closed loopΓi j is
formed by connecting the endpoints of these filaments at infinity
(in an arbitrary manner). This geometric construction applies to
any pair of, possiblynon-coplanar, filamentsi and j. The line
integral in (1) may be related to the contour integral alongΓi j by
considering the enclosed magnetic flux

ΨΓi j =

I
Γi j

A i j �dl ; (3)

where nowA i j is understood to be the vector potential at any
point alongΓi j due to currentI j . This contour integral is decom-
posed into integrals along filaments as

I
Γi j

=

Z b

a
+

Z c

b|{z}
0

+

Z d

c|{z}
0

+

Z a

d|{z}
0

!

Z b

a
: (4)

The last three line integrals give no contribution, becauseA i j?dl
on bc andda, andA i j = 0 oncd. A partial inductance related to
this enclosed flux is defined as

L(p)
Γi j

=
1
I j

��ΨΓi j

��= 1
I j

����IΓi j

A i j �dl

���� : (5)

With (4) we see that (5) reduces to (1), so

L(p)
i j = L(p)

Γi j
: (6)

2.2 Sparsification of the partial inductance matrix
The sparsity of the partial inductance matrixL may be in-

creased by discarding some small (off-diagonal) elements. How-
ever, it is known that this may have a substantial effect on the
overall inductive behaviour, and may even result in loss of pas-
sivity. The flux interpretation of partial inductances enables us
to appreciate this in a more intuitive way. Consider a closed
loop Γ carrying currentI (Fig. 2). The self inductanceL of this
loop is related to its enclosed magnetic fluxΨΓ by L = jΨΓ j=I .
Alternatively, L can be written in terms of partial inductances

fL(p)
i j g, which are related to fluxesfΨΓi j g penetrating surface ar-

eas bounded by contoursfΓi jg, extending from the filamentsfig
to infinity (Fig. 1):

L =

�����∑i; j
si j L

(p)
i j

�����=
�����∑i; j

1
I j

ΨΓi j

����� ; (7)



wheresi j � sign(A i j �dl j). The sizes of the shaded areas in Fig. 2b
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Figure 2: (a) The self inductanceL of the closed current loop
Γ is proportional to the magnetic flux penetrating the surface
area enclosed by this loop. (b) The partial inductances which
form the overall inductance are related to fluxes penetrating
surface areas extending from the current filaments to infinity
(see Fig. 1).

compared to that in Fig. 2a suggest that large fractions of the par-
tial inductances should cancel upon performing the summation
(7). This observation may be used to explain the effect of trunca-
tion of the partial inductance matrix. Discarding an off-diagonal

elementL(p)
i j of L implies thatΨΓi j is no longer taken into ac-

count. On the other hand, the terms which otherwise would take
care of the compensation of this flux will still be present in (7).
Consequently the energy balance is disturbed and the system may
even manifest itself as non-passive.

3 Modification of partial inductances
The qualitative analysis of the effect of matrix sparsification

on inductive behaviour (Sec. 2.2) suggests that an important error
source is related to magnetic flux implied in the partial inductance
definition, but which isexternalto the area enclosed by the cir-
cuit. This inspired us to investigate the possibility to truncate the
magnetic flux generated by a current filament external to a cylin-
drical shell around it. First, we will formulate the basic principle
of the construction of modified partial inductances which repre-
sent such truncated fluxes. For reasons of clarity this is restricted
to the case of coplanar conductor filaments. Then we will show
how the construction can be generalized for filaments at any rel-
ative (non-planar) orientation. Subsequently we will prove that
indeed flux truncation may be carried out without modifying the
physical properties of the system. This section is concluded by a
discussion on the physical interpretation of our method and some
comments on criteria guiding the choice of the cylinder size.

3.1 Construction
Consider two coplanar filamentsi and j at arbitrary relative

orientation. With the flux interpretation their partial mutual in-
ductance can be written as (see (5) and (6))

L(p)
i j =

1
I j

����IΓi j

A �dl

���� ; (8)
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Figure 3: Modification of partial inductance.

whereA is understood to be the magnetic vector potential due to
currentI j (indices are omitted for brevity). The area bounded by
Γi j is divided into two regions by a line parallel to filamentj and
separated from it by a distancer0 (Fig. 3). The two subareas are
enclosed bỹΓi j andΓ0

i j respectively. Accordingly, the contour
integral in (8) is written as

I
Γi j

=

I
Γ̃i j

+

I
Γ0

i j

: (9)

Γ̃i j andΓ0

i j share a filament, which is labeledi0. The respective
contributions ofi0 to the integration cancel becauseΓ̃i j andΓ0

i j
traversei0 in opposite directions. We relate the flux enclosed by
Γ0

i j to the partial inductance

L(p)
i j

0 � L(p)
i0 j =

1
I j

�����
I

Γ0

i j

A �dl

����� (10)

between filamentj andvirtual filamenti0. Likewise weformally
write

L̃(p)
i j =

1
I j

����IΓ̃i j

A �dl

���� : (11)

or alternatively

L̃(p)
i j = L(p)

i j �L(p)
i j

0 : (12)

The planar construction is readily generalized to the non-
planar case by defining a cylindrical shell with radiusr0 around
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Figure 4: A cylinder with radius r0 is centered around fil-
ament j. The flux area associated withLi j (Fig. 1) extends
from filament i to infinity. The intersection curve of this sur-
face with the cylindrical shell is i0.

filament j. The flux area related toL(p)
i j is a twisted surface. Its in-

tersection curvei0 with the cylinder isnot a straight line (Fig. 4).

The formal construction of̃L(p)
i j follows the same arguments as in

the coplanar case.

3.2 Equivalence ofL(p)
i j and L̃(p)

i j
Filament i will always be part of a closed current loop, say

Γc, as such loops are the only physically valid structures. The
magnetic flux due to currentI j enclosed byΓc is

ΨΓc j =

I
Γc

A �dl = I j ∑
i2Γc

si j L
(p)
i j : (13)

According to (9) the contour integral is split into contributions

relating toL̃(p)
i j andL(p)

i j
0 respectively:

ΨΓc j =∑
i

I
Γi j

A �dl =∑
i

I
Γ̃i j

A �dl+∑
i

I
Γ0

i j

A �dl : (14)

The second term on the right-hand side is recast as

∑
i

I
Γ0

i j

A �dl =∑
i

Z
l 0i

A �dl =
I

Γ0

c

A �dl ; (15)

whereΓ0

c is aclosedloop on the cylinder surface (radial projec-
tion of Γc) consisting of filamentsfl 0ig. These filaments are in
general not linear (see below). Because the magnetic fieldB due
to currentI j is tangentialto the cylinder we have

I
Γ0

c

A �dl =
Z Z

B �dS� 0 ; (16)

so (14) reduces to

ΨΓc j =∑
i

I
Γ̃i j

A �dl = I j ∑
i

si j L̃
(p)
i j : (17)

This expression may also be obtained from (13) by substituting

L(p)
i j ! L̃(p)

i j : (18)

As the electrical behaviour is invariant under this operation, we

conclude thatfL̃(p)
i j g andfL(p)

i j g yield equivalent descriptions for
the full network.

3.3 Computation of L̃(p)
i j in terms of parallel linear fil-

aments
The intersection filamenti0 of the flux surface related toL(p)

i j
and the cylinder with radiusr0 around filamentj is in general
not a straight line. This presents us with a problem, as we need

to calculateL(p)
i j

0, the partial mutual inductance betweenj and
i0. However, we will show that it can be related to the partial
inductance betweenj and alinear filament i00 on the cylinder,
parallel to j and characterized further by

l i00 = (l i � l̂ j) l̂ j ; (19)

wherel̂ j � l j=l j . Filamentsi0 and i00 share one endpoint and by

j
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Figure 5: A triangular network Γ0 on the cylinder is used to
prove the equivalence of the magnetic coupling of filamentj
with filaments i0 and i00 respectively.

connecting the opposite endpoints by a circular arc on the cylin-
der a closed circuitΓ0 is formed (Fig. 5). As argued previously
(see (16)) filamentj and any closed loop on the cylindrical shell
are uncoupled, so I

Γ0

A �dl = 0 : (20)

Because the circular arc which connectsi0 andi00 is perpendicular
to l j , its contribution to the contour integral is zero, so

I
Γ0

A �dl !
Z

i0
A �dl+

Z
i00

A �dl = 0 ; (21)

and therefore
R

i0 A �dl =�
R

i00 A �dl. Thus we conclude

L(p)
i0 j = L(p)

i00 j (22)

and with a change in notationL(p)
i j

00 � L(p)
i00 j we arrive at the final

result
L̃(p)

i j = L(p)
i j �L(p)

i j
00 : (23)



For the calculation ofL(p)
i j

00, the partial mutual inductance of two
parallel filaments, exact expressions are available [5].

Because of space limitations we will just state important con-
straints of the method, without presenting the derivation: symme-
try of L̃ will only be preserved fororthogonalnetworks, provided

that unique screening radiir(x)0 , r(y)0 andr(z)0 are chosen for fila-
ments in the three principal directions respectively. Details can
be found in [6].

3.4 Discussion
Virtual screening

The transformationL(p)
i j ! L̃(p)

i j is interpreted (Fig. 3) in terms
of a return pathi0 for the current induced in filamenti. The
return current effectively screens the interaction with filamentj.
As filamenti0 is not physically present, we refer to our method
as virtual screening. A complementary view of the screening
effect is obtained by noting that essentially partial inductances
(2) represent interactions between “monopoles” (unclosed
filaments), which are strictly mathematical, rather than physical,
objects. Augmenting filamenti by a virtual return filamenti0

replacesi by a finite closed loop, which gives its (far) field a
more dipole-like character. Hence the interaction with filament
j is reduced. Therfore, our method is expected to provide a tool
which enhances robustness under sparsification of the inductance
matrix.

Choice ofr0

The formal construction of̃L(p)
i j does not restrict the value of

the cylinder radiusr0. Suppose we reducer0 such thatL̃(p)
i j = 0

(filamenti and the cylinder intersect). We then have a representa-
tion where filamentsj andi are effectively decoupled (a numer-
ical illustration appears in Sec. 6). This suggests that in practi-
cal applications one would chooser0 such, that the cylinder ex-
tends to the most distant conductor in the network. However, in
a carefully designed circuit long distance couplings between sig-
nal lines will be considerably reduced by the presence of nearby
(physical) current return paths. Therefore, reduction of the cylin-
der to a size which encloses allrelevantconductors would be op-
timal. This would render some elements ofL̃ negative, but these
can be set to zero, as they represent irrelevant couplings which
have no significant effect on the overall circuit behaviour. In fact,
if we know, from geometric considerations, that filamenti is ex-
cluded from the cylinder completely, computation of the associ-
ated matrix element is not necessary, because it will be negative
and thus set to zero eventually. The optimal cylinder radiusr0

depends on the inductive and resistive properties of the network
in combination with the signal frequency. Discussions relevant to
this issue can be found in references [3] and [4], where a method
closely related to our virtual screening approach is discussed (see
Sec. 5).

4 Generalization to non-cylindrical shells
The procedure followed in sections 3.1 and 3.2 may be applied

to anysurface with axial symmetry. The symmetry requirement is
necessary in view of (16). An alternative route to the same results

is obtained through the application of agauge transformation[7]
to the vector potentialA j . We give an account of this approach,
as it clarifies the physical background of our method. Moreover,
it provides a bridge to the potential shift-truncate method [3] [4],
which will be analysed in Sec. 5.
4.1 General procedure
Gauge transformation ofA j

In the magnetoquasistatic regime an electromagnetic system is
invariant under agauge transformation[7] of the vector potential

A ! Ã � A�A0 ; (24)

whereA0 is irrotational, i.e.

∇�A0 = 0 ; (25)

which ensures invariance of the magnetic fieldB = ∇�A. If we
apply this procedure to the vector potentialA j , generated by a
current in filamentj, it should leave the overall inductive be-
haviour of the circuit unaltered. This implies that the modified
partial inductance matrix̃L with elements

L̃(p)
i j =

1
I j

����Z
i
Ã j �dl

���� (26)

represents thesamephysical system as the original matrixL. The
relation between this transformation and the virtual screening
method can be readily established by considering the analogue

of Fig. 1 for L̃(p)
i j . The closing filament must now be chosen

such thatÃ j = 0, i.e. it lies on a surface defined implicitly by
A j = A0

j . In other words, the (zero) reference potential is shifted
from infinity to a finite distance. This interpretation is consistent
with the geometric construction in Fig. 3.

Symmetry ofA0

j

The magnetic vector potentialA j , related to a currentI j = I j l̂ j

in filament j, is parallel toI j and has axial symmetry, i.e.

A j = Aj(r;z) l̂ j ; (27)

wherer andz are the radial an longitudinal coordinates respec-
tively. An obvious choice would be to require thatÃ j has the
same symmetry properties asA j , which implies

A0

j = A0

j(r;z) l̂ j : (28)

However,

∇�A0

j = ∇A0

j(r;z)� l̂ j =�r

 
∂A0

j ;z

∂r

!
eφ; (29)

whereeφ is the azimuthal unit vector in the cylindrical coordinate
system(r;φ;z). Therefore, condition (25) can only be met if

A0

j = A0

j(z) l̂ j ; (30)

i.e. A0

j is constant in planes perpendicular toI j .



4.2 Specific shells
Cylindrical shell

We relateA0

j to the value ofA j on the cylinderr = r0, i.e.

A0

j = Aj(r0;z) l̂ j ; (31)

which is consistent with requirement (30).
Referring to the geometry of Fig. 5 this implies

Z
i
A0

j �dl =

Z
i
Aj(r0;z)

�
l̂ j � l̂ i

�
dz

=

Z
i00

Aj(r0;z)dz=
Z

i00
A j �dl : (32)

Hence (premultiply by 1=I j ) we obtain

L̃(p)
i j = L(p)

i j �L(p)
i00 j : (33)

This is equivalent to (23).

Ellipsoidal equipotential shell
The key ingredients of the potential shift-truncate method [3]

[4] (see Sec. 5) are (ellipsoidal) equipotential shells around fil-
aments. Such equipotential shells may be related to the virtual
screening framework by requiring that the gauge potentialA0

j is
constant, i.e.

A0

j(z) = A j(r;z)
��
Aj=A0; j

= A0; j l̂ j : (34)

The equipotential surfacesAj(r;z) = A0; j are rotational ellip-
soids [4]. Integration ofA0

j along segmenti gives

Z
i
A0

j �dl =

Z
i
A0; j l̂ j �dl

= A0; j

Z
i

�
l̂ j � l̂ i

�
dz= A0; j l i

�
l̂ i � l̂ j

�
: (35)

Then (normalizeA j to I j = 1) the modified partial inductance
(26) is given by

L̃(p)
i j = L(p)

i j �A0; j l i
�� l̂ i � l̂ j

�� : (36)

The equivalent expression ofL̃(p)
i j in [4] is obtained by identifying

jl̂ i � l̂ j j= cosαi j . A convenient choice for the potential parameter,
suggested in [4], is

A0; j = κ l j : (37)

This preserves symmetry of the partial inductance matrix, as is
clear from

L̃(p)
i j = L(p)

i j �κ jl i � l j j : (38)

5 The potential shift - truncate method
5.1 General description

In the potential shift-truncate method [3] [4] interactions of fil-
amentj with parts of the circuit external to an equipotential shell
around j, defined byA j(r) = A0; j , are discarded. This amounts
to introducing a truncated vector potential

A j(r) = Θ j(r ;A0; j) Ã j(r) ; (39)

where the step functionΘ j is defined as

Θ j(r ;A0; j) =

�
1 ; Aj � A0; j

0 ; Aj < A0; j
: (40)

Ã j(r) is the vector potential constructed fromA j(r) through a
gauge transformation, as discussed in Sec. 4.2. Accordingly, as-
sociated partial inductances are obtained as

L
(p)
i j =

1
I j

����Z
i
A j �dl

���� : (41)

When the equipotential shell of filamentj encloses filamenti

completely, we haveL
(p)
i j = L̃(p)

i j , which is the virtual screening
result. When filamenti is completely outside of the shell we have

L
(p)
i j = 0, whereas̃L(p)

i j < 0, but in the postprocessing step of our
method, as discussed in Sec. 3.4, we would set such a negative
matrix element equal to zero, so again identical results are ob-
tained. When filamenti intersects the shell, however, the two
methods are different. The potential shift-truncate method then

effectively calculatesL
(p)
i j as the mutual inductance between fila-

ment j and aphysically truncatedfilamenti. It was shown in [3]
that this procedure, effectuated by a current distributed over the
shell, which represents the (imaginary) return current of that in
filament j, guarantees a positive semidefinite modified induc-
tance matrix. In our virtual screening approach, however, we
account for the interaction of filamentj and thefull filament i.
When in the postprocessing step of matrixL̃ the negative matrix
elements are discarded, loss of stability does not seem to be ex-
cluded beforehand. However, if either method is to be used as a
preprocessing step for improved robustness of the matrix under
sparsification, this difference will diminish.

An interesting observation at this point is the fact that for tubu-
lar shells applied to orthogonal networks, filaments and shells
will never intersect. Although such cylinders are not equipoten-
tial shells, we could follow the same arguments as in [3] and ar-
rive at the conclusion that also here stability is guaranteed.
5.2 Geometric considerations

The equipotential surfaces employed in the potential shift-
truncate method are rotational ellipsoids

(z=z0)
2+(r=ρ0)

2 = 1 ; (42)

where the semi axesρ0 andz0 are functions ofA0; j andl j . From
the explicit expressions given in [4] the potential parameterA0; j

can be eliminated. This gives

z2
0 = ρ2

0+(l j=2)2 : (43)

Whenρ0� l j we havez0�ρ0, so the shell is essentially spher-
ical. The other limitρ0� l j gives z0� l j=2, i.e. the ellipsoid
closely “wraps” the filament. A general consequence of (43) is,
thatz0 is fixed for a given choice ofρ0.

This observation suggests that for orthogonal networks tubular
shells may be more suitable, because these are open in thez-
direction.



6 Numerical example
We consider the partial inductance formulation of a transmis-

sion line system (Fig. 6) consisting of two parallel wires (rect-
angular cross sections) of lengthl , carrying currents which are
equal in magnitude, but in opposite direction. The geometric (di-
mensionless) parameters used are:W = T = 1, l = 400, d= 5,
λ = 20. Partial self inductances are calculated using an exact ex-
pression, whereas for mutual inductances we approximated the
conductors by single filaments [1].

l
d

L0

T

W
λ

Figure 6: Transmission line consisting of two parallel conduc-
tors with rectangular cross sections.

For a particular choice of the screening radiusr0 the induc-
tance matrixL̃ is generated. The inductanceL0 of the circuit
calculated fromL̃ is independent ofr0. End segments, which
close the circuit, are disregarded. This can be justified by the
fact that essentially they are perpendicular to the segments con-
sidered here, or even simpler because their contribution is small.
Subsequently a series of degrees of sparsity of the matrix is cre-
ated by setting all elements below some threshold value to zero,
and the resulting network inductanceL is calculated. This trun-
cation procedure is repeated for increasingly higher thresholds,
resulting in higher sparsity. The resulting behaviour ofL=L0

is given in Fig. 7. In Fig. 7a, which represents the behaviour
of the unmodified inductance matrix (r0!∞), two branches can
be recognized, one dominantly constant at a levelL=L0�1, and
one which increases with sparsity. The constant branch corre-
sponds to configurations where facing segmentpairs, carrying
opposite currents, are discarded (their corresponding matrix ele-
ments are removed from̃L). Their spacing is such that the mag-
netic coupling with segments further along the line is effectively
screened. When onlyonesegment of a pair is removed, its coun-
terpart is left unscreened, which manifests itself as a significant
additional contribution toL. The latter category constitutes the
second branch, which exhibits an increase ofL=L0 with sparsity.
Whenr0 is given a finite value (Fig. 7b), the effect of leaving one
member of a conductor pair uncompensated diminishes, which is
the goal of the virtual screening method. The optimal situation
occurs whenr0 is equal to the conductor spacingd (Fig. 7c), as
the “mathematical” segment pairs underlyingL̃ and the physical
ones then coincide. Effectively, the two sets of branches are then
decoupled, as discussed in Sec. 3.4. Consequently, the matrix is
block-diagonal, which explains why the sparsity in Fig. 7c has a
minimum value of 50%.

7 Conclusions
We have derived a “virtual screening” method, which amounts

to augmenting a filamenti, in which a current is induced by fila-
ment j, with a filamenti0 on a cylindrical shell aroundj. Filament
i0 carries the return current of that ini. The procedure changes in-
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Figure 7: Behaviour of the normalized inductanceL=L0 upon
truncation of L̃, for values of the screening radius: (a)r0 ! ∞,
(b) r0 = 50and (c) r0 = 5.

dividual partial inductances, but has no influence on the overall
circuit behaviour. It is expected to diminish the effect of spar-
sification of the inductance matrix. This was sustained by some
numerical experiments.

We generalized our method to arbitrary shells with axial sym-
metry. This allowed us to compare our results with the closely
related potential shift-truncate method. Our conclusion is, that
the virtual screening method, followed by removal of negative
matrix elements, approximately recovers the same results. Dif-
ferences occur, because in the potential shift-truncate method a
filament intersecting a shell is explicitly truncated, whereas in the
virtual screening approach we first calculate the interaction with
the full filament and then, if the result is negative, it is discarded.
As the physical truncation of filaments is implied in the proof of
the fact that the potential shift-truncate method maintains a pos-
itive semidefinite inductance matrix, this property may possibly
be lost in our approach. On the other hand, when cylindrical
shells are utilized for orthogonal networks, filament truncation
will not occur. Our virtual screening approach can then be inter-
preted as a generalization of the potential shift-truncate method
to non-equipotentialshells, and the inductance matrixL̃ will re-
main positive semidefinite. Ellipsoidal (equipotential) shells are
expected to suppress forward coupling, as opposed to cylindrical
ones. Therefore, as orthogonal networks cover a major part of
interconnects which exhibit inductance effects in the first place,
i.e. data, clock, and supply lines, further exploration of the merits
of the various shell types seems warranted.



Design methodologies are directed towards minimization of
inductance effects, which implies placement of return paths as
close as possible to the signal line. A typical example is the
upcoming interest for the use of coplanar interdigitated sig-
nal/ground lines. In this respect the ability to define partial in-
ductances in terms of magnetic fluxes extending no further than
only a small fraction of the overall chip dimensions will gain im-
portance in modelling of inductance effects in future generation
VLSI designs.
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