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Abstract
Available techniques for testing core-based systems-on-a-chip (SOCs)
do not provide a systematic means for synthesising low-overhead test
architectures and compact test solutions. In this paper, we provide a
comprehensive framework that generates low-overhead compact test
solutions for SOCs. First, we develop a common ground for address-
ing issues such as core test requirements, core access and test hard-
ware additions. For this purpose, we introduce finite-state automata
for modeling tests, transparency modes and test hardware behavior.
In many cases, the tests repeat a basic set of test actions for differ-
ent test data which can again be modeled using finite-state automata.
While earlier work can derive a single symbolic test for a module in
a register-transfer level (RTL) circuit as a finite-state automaton, this
work extends the methodology to the system level, and, additionally
contributes a satisfiability-based solution to the problem of applying
a sequence of tests phased in time. This problem is known to be a
bottleneck in testability analysis not only at the system level, but also
at the RTL. Experimental results show that the system-level average
area overhead for making SOCs testable with our method is only 4.4%,
while achieving an average test application time reduction of 78.5%
over recent approaches. At the same time, it provides 100% test cover-
age of the precomputed test sets/sequences of the embedded cores.

1 Introduction
Embedded cores are being increasingly used to provide SOC solu-

tions to complex integrated circuit design problems. Synthesis of low-
overhead test architectures and compact test sets for these SOCs is of
critical importance [1, 2].

Traditional approaches for testing SOCs rely on variants of bound-
ary scan or test bus to provide test access to the embedded cores [2, 3,
4]. However, the area and delay overheads of such methods are usually
high, as is the test application time for boundary scan based methods.
Another approach is to use existing functionality for testaccess of em-
bedded cores [5, 6, 7]. Even though such functional access approaches
reduce overheads, they are usually not flexible enough to handle em-
bedded cores made testable using diverse test methodologies such as
scan, built-in self-test (BIST), sequential test generation,etc.

In this paper, we present a comprehensive technique for testing
core-based SOCs. Our solution focuses on effectively reducing thetest
application time, in addition to reducing the test overheads, while pro-
viding complete test coverage of the test sets/sequences of the embed-
ded cores. The key strengths of our work are as follows.
� It is able to use individual cores to transfer test data to and from

the core under test in a much moreaggressiveandeffectiveman-
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ner than has been done in previous work. To provide such a func-
tional test access, it allows complex core transparency modes,
where core transparency can be loosely defined as the ability of
the core to propagate test data from its inputs to its outputs (more
formal definition is given later). Consider, for example, a situa-
tion where we need to transfer data from an 8-bit input of a core
to its 16-bit output. Our technique can make use of the fact that
the core might provide a mechanism to compose the output vec-
tor from two time-separated input vectors, whereas other tech-
niques [6, 7] would consider the core incapable of executing the
required data transfer and solve the problem by adding design-
for-test (DFT) hardware such as test multiplexers.

� It provides controllability and observability to cores on an as-
needed basis: past work [6, 7] requires all the inputs (outputs) of
a core to be simultaneously, though indirectly, controllable (ob-
servable). This can lead to significant area overheads, especially
if the test scheme for the core does not require all its inputs (out-
puts) to be simultaneously controllable (observable).

� It explicitly accounts for sequential test sequence requirements
of cores: core test strategies apply a single symbolic test (a set
of test actions) to a core multiple times with different test data at
pre-defined time-instants. As opposed to the existing expensive
practice of meeting these test requirements with extra test hard-
ware, our technique tries to overlap multiple tests in time to real-
ize a low-cost solution, whenever possible. It requires SOC-level
test insertion only as a last resort. It also effectively models di-
verse core test strategies like scan and BIST.

The paper is organized as follows. Section 2 introduces trans-
parency and test models through examples. Section 3 presents the SOC
testing algorithm. Section 4 gives the experimental results and Section
5 the conclusions.

2 Transparency and Test Models
In this section, we present our models for different aspects of core-

based testing. First, we introduce a novel way of modeling thetrans-
parencyof a core using finite-state automata. Next, we model diverse
test requirements for a core under test. Lastly, weillustrate a compact
and efficient test architecture derived for an SOC with the help of a test
strategy (Section 3) employing these models.

2.1 Transparency of a core
We first formalize the notion of transparency used in our work as

follows.
Definition 1: Transparencyof a core is a collection C of non-
deterministic finite-state automata [8] TJI that allows test data to prop-
agate from a set of its inputs I to a set of its outputs J.

The advantages of using a finite-state automaton (FSA) to de-
scribe tranparency are manifold. First, we can compactly describe
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Figure 1:(a) An RTL element, and (b) transparency FSATdata
in1

temporally-separated circuit events. For example, if we examine the
transparency of a registerR1, we can deduce that the element (at some
time instant) can propagate data at its input upon aLoadR1 operation.
Subsequently, the data is available at its output for as many cycles as
allowed by theHoldR1 operation. Subgraph1 in Figure 1(b) com-
pactly captures this behavior (note thatS1 would need to be changed
to an accept state for this purpose).

We can also use an FSA to capture spatial aggregation of test data.
Consider, for example, the two 8-bit registers shown in Figure 1(a),
whose outputs aggregate to form a 16-bit busdata. The transparency
behavior for thein1/data pair is given by the FSA,Tdata

in1 , shown in
Figure 1(b). Start states are depicted by an incoming arrow and accept
states by a double ellipse. Observe that the annotation along the states
and edges gives us the information necessary to compose our objective
in time and space. Suppose that we require a valuev atdatato be jus-
tified from in1 in the shortest time possible, assuming no other external
constraints on the control signals. The shortest-path solutions directly
available from Figure 1(b) are (a)S0 to S3 viaS1, and (b)S0 to S3 via
S2. Both solutions take two time-steps. In (a), setting of the higher
(lower) 8 bits ofdata is achieved in the first (second) time-step, while
in (b), it is the reverse (indicated by the annotation to statesS1 andS2,
respectively).

In this way, we can represent the transparency behavior of an RTL
element in a compact manner using an FSA. Since a core can be
viewed as an interconnection of RTL elements, we can clearly extend
the transparency behavior concept to the core-level. For this purpose,
we first pre-compute the transparency behavior for the different RTL
elements. We next perform RTL symbolic justification and propaga-
tion analysis to compose a transparency behavior for the core outputs
in terms of the core inputs. Exploiting the equivalence of regular ex-
pressions and FSA, we tailored an existing regular expression based
justification and propagation framework [9] for this purpose. Model-
ing of core-level transparency behavior using an FSA is analyzed in
the following example.

Example 1: Consider the coreDG1 shown in Figure 2. It is a part of
an SOC used as a data address generator. The core consists of a 16-bit
inputData, a reset inputR, a test inputT and a 16-bit outputGenerate.
The core has an arithmetic logic unit,ALU, and a counter,CTR, which
facilitate both logical and arithmetic modifications to the input data.

Let us analyze the transparency behavior ofDG1 as shown in Fig-
ure 3. The FSA has one start stateS00 and six accept statesS0,
S4, � � � ,S8. StatesS00 andS0 have the property that incoming transi-
tions to these states preserve the previously held values in the differ-
ent register elements. Therefore, it follows from Figure 3 that values
generated at an accept state (other thanS0) are always available for
one extra time-step through a transition to S0. This is useful when we
useDG1 to feed cores that require the same test data for an extra cy-
cle. The edges in the FSA are annotated withinput labels that denote
the values required at the primary inputs, while states are annotated
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Figure 3:Transparency behavior forDG1

with the operations performed in that cycle. For example, the transi-
tion from stateS2 to S3 is labeled withR,T, which indicates that an
input of R = 0,T = 0 when applied toDG1 in stateS2 transfersDG1
to stateS3. In stateS3, CTR loads its input (as given by the anno-
tationCc = load to stateS3). Observe that the FSA is only partially
specified, thereby giving only the necessary information required for
transparency analysis.

Consider the problem of propagating a test data sequence< v1,v2>
from Data to Generate. From Figure 3, we can see that the pathS00

to S5 (via S1, S2, S3 andS4) in the FSA has two accept states,S4 and
S5. If we examine the pathS00 to S4, we needv1 atData at timet = 2
for providing v1 at Generateat time t = 4. Likewise, pathS00 to S5
propagatesv2 at Data at time t = 3 to Generateat time t = 5. From
the annotations to the edges, we can see that the data transfers are ac-
tivated from the start state by the following input sequence atR,T: 00,
followed by 00, 00, 00 and 00. In this way, we can use an FSA to effec-
tively propagate a test data sequence and also determine the additional
constraints (e.g., R,T here) that facilitate this transfer.

2.2 Core test requirements
Diverse strategies adopted by different core vendors to test a core

create a range of controllability/observability objectives for an SOC.
For example, high-level symbolic test generation techniques [9] for
RTL circuits have controllability and observability requirements only
at some specific time-instants (don’t cares otherwise). Test strategies
such as scan, BIST, sequential test generation,etc., place similar cycle-
by-cycle requirements. Consequently, an SOC test framework must be
flexible enough to encapsulate different specifications of test sets and
also provide a common ground for systematic analysis. In the follow-



ing example, we illustrate how an FSA can provide a convenient and
compact representation to the given core test requirements.
Example 2: Consider the coreTLU in the SOCSysGenshown in
Figure 4 with a test inputTestthat serves to enforce a scan test strategy
imposed by the core vendor onTLU. Suppose the scan implementa-
tion of TLU has 16 parallel scan chains, each of length 4 (i.e., having
4 flip-flops on its path), running fromLo to Out. WhenTest= 1, the
core scans in (out) the input (output) atLo (Out). Since the scan-chains
are of length 4, a sequence of four 16-bit state vectors must be scanned
in with Testas 1 before applying the required input test vector (with
Test= 0). Suppose the core vendor provided a set ofV vectors in the
combinational test set to test the scan implementation ofTLU. Testing
this core in isolation, therefore, consumesV ∗ (4 +1)+3 clock cycles.
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Figure 4:SOCSysGenenhanced by our testing scheme

The above test requirements are modeled by the FSA shown in Fig-
ures 5(a) and (b). Figure 5(a) models a general scan test schedule as
an FSA consisting of a start statestart, an accept statef inish and two
other statestest1 andtest2. Each state represents a high-level granu-
larity of test actions (as represented by the annotations to the states),
and, in turn, can be decomposed into an FSA. For example, the steady-
state scan actions of applying the test vector after scanning in the state
vector and scanning out the previous response (represented by state
test2 in Figure 5(a)) can be decomposed into the FSA shown in Fig-
ure 5(b). This decomposition is shown in the context of the scan test
requirements of the coreTLU. Scanning one test pattern intoTLU re-
quires four cycles of shifting from the input withTest= 1 (indicated
by statesS0 to S4). Simultaneously, we also scan out the stored test
response. Thereafter, we can apply the input test vector by setting
Test= 0 (S4! S5 transition). If there areV test vectors, this FSA is
executedV�1 times accounting for the self-loop at statetest2.

The FSA to model sequential test sequences and BIST can be ob-
tained in a similar fashion. For example, we can use a sequential test
generator such as HITEC [10] to generate a sequence of test vectors
for the gate-level implementation of coreDG1. We can then model
this test schedule by the FSA shown in Figure 6(a). Similarly, we
can model a BIST test scheme for a memory module that has a 1-
bit TestStart input and a 1-bitTestFlag output by the FSA shown
in Figure 6(b). In this way, FSA representations of basic test sched-
ules provide a common ground for creating a systematic framework
for their analysis (Section 3). This, in turn, leads to a compact and
low-cost test architecture design discussed next.

2.3 System test architecture
In this section, we first introduce an example system test architec-

ture generated for an SOC, and then quantitatively analyze it for pos-
sible test application time savings in comparison with existing tech-
niques.
Example 3: Consider the SOC,SysGen, shown in Figure 4 once
again. The blocks shaded in grey indicate the additional hardware that
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Figure 5: (a) An FSA depicting a general scan test schedule, and (b)
partial decomposition to meetTLU’s scan test requirements
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Figure 6:FSA representing test schedules for (a) sequential test gen-
eration forDG1, and (b) BIST of a memory module

form a part of the low-overhead test architecture obtained by using the
algorithm proposed in Section 3.SysGenmanipulates a 32-bit input
In using two main computational blocks,DG1 andTLU, to generate
a 32-bit outputOut and two 1-bit outputsRdy1 andRdy2. A control
unit CU sequences the activity inDG1 andTLU based on two system
inputs,SetandMode. Assuming that separate test sequences are pro-
vided for testingCU andDG1 (when they are standalone), and a com-
binational test set for the scan implementation ofTLU, we will eval-
uate the test architecture derived to provide testability to the different
blocks inSysGen. The test controller on the chip is a simple finite-
state machine that loads a set of input vectors (whenTest= 1) through
the existing system inputsIn[16 to 19]. The test controller feeds con-
trol inputsc1, c2, c3 andc4 of the different test hardware shown.
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timei+13  i+14  i+15  i+16   i+17

Figure 7:Steady-state data stream atLo for testingTLU

Let us compute the test application time to testTLU under this ar-
chitecture. Figure 7 shows the steady-state flow of test data atLo from
In[0 to 15] using the transparency behavior ofDG1. SupposeDG1 al-
lows variable-latency transparency. Specifically, assume that the first
vector can propagate throughDG1 in four cycles, but subsequent vec-
tors take only one extra cycle to propagate through it because of a



pipeline in it. The scan action described by the FSA in Figure 5 is
realized by the window shown in Figure 7. Specifically, four 16-bit
vectors are scanned in atLo throughDG1 at cyclesi + 9, i + 13, i + 14
and i + 15. Since the state ofTLU must be preserved between cycles
i + 9 andi + 13, the test controller setsc1 = 1 within this period to gate
the clock ofTLU (and thus preserve its state). The circuit response is
captured at cyclei +16, and scan-out takes four cycles starting ati +17.
However, since scan-in of a new state vector and scan-out of the previ-
ous captured response can occur simultaneously in the window shown,
it takes eight cycles per test vector to testTLU.

We next compare our scheme with the ones presented in [6, 7]
which only allow constant-latency transparency. In other words, un-
der their scheme,DG1 can only feed the desired 16-bit vectors toLo
every four clock cycles (the clock needs to be gated here as well to
preserve the state when necessary). Thus, in the steady state, it takes
16 cycles to scan-in the desired state intoTLU and four more to feed it
the desired test vector, for a total of 20 cycles (scan-out can take place
in parallel with scan-in as usual). This means that our scheme results
in a test application time speed-up of 2.5X for testingTLU.

In the next example, we will illustrate how our methodology can
also help lower area and delay overheads.
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Example 4: Figure 8 depicts the main components of an SOC
calledSysProc(ignore the shaded mux temporarily and assume that
ASIC1.Out is connected directly toASIC3.In1). Consider the objec-
tive of testingASIC4 with a given test sequence at its inputIn, and ob-
serving the resulting test responses at its outputOut. The transparency
characteristics of the different cores, which are significant for the testa-
bility of ASIC4, are as follows:ASIC1 is opaque (empty transparency
set), while coresASIC2 andASIC3 are transparent. The transparency
of ASIC2 is significantly different since it takes 4-bit inputs at time-
instants 1, 2, 4 and 5 to compose a 16-bit input at time-instant 6. This
is depicted by the FSA shown in Figure 9. The testability schemes pro-
posed in [6, 7] cannot model this transparency. Consequently, the only
option for those schemes is to provide test data atASIC3.In1 through
additional test hardware. This is done by adding the shaded test hard-
ware shown in Figure 8 for this purpose, causing area and delay over-
heads.

Subsequent testability analysis by our algorithm in Section 3 ex-
ploits the transparency ofASIC2 and determinesASIC4 to be testable.
Hence, no additional test hardware is necessary for test data access at
ASIC4.In from the system inputs, leading to savings in area and delay
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Figure 9:Partial FSA representing transparency behavior ofASIC2

overheads. This case study clearly suggests that better test and trans-
parency models are crucial in the development of low-overhead SOC
test solutions.

3 The SOC Testing Algorithm
In this section, we detail the algorithmic aspects of our methodol-

ogy. Our algorithm takes as its input a system of cores, their connectiv-
ity and test requirements, and outputs a low-overhead test architecture
and a test schedule that facilitate its testability. In the process, it fol-
lows the steps outlined below.
� The first step in the algorithm is to model the transparency and

test requirements of the individual cores (Section 2).
� In many cases, the core tests involve a repetition of a basic set of

test actions (a single symbolic test) for different test data. There-
fore, we next perform system-level symbolic justification and
propagation to satisfy the requirements of this symbolic test. This
is very similar to symbolic RTL testability analysis for testing an
RTL element (e.g., functional unit, register, multiplexer,etc.) in
a standalone core with a symbolic test vector. Hence, we adopted
theregular expressionbased symbolic testability analysis scheme
from [9] for this purpose. Note that the analysis scheme in [9]
was applied to individual cores, not SOCs. In general, any other
high-level testability analysis scheme can also be used to deter-
mine the system-level test actions for a single symbolic test. For
such cases, the solution capturing the cycle-by-cycle test actions
is simply equivalent to an FSA.

� Unlike the analysis which terminates at this juncture for a stan-
dalone core, we need to compose a sequence of SOC tests at
time-instants dictated by the test models. If such a sequence is
not realizable with the existing transparency and connectivity, we
employ additional test hardware,e.g., clock gating or system-
level test multiplexers, to relax the core test requirements and
output a low-cost solution. Finally, we employ the framework
provided in [9] to minimize the test hardware added.

Composing a test sequence
We now propose a Boolean satisfiability based framework for com-

posing a test sequence from a single symbolic test. We first illustrate
our method with the help of some simple examples.

Example 5: Consider, for example, the FSA for a single symbolic
test shown in Figure 10(a). If the system operates according to the
sequence of actions specified by this FSA, we achieve the test objec-
tive when the system enters the accept stateSN. Let tN denote the
time-instant associated with stateSN assuming the time-scale starts
with stateS0 at t0. Now, suppose that the test requirements specify
that the test objective must be achieved every two cycles in the steady-
state. In other words, we require the system to enter accept stateSN
at time-instantstN, tN + 2, tN + 4, etc. This, in turn, is possible if we
can pipeline the FSA as shown in Figure 10(b). From the time-chart
shown, it is evident that we can realize the sequence of tests if and only
if statesSN, SN�2, etc., co-exist, and, statesSN�1, SN�3, etc., also
co-exist. In other words, we merely need to check if the odd-numbered
group of states and the even-numbered group of states arecompatible
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Figure 10:(a) An FSA for a symbolic test, and (b) a time-chart show-
ing multiple tests phased in time

(a formal definition follows) for realizing the given test objective every
two cycles.

From the above example, we can infer that a sequence of test ob-
jectives can be met, provided that (a) individual test objectives are sat-
isfied, and (b) some states arecompatiblewith other states, withcom-
patibility formally defined below.
Definition 2: Two statesSi andSj of an FSAA arecompatibleif and
only if there exists an input transition to Si performing a set of opera-
tions that can concurrently overlap with the operations associated with
an input transition to Sj .

In the next example, we will study the additional issues that must
be considered when the FSA for a single symbolic test is available. We
will also motivate why a satisfiability-based approach forms a natural
solution to the problem.
Example 6: Figure 11(a) shows an FSA representing a single sym-
bolic test that consists of a start stateS0 and accept statesS3, S4
andS5, with the compatibility relationships among the different states
given as a compatibility graph in Figure 11(b). The compatibility
graph has an edge between two states if and only if the states are com-
patible.

Consider the problem of scheduling successive tests at time-instants
3, 4, 5,etc. To accomplish this, let us instantiate the single-test FSA
multiple times (say 5), as shown in Figure 11(c) (ignore the dotted
encirclements for now). Clearly, we can realize the multi-test objec-
tive shown only if we can realize objectivesTEST1, TEST2, TEST3,
TEST4, andTEST5. We can rewrite this statement in the conjunctive
form with Boolean variables as follows.

TESTS=
i=1,���,5^

TESTi (1)

SinceTESTiis achieved if a path to the accept state from the start
state exists in its FSA instantiation, we can construct an existential
Boolean expression forTESTias follows. ConsiderTEST1. TEST1
is 1 only if stateS0 exists at time-instant 1 (which can be represented
by a Boolean variableS01

1, where the subscript toS0 denotes the test
index and the superscript denotes the time-instant), and if one of states
S1 or S2 exists at time-instant 2 (giving rise to the Boolean expres-
sion (S12

1 ∨ S22
1) ∧ (S12

1 ! S22
1)), and so on. Additionally, only the

transitions specified in the time-chart must be considered. For exam-
ple, stateS1 existing at time-instant 2 implies that stateS0 exists at
time-instant 1. This implication automatically translates to the Boolean
clause (S12

1 ! S01
1). The conjunction of the clauses thus obtained

forms TEST1. Consequently,TESTi, for i = 1, � � � ,5, is obtained as
follows.

TESTi = (S0i
i)∧ (S1i+1

i ∨ S2i+1
i )∧ (S1i+1

i !S2i+1
i )∧ (S3i+2

i ∨

S4i+2
i ∨ S5i+2

i )∧ (S3i+2
i !S4i+2

i )∧ (S3i+2
i ! S5i+2

i )∧

(S4i+2
i ! S5i+2

i )∧ (S1i+1
i ! S0i

i)∧ (S2i+1
i ! S0i

i)∧

(S3i+2
i ! S1i+1

i )∧ (S4i+2
i ! S1i+1

i )∧ (S5i+2
i ! S2i+1

i )(2)

FSAComposeTestSeq(array<FSA> Tests,
array<Graph> CG, FSACoreTest, int Win)f

1 TimeChart= PhaseTests(Tests,CoreTest,Win);
2 TESTS= ClauseGen(TimeChart,CG);
3 Soln= SAT Solve(TESTS);
4 Sch= Schedule(Tests,CoreTest, Soln);
5 return Sch;g

Figure 12:Pseudocode for composing a sequence of tests

For the Boolean expressionTESTSin Equation (1) to be complete,
we must also consider the constraints due to the compatibility graph
(see Figure 11(b)). Specifically, the incompatibility of stateS0 with
stateS3 translates to the Boolean expression

V5
i=1
V5

j=1(S0i
i ! S3i

j ) ∧

(S3i+2
i ! S0i+2

j ). The Boolean expressionINCOMPATbelow captures
the incompatibility relationships as given by the compatibility graph.
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Finally, we can rewrite the expression forTESTSas follows:

TESTS = (
i=1,���,5^

TESTi)∧ INCOMPAT (4)

where the expressions forTESTiandINCOMPAT are given in Equa-
tions (2) and (3), respectively. Solving for satisfiability ofTESTSde-
termines if the sequence of test objectives can be realized. In this par-
ticular case,TESTSis satisfiable (with variablesS01

1, S12
1, S43

1, S02
2,

S23
2, S54

2, S03
3, S14

3, S45
3, S04

4, S25
4, S56

4, S05
5, S16

5 andS47
5 being 1). This

solution is pictorially represented by the dotted encirclements shown
in Figure 11(c). Test scheduleSch1 shown in Figure 11(d) is a direct
translation of the time-chart and the satisfiability solution. A state in
the test schedule is a tuple of states existing at that time-instant for
some instantiation in the time-chart. However, this schedule is a so-
lution only for a finite number (five) of test objectives. We can extend
this schedule to the infinite case by comparing states for equivalence.
We note that state (S4,S2,S0) repeats inSch1. Using state equivalence,
we can obtain the compacted scheduleSch2, as shown in Figure 11(d).
ScheduleSch2 clearly satisfies an infinite number of test objectives.

The pseudocode for SOC test sequence composition is given in
Figure 12. The functionComposeTestSeqtakes as its input an ar-
ray of FSATestswhich must be phased according to the test require-
mentsCoreTest. The compatibility graph foreach FSA inTestsis
precomputed using Definition 2, and is passed as the input arrayCG.
The functionPhaseTestsgenerates the time-chartTimeChartusing the
FSA Testsand the specific test requirementsCoreTest(statement1).
ClauseGen(statement2) usesTimeChartandCG to construct the set
of conjunctive clausesTESTS, as described in Example 6.SatSolve
(statement3) next checksTESTSfor satisfiability and if satisfiable, the
functionSchedule(statement4) returns a valid test schedule.
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Figure 11:(a) A single symbolic test, (b) its compatibility graph, (c) time-chart for multiple-test objectives, and (d) final test schedules

Table 1:Testability results
Area Tapp

SOC Orig Mod Ovhd [6] Our Red
(%) (cyc) (cyc) (%)

SysGen 666330 678807 1.87 4620 2460 46.75
Grid 1225592 1330840 8.59 34312 7184 79.06
Star4 730881 773175 5.79 68224 7184 89.47
Mesh 956044 967800 1.23 46629 8197 82.42
Star8 918312 957620 4.28 271696 13968 94.86

The solution scheme outlined in Example 6 phases a single sym-
bolic test infinite number of times. For this example, a small window
of tests is sufficient to determine a valid test schedule (existence of one
or otherwise). Since the actual bound on window size is theoretically
exponential in the number of states, our algorithm starts with an ini-
tial window size value and explores the solution space until a user-
specified limit,Win, is reached. If a null test schedule is returned in
the process, test hardware, such as clock gating or test multiplexer, is
added to relax the core test requirements, and symbolic test generation
is repeated.

4 Experimental Results
We next present experimental results obtained by applying our al-

gorithm to some example SOCs. The SOCSysGenwas seen in Sec-
tion 2. SOCsGrid, Star4, MeshandStar8 are systolic architectures
proposed to study the performance of digital signal processing appli-
cations. They consist of processor cores connected in different config-
urations to effect pipelined processing of input data.

The testability results are given in Table 1. Columns 2 and 3 give
the area of the SOCs before and after running our algorithm. The area
numbers are actual layout numbers generated after placement and rout-
ing with the Octtools package from University of California, Berkeley.
Column 4 reports the resultant area overheads for these SOCs, with an
average of only 4.4%. Columns 5 and 6 compare the test application
time for our approach with the one in [6], which drastically reduces
test application time compared to the traditional approaches. Column
7 gives the percentage reduction in the test application time, with an
average of 78.5%. Since the scheme in [6] cannot handle some of the
SOCs, we conservatively extended their approach to estimate the test
application time. Our testability approach achieves100% test coverage
of all embedded cores in all SOCs. For example, the test architecture
derived for the SOCSysGen(see Figure 4) provides complete access
to apply the scan tests for the coreTLU as well as the precomputed test
sequences for coresCU andDG1. In this way, all embedded cores are
completely tested with the precomputed test sets (or sequences) pro-

vided for them.

5 Conclusions
We provided a comprehensive framework for analyzing the testa-

bility of core-based SOCs for generating low-overhead test architec-
tures and compact test schedules. Salient features of this work include
the modeling of transparency, tests and test hardware using finite-state
automata, and providing a rigorous system-level testability analysis
framework. Experimental results show complete test coverage with
low area overheads and test application times.
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