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Abstract

Typically, cell parameters such as the pin-to-pin intrinsic delays,
load-dependent coe�cients, and input pin capacitances have dif-
ferent values for rising and falling signals. The performance op-
timization algorithms, however, assume a single value for each
parameter. No work has been done to study the impact of sep-
arate rise and fall values on the complexity of optimization. In
this paper, we take the �rst step towards understanding this
impact. We pick two problems that have polynomial-time com-
plexities if a single value for each cell parameter is assumed. The
�rst problem is that of bu�er insertion on a �xed topology net to
maximize the required time at the source of the net. The second
is the gate resizing problem (and the more general technology
mapping problem) for minimizing the circuit delay under the
simplest, load-independent delay model. We show that under
separate rise and fall parameters, both these problems become
NP-complete. To the best of our knowledge, this is the �rst such
result showing the e�ect of rise and fall parameters on the com-
plexity of performance optimization problems. We then address
the important question of devising a good practical algorithm
for local fanout optimization.

1 Gate Delay Models
The model used to calculate the delay through a gate is of central
importance in timing analysis and optimization.

Given a single-output gate (or cell) g, let �(i; g) denote the
delay from an input pin i of the gate g to the output of g. We
will use g to denote the output of g as well. Two delay models
are popular: load-independent and load-dependent. The load
cg refers to the cumulative capacitance seen at the output of g.
It is the sum of the input pin capacitances (p) of all the fanout
pins p of g.

In the load-independent delay model, the delay from an
input pin i of a gate g to the output of g, �(i; g) is the intrinsic
delay

�(i; g) = �(i; g) (1)

In the load-dependent delay model,

�(i; g) = �(i; g) + �(i; g)cg (2)

Here,
cg = load capacitance at the output of the gate g,
�(i; g) = intrinsic delay from i to g,
�(i; g) = drive capability or load coe�cient of the path from i
to g.

The gate library speci�es � and � parameters for all input-
pin to output-pin paths within each gate and  values for all
the input pins. In general, �(i; g) and �(i; g) are di�erent for
di�erent input pins i. If g has a single input pin (e.g., bu�ers,
inverters) or if � and � values are identical for all input pins,
we will drop the argument i.

The above description assumes a single value for each param-
eter �, �, and . However, it is well-known that delays for the
rising and the falling transitions can be quite di�erent. In fact,
every cell in the industrial cell libraries we have access to has
di�erent rise and fall delay parameter values. Quite often, these
values are far o� from each other. For instance, in one of our
sub-micron technologies, the rise and fall � values for a path in
a simple cell di�ered by 45% and the � values, by 100%! To
handle this scenario, we use the subscripts r and f to denote
rise and fall. For instance, �rr(i; g) denotes the intrinsic delay
from input pin i to the output g when i switches from 0 to 1
and as a result g also switches from 0 to 1. Similarly, �rf (i; g)
is the intrinsic delay when g falls due to a rising transition on i.
Thus, for each input to output path (i; g), there are four � and
four � values corresponding to rising and falling transitions at i
and at g. Although the results that we prove in this work hold
for this general delay model, for simplicity we assume that the
circuit consists only of simple gates such as bu�ers, inverters,
multi-input AND, NAND, OR, and NOR gates. For these gates
the output is a unate function of each of the inputs. Then out
of rr and rf , only one case is possible for an (i; g) pair. Only
two out of four � (and also �) values are possible: �r, �f , �r,
and �f ; the subscript denotes the transition at the gate output.
We write these values as pairs: (�r, �f ) and (�r, �f ).

The gate delay parameters (�r, �f ) and (�r, �f ) are used
to compute the arrival times at various gates and the delay
through the circuit as follows. At each cell, both rise and fall
arrival times are stored. The rise (fall) arrival time at a gate g
denotes the maximum possible time it takes for a transition to
travel from a primary input to the output of g and g makes a
rising (falling) transition as a result. A topological traversal of
the circuit from primary inputs to outputs is used to compute
the rise and fall arrival times at each gate g using the rise and
fall arrival times already computed at the fanin gates and the
gate delays � through g. An inversion through the cell should
be considered appropriately while computing the times. For
instance, since a falling transition at the input of an inverter
generates a rising transition at its output, the fall arrival time
at the inverter's input should be used to compute the rise arrival
time at its output. The arrival time at a primary output is the
maximum of the rise and fall arrival times at that output. The
delay of the circuit is the maximum arrival time at a primary
output. A similar but reverse topological traversal of the circuit
starting from the primary outputs computes required times

at the cells and primary inputs.

2 Performance Optimization
Most of the research in performance optimization, including al-
most the entire body of theoretical work, considers only a single
value for each cell parameter �, �, and  [14, 12, 4, 10, 7, 1,
3, 5, 15]. In reality, each cell in the library has di�erent values
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for rising and falling transitions. To bridge this gap between
research and reality, most optimization tools approximate each
cell parameter by taking either an average or the maximum of
rise and fall values. Clearly, both these strategies for computing
the circuit delay are approximations: the �rst is optimistic, and
the second, pessimistic.

In this work, we show that it is non-trivial to extend certain
algorithms that consider a single value for each cell parameter
to those that incorporate both rise and fall values, while guar-
anteeing optimality. We identify two problems in performance
optimization that can be solved in polynomial-time under the
assumption of a single value for each cell parameter:

1. local fanout optimization (LFO) problem with the net
topology �xed,

2. gate resizing/technology mapping problem for minimizing
maximum delay under the load-independent delay model.

We prove that both problems become NP-complete with di�er-
ent rise and fall values. This, we believe, is the �rst work that
highlights the complexity arising out of separate rise and fall
values.

The paper is organized as follows. Section 3 addresses the
complexity of the local fanout optimization problem under rise
and fall parameters. The problems of gate resizing and technol-
ogy mapping are described in Section 4. Section 5 addresses the
question of devising a good practical algorithm for local fanout
optimization under separate rise and fall parameters.

3 Local Fanout Optimization
(LFO)

The fanout optimization problem for a single gate/net is called
the local fanout optimization problem, and can be stated as
follows:

� Given a library L of bu�ers and inverters, and for each
b 2 L its input load (b), its load coe�cient �(b), and its
intrinsic delay �(b);

� Given the source gate s of a signal/net N , with intrinsic
delay �(j; s) and load coe�cient �(j; s) for each input pin
j of s;

� Given n destinations or sinks, with required time q(i), load
(i), and polarity p(i) for each sink i;

� Find a tree of bu�ers and inverters that distributes the
signal N to all the sinks and maximizes the minimum re-
quired time at input pins of the source s.

Note that fanout optimizationmakes sense only under the load-
dependent delay model.

We will distinguish between two cases of fanout optimization.
In the �rst case, we have the freedom to determine the topology
or structure of each net tree and then insert bu�ers on various
edges of the tree. We will call it LFO-NTU (for net topol-
ogy unknown). In the second case, each net's tree topology is
already determined (e.g., the parent nodes of sinks are already
known) { either by a fanout tree generator or a global router;
only the bu�er types and insertion points need to be determined.
We will call this LFO-NTF (for net topology �xed).

Note that LFO-NTF is a special case of LFO-NTU. It is well-
known that the LFO-NTU problem is NP-complete [1, 14]. How-
ever, LFO-NTF can be solved in polynomial time by a dynamic
programming algorithm [10, 14] if the delay parameters (i.e., �,
�, ) have identical values for rising and falling transitions (see

Section 5). It turns out that for di�erent rise and fall values,
the problem becomes intractable. We show this next.

The previous formulation of LFO assumed single values for
all the parameters. Now consider LFO-NTF with separate rise
and fall values for �, �, and . The required times are also
di�erent for rising and falling transitions.

� Given a library L of bu�ers and inverters, and for each
b 2 L its input load (r(b); f (b)), its intrinsic delay
(�r(b); �f (b)), and its load coe�cient (�r(b); �f(b));

� Given the source gate s of a �xed-topology tree net N ,
with intrinsic delay (�r(j; s); �f (j; s)) and load coe�cient
(�r(j; s); �f (j; s)) for each input pin j of s;

� Given n destinations or sinks of N , with required time
(qr(i); qf (i)), load (r(i); f (i)), and polarity p(i) for each
sink i;

� Determine the types and locations of bu�ers and inverters
that should be placed on the edges (net segments) of the
net N to maximize the minimum of rise and fall required
times at the input pins of the source s.

To prove our result, we impose the following restrictions on
LFO-NTF:

1. At most one bu�er can be inserted on one edge. This is to
limit the bu�ering choices at each net. This assumption is
made by several LFO algorithms [10, 14, 13].

2. A bu�er can only be inserted on an internal edge. In
other words, a bu�er cannot be inserted on an edge that
is directly incident upon a sink. Since in practice bu�ers
are inserted at branching points (Steiner nodes) of the net
[10, 14]), this is not really a restricting assumption.

Let us call the version of LFO-NTF with di�erent rise and
fall parameters and with restrictions (1) and (2) LFO-NTF-DRF
(DRF stands for di�erent rise and fall). We prove that LFO-
NTF-DRF is NP-complete.

Theorem 3.1 LFO-NTF-DRF is NP-complete.

Proof It is easy to see that LFO-NTF-DRF is in NP. Given a
bu�ering arrangement on N , the rise and fall required times at
the input pins of the source gate s can be computed in linear
time.

To prove NP-hardness, we transform the NP-complete prob-
lem PARTITION [2] to LFO-NTF-DRF. PARTITION, stated
as a decision problem, is as follows:
INSTANCE: A �nite set A and a weight w(a) 2 Z+ for each
a 2 A.
QUESTION: Is there a subset A0 � A such that

X

a2A0

w(a) =
X

a2A�A0

w(a)? (3)

From a general instance of PARTITION, we build a spe-
ci�c instance of LFO-NTF by constructing a net N with chain-
topology, as shown in Figure 1 (a). N has a source gate
s (with a single input T ) and jAj sinks. All sinks have
positive polarities. For each ai 2 A, there is a sink ai,
with input capacitance r(ai) = f (ai) = w(ai). The li-
brary has two non-inverting bu�ers: the rise-bu�er R and
the fall-bu�er F , which have the following parameter values:
�r(R) = �f (R) = 0 �r(F ) = �f(F ) = 0
�r(R) = 1; �f(R) = 0 �r(F ) = 0; �f (F ) = 1
r(R) = f (R) = 0 r(F ) = f (F ) = 0
The intrinsic rise and fall delays (�r and �f ) of both bu�ers

are zero. Only the appropriate load coe�cients � are non-zero:
for the rise-bu�er R, �r = 1 and for the fall-bu�er F , �f = 1.
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Figure 1: Constructing net N from PARTITION in-
stance

The input-pin capacitances are also zero. Then, �r(R), the delay
through R for the rising signal, is

�r(R) = �r(R) + �r(R) cR = cR: (4)

Similarly,

�f (R) = �f (R) + �f (R) cR = 0: (5)

For the fall-bu�er F ,

�r(F ) = �r(F ) + �r(F ) cF = 0: (6)

�f (F ) = �f (F ) + �f(F ) cF = cF : (7)

Here cR and cF denote load capacitances at the output of R
and F respectively.

Let

W (A) =
X

a2A

w(a) (8)

The source gate s has the following parameter values:

�r(s) = �f(s) = 0; �r(s) = �f (s) = W (A); r(s) = f (s) = 0:

Finally, let the required times qr(ai) = qf (ai) = 0 for all
sinks ai.

We prove that there exists a bu�ering of the net N such that
both qr(T ) and qf (T ) are at least �W (A)=2 if and only if there
exists a subset A0 of A such that (3) holds. Since the required
times of all the sinks are identically zero, this is equivalent to
proving that the rise and fall delays through N (i.e., the max-
imum delay from T to some sink) are at most W (A)=2 if and
only if there exists a subset A0 of A such that (3) holds.

First note that in accordancewith the restriction (2) on LFO-
NTF-DRF, no bu�er can be placed on an edge of type (xi; ai);
it can only be placed on an edge of type (xj+1 ; xj). Then, the
delay through the net N is the delay from T to the sink a1, i.e.,
the sum of the delays through s and through all the bu�ers on
the path from xn+1 to x1.
If: Assume A0 such that (3) holds. We derive a bu�ering of N
as follows. We insert a bu�er on each edge (xi+1; xi). For each
item aj in A0, we insert the rise-bu�er R on (xj+1 ; xj). On all
other edges, we insert fall-bu�ers F . Of course, edges (xi; ai)

are left unbu�ered. This de�nes the bu�ering arrangement of
N .

For instance, if jAj = 4 and A0 = fa1; a4g, the resulting
bu�ering arrangement is shown in Figure 1 (b). Rise-bu�ers R
are placed on edges (x2; x1) and (x5; x4), and fall-bu�ers F on
(x3; x2) and (x4; x3).

Let us compute the rise delay through the net N . First, note
that both rise and fall delays through s are 0. Since s sees
a capacitive load cs of 0 (there is either R or F on the edge
(xn+1; xn) and the input pin capacitances of R and F are zero),
the delay through s

�(s) = �(s) + �(s)cs = 0+ �(s)0 = 0

As shown in (6), the fall-bu�ers on the net do not contribute
to the rise delay. As for the rise-bu�ers, consider such a bu�er,
say on (xi+1; xi). It sees a capacitive load of w(ai) correspond-
ing to the sink ai, since the bu�er on (xi; xi�1) has zero input
capacitance. So, from (4), its rise delay contribution is w(ai) .
Therefore, the rise delay through the net N is simply given by
the total capacitance driven by the rise-bu�ers present on N .
Since rise-bu�ers on N correspond to items in A0, the rise-delay
throughN is equal to the sum of the weights of the items in the
set A0. In our example of Figure 1 (b), this is w(a1) + w(a4).
Similarly, the fall delay through the net is given by the total
capacitance driven by all the fall-bu�ers present on N , which is
the sum of the weights of the items in the set A�A0. From (3)
and (8), it follows that both rise and fall delays are W (A)=2.
Only If: Assume there exists a bu�ering of N such that both

rise and fall delays through N are at most W (A)=2.

Observe that given any sink ai, there must be at least one
bu�er between ai and the source s. Otherwise, s would be
driving a load of at least w(ai), whose net delay contribution
would be �(s) w(ai) = W (A) w(ai) > W (A)=2, a contradiction!
Let Bi be the �rst such bu�er closest to ai. If Bi is a rise-
bu�er, ai contributes w(ai) towards the rise delay through Bi

and through N , otherwise it contributes w(ai) towards the fall
delay. Thus, each sink ai contributes w(ai) either to the rise
delay or to the fall delay throughN (but not both). This implies
that the sum of the rise and the fall delays through N is W (A)
(the delay through s is zero), which implies that both rise and
fall delays throughN are exactlyW (A)=2. Let U 0 be the set of
sinks contributing towards the rise delay. Then, it follows that
U 0 is the desired set A0 of PARTITION satisfying (3).

4 Gate Resizing/Technology
Mapping

Consider the following scenario. We are given a circuit composed
of cells from a cell-library. For each cell Ci, many di�erent sizes
are available in the library, each size having possibly di�erent
area, input pin capacitances , intrinsic delays �, and load co-
e�cients �. The gate resizing problem is to select the size of
each cell such that the circuit delay is minimized. We assume
the load-independent pin-to-pin delay model, in which the delay
through a path within a cell is simply the intrinsic delay �.

If only one value were to be used for each cell parameter (i.e.,
�), the problem can be solved optimally by a dynamic program-
ming algorithm [4] as follows. Traverse the network gates in a
topological order from primary inputs towards primary outputs.
When a cell C is reached, the arrival times at all its input pins
are known. For each available size of the cell C, compute the
arrival time at the output of C using the arrival times at its
input pins and the pin-to-pin � delays for the cell size. Pick the
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Figure 2: Chain-circuit for proving NP-completeness
of gate resizing

size that minimizes the arrival time at the output of C. Con-
tinue the traversal and size selection until the primary outputs
are reached.

If both �r and �f are speci�ed, the circuit delay is max
fcircuit rise delay, circuit fall delayg, which is what we wish to
minimize. One natural strategy for using the dynamic program-
ming paradigm is the following.

For each cell, select the size that minimizes the maximum of
rise and fall arrival times at that cell.

However, this is a non-optimal strategy, as the following ex-
ample illustrates.

Example 4.1 Consider a circuit with only two AND cells C
and O, with C feeding O. The inputs of C are the primary
inputs, arriving at times zero. The output of O is the only
primary output of the circuit. Let there be two sizes of the
cell C: the �rst one has �r = 6; �f = 8 and the second has
�r = 9; �f = 6. This strategy would select the �rst size for C,
since it has smaller maximum delay. Let O have only one size:
�r(O) = 2 and �f (O) = 10. Then the size selected at C results
in a circuit delay of maxf6 + 2;8 + 10g = 18. Had we selected
the second size for C, it would have resulted in a smaller delay
of 16 (= maxf9 + 2;6 + 10g).

As this example shows, using this strategy we cannot decide
locally at a gate the best size for it. We need to examine the
fanouts as well. However, that may generate an exponential
number of solutions by essentially enumerating all possible size
selection choices in the circuit.

It turns out that deriving an e�cient optimum solution is
di�cult because the problem itself is intractable. We prove that
the problemof gate resizingwith di�erent rise and fall parameter
values is NP-complete even under the load-independent delay
model, which is the simplest possible model.

Theorem 4.1 Given di�erent rise and fall parameter values
for the gates, the gate resizing problem is NP-complete under
the load-independent delay model.

Proof That the problem is in NP is easy to see. To prove
NP-hardness, the transformation is once again from PARTI-
TION. Given an instance of PARTITION, we construct a
circuit with jAj single-input, single-output non-inverting cells
C1; C2; : : :CjAj, which are connected in a chain, with the out-
put of Ci connected to the input of Ci+1 (Figure 2). The circuit
has a single input and a single output.1 The cell Ci corresponds
to the item ai of A. Each cell Ci comes in two sizes: CR

i
and

CF
i , and they have the following delay parameters:

�r(C
R
i ) = w(ai); �f (C

R
i ) = 0: (9)

�r(C
F
i ) = 0; �f (C

F
i ) = w(ai): (10)

The size R contributes only to the rise delay at its output, and
the size F only to the fall delay.

1The argument in the proof remains the same if each gate
has other fanins that are primary inputs.

We show that there exists A0 � A such that (3) is satis�ed if
and only if the rise and fall delays through the circuit are each
at most W (A)=2.
Only If: Given A0 such that (3) is satis�ed. If ai 2 A0, se-

lect the size CR
i for the cell Ci; otherwise, select C

F
i . Since

each cell is non-inverting, rise delay of the circuit is the sum of
the rise delays of all the cells. Since the rise delay through a
cell that corresponds to an item not in A0 is zero, and through
a cell that corresponds to an item in A0 is the weight of the
corresponding item, the rise delay of the circuit is preciselyP

a2A0
w(a) = W (A)=2 (from (3)). Similarly, the fall delay

is
P

a2A�A0
w(a) = W (A)=2.

If: Assume there exists a size for each cell such that both rise
and fall delays are at most W (A)=2. In fact, both must be
exactly equal to W (A)=2, since each cell Ci contributes w(ai)
either to the rise delay or the fall delay through the circuit and
hence the total contribution of all the cells to rise or fall delay
through the circuit is W (A). Create the set A0 as follows. If the
size CR

i is selected for the cell Ci, place the corresponding item
ai in A0. It is easy to see that (3) is satis�ed.

Notes:

� In [6], Li et al. proved that the problem of gate resizing for
minimizing the circuit delay under area constraints is NP-
complete. Our proof (of Theorem 4.1) can be obtained by
replacing the cell delay and area parameters in the proof
of [6] with the rise and fall delay parameters.

� Although some of the � values in the proof are zero, an al-
ternate proof that uses strictly positive� values can also be
constructed by adding a constant � to all the cell delays.2

� We used the simplest load-independent delay model to
prove the complexity result. Clearly, the gate resizing
problem remains NP-complete for the more realistic load-
dependent delay model as well.

� Since gate resizing is a special case of technologymapping,
the previous theorem also establishes that the problem
of technology mapping for minimum circuit delay given
separate rise and fall delay parameters under the load-
independent delay model is NP-complete.

� The proof builds a circuit that is a single chain of cells.
Hence, the minimum-delay resizing and mapping problems
are NP-complete even for circuits with such a simple chain
topology.

5 Practical Considerations
Since cells in the technology libraries have separate rise and
fall parameters, we need to solve LFO-NTF and gate resizing
problems with these parameters. In this section, we address
LFO-NTF.

If each delay parameter has a single value, LFO-NTF can be
solved in polynomial time by Ginneken's algorithm [10], which
we briey describe next. Given a net N with �xed topology
(as shown in Figure 3) and required times at sinks, Ginneken's
algorithm determines an optimum choice of bu�ers and their
locations on the net to maximize the required time at the net
source. The algorithm traverses nodes of the net bottom-up:
starting from the net sinks and proceeding towards the root s.
At an intermediate node (Steiner node) v, there is a choice:
should a bu�er be inserted at v or not. In fact if the bu�er
library has B bu�ers, there are (B + 1) possibilities. The al-
gorithm constructs a set of solutions S(v) at v to capture all

2We thank Dave Wallace for pointing this out.
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these possibilities. A solution is a pair (c; q), where c is the
capacitance of the tree Tv rooted at v and q is the required
time at v. If x and y are v's children (Figure 3), S(v) is con-
structed by �rst combining S(x) and S(y) and then considering
all bu�ering possibilities at v. Thus S(v) captures all bu�ering
possibilities at all the net nodes in Tv. At the net root s, the
solution of S(s) that maximizes the required time at the input
pins of s is the optimum solution for the netN . Stated as above,
the algorithm takes exponential time: it enumerates all possi-
ble bu�ering choices for N . Ginneken made a key observation,
which reduces the complexity of the algorithm to polynomial:
For (c; q); (c0; q0) 2 S(v), if (c0 � c) and (q0 < q), then (c0; q0)
is sub-optimal. This is so because a larger load with smaller
required time can only make the delay worse and is thus sub-
optimal. It turns out that most of the solutions are sub-optimal.
Sub-optimal solutions should either not be generated or, if gen-
erated, be thrown away (pruned) immediately. In Ginneken's
algorithm, when S(x) and S(y) are combined, sub-optimal solu-
tions are not generated. During bu�ered solution construction,
sub-optimal solutions are generated but immediately detected
and thrown away. This results in an e�cient polynomial-time
algorithm for a single net.

One way to solve LFO-NTF-DRF is by setting for each bu�er
and inverter � = maxf�r; �fg, � = maxf�r; �fg, the input pin
capacitance  = maxfr; fg, and then using Ginneken's algo-
rithm [10]. We call this approximation same-rise-fall. This
approximation is employed by many academic and commercial
tools for various performance optimization sub-problems. For
instance, the timing-driven technologymapper [14] of the Berke-
ley logic synthesis system sis [11] uses this approximation.

Another way to solve LFO-NTF-DRF is by modifying Gin-
neken's algorithm to accommodate rise and fall values. Instead
of (c; q), a solution is now (cr; qr; cf ; qf). We call this option
di�-rise-fall. cr & qr denote the load capacitance and required
time for the rising signal and cf & qf the load capacitance and
required time for the falling signal. As mentioned earlier, a fast
identi�cation and pruning of sub-optimal solutions is key to an
e�cient and e�ective bu�er optimization algorithm. Under sep-
arate rise and fall values, the sub-optimality of a solution can

be checked as follows. Given solutions �1 = (cr
1
; qr
1
; cf
1
; qf
1
) and

�2 = (cr
2
; qr
2
; c
f
2
; q
f
2
) at a node, �1 can be thrown away if all of

the following conditions hold:

cr1 � cr2; c
f
1
� c

f
2
; qr1 � qr2 ; q

f
1
� q

f
2

(11)

Although it is possible to come up with straight-forward algo-
rithms for combining and pruning the solution sets, they are
not time- and space-e�cient. We could neither devise a data-
structure that e�ectively handles four components in a solution
nor come up with any insight to e�ciently remove sub-optimal

solutions. In the worst case, combining S(x) and S(y) can take
time and space equal to jS(x)j jS(y)j, and pruning a set can
take time quadratic in the size of the set. This gives rise to
the worst-case exponential time complexity. These observations
are consistent with the NP-completeness result. Note that the
di�-rise-fall algorithm, although exponential in the worst case,
is optimum for a single net.

Next, we compare the performance of same-rise-fall and di�-
rise-fall on real designs.

5.1 Experimental Results

We performed two experiments. In the �rst experiment, our in-
tent was to compare the performance of di�-rise-fall and same-
rise-fall on individual nets. We took all the critical nets of
an industrial design ex6 (Table 1). There were 225 of them,
with the number of sinks ranging from 1 to 17. On each net,
we applied di�-rise-fall and same-rise-fall and compared the
resulting delay improvements at the source of the net. On av-
erage, di�-rise-fall resulted in 0.029ns higher required time at
the source than same-rise-fall. The maximum di�erence in the
improvements was, however, large: 0.43ns.

In the second experiment, we compared these two methods in
the context of entire circuits. So we embedded the two methods
in a global bu�ering scheme. This scheme selects nets for bu�er-
ing in an iterative manner. In each iteration, it evaluates nets
for delay improvement and bu�ers a subset of nets that yield a
positive improvement. A delay trace is performed on the circuit.
If the circuit delay improves, the iteration is repeated with the
updated delay values. Otherwise, we stop. We used real indus-
trial designs as our benchmarks. Table 1 shows relevant design
statistics such as the technology used, numbers of cells and nets
in the design, and the total cell area. ex1 to ex3 are very small
fragments of real designs; the rest are real industrial designs.
Of them, the largest, ex8, is a hi-vision TV encoder/decoder de-
sign. It has about 172K cells and 211K nets. We applied both
bu�ering methods on these designs. The results are reported
in Table 2. We report the original design delay, the �nal de-
lay after bu�ering, area penalty and CPU time taken by each
method. di�-rise-fall yields only 0.71% better �nal delays as
compared to same-rise-fall on average. And its area penalty is
actually worse than same-rise-fall by 50%. Most importantly,
on average, its CPU time is 8.8 times that of same-rise-fall. In
fact, in ex5, there were 5 net nodes for which more than one
million solutions were generated by di�-rise-fall!

Note that for ex3, di�-rise-fall produces slightly worse delay
than same-rise-fall. This is because although di�-rise-fall is an
optimum algorithm for a single net, the net selection strategy
used to apply it to the entire circuit is heuristic.

We can conclude that at least for LFO-NTF, the same-rise-
fall approximation generates results that are very close to those
generated by an exact, worst-case exponential algorithm di�-
rise-fall in the context of entire circuits and runs much faster.

6 Conclusions
In this paper, we showed that certain problems in performance
optimization that can be solved in polynomial time under the
single value assumption for each delay parameter become NP-
complete under separate rise and fall values. To the best of
our knowledge, this is the �rst theoretical result that highlights
the complexity resulting from considering separate rise and fall
parameters.

Although the NP-completeness result implies that we can bid
farewell to �nding the optimum solution for these problems ef-



ex tech. #cells #nets cell area r-time

(in BC) (sec)

ex1 0.35 � 32 48 105 13
ex2 0.35 � 356 409 1567 15
ex3 0.25 � 268 355 1952 16
ex4 0.35 � � 17.1K � 26.0K � 122.6K 110
ex5 0.5 � � 35.3K � 36.9K � 93.0K 213
ex6 0.35 � � 40.0K � 48.1K � 200.2K 328
ex7 0.35 � � 86.7K � 108.1K � 381.6K 574
ex8 0.35 � � 172.2K � 210.9K � 718.6K 2384

1K = 1000, r-time = time to read cell library & design data
1 BC = area of the smallest inverter in the library

Table 1: Benchmark statistics

ex o:d: di�-rise-fall same-rise-fall

n:d: �A cpu n:d: �A cpu

(ns) (ns) (BC) (sec) (ns) (BC) (sec)

ex1 6.16 3.60 6 0 3.62 6 0
ex2 7.84 4.81 81 0 4.81 62 0
ex3 4.69 4.42 49 2 4.39 76 0
ex4 7.44 7.32 78 21 7.32 33 25
ex5 14.93 13.99 609 4711 14.33 161 86
ex6 11.38 8.97 619 1033 9.09 569 207
ex7 18.41 10.33 210 2150 10.51 257 854
ex8 56.36 42.85 1622 2831 43.04 1626 530

avg 0.9929 1.5 8.8 1.0 1.0 1.0

o:d: = original circuit delay, n:d: = new delay,
�A = area penalty; a 200 MHz Ultrasparc
with 1GB RAM was used for all experiments.

Table 2: di�-rise-fall vs. same-rise-fall

�ciently, we did present a simple and e�ective algorithm for the
local fanout optimization (net topology �xed) problemwith dif-
ferent rise and fall parameters that gives almost the same quality
solutions as a more CPU-intensive exact algorithm. This, in a
sense, lends credence to simple heuristic approaches that han-
dle separate rise and fall values by approximating them by the
worse of the two.

Note that certain performance optimization problems are
known to be hard even in the absence of rise and fall parame-
ters. For instance, the gate resizing/technology mapping prob-
lem for minimizing the maximum circuit delay under the load-
dependent delay model is NP-complete [8]. So are the problems
of global fanout optimization [9] (both with net topology �xed
and with net topology unknown) and local fanout optimization
with net topology unknown [1, 14]. Clearly, with separate rise
and fall parameters, such problems will remain NP-complete.

Finally, we note that the NP-completeness proofs we pre-
sented used transformations from PARTITION. Although PAR-
TITION is NP-complete, it is not NP-complete in the strong
sense [2]. It can be solved optimally in pseudo-polynomial time
by dynamic programming. This leaves open the possibility of
pseudo-polynomialoptimumalgorithms for LFO-NTF-DRF and
gate resizing. We will pursue this matter in near future.
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