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Abstract

This paper proposes lazy group sifting for dynamic variable re-
ordering during state traversal. The proposed method relaxes the
idea of pairwise grouping of present state variables and their cor-
responding next state variables. This is done to produce better
variable orderings during image computation without causing BDD
size blowup in the substitution of next state variables with present
state variables at the end of image computation. Experimental re-
sults show that our approach is more robust in state traversal than
the approaches that either unconditionally group variable pairs or
never group them.

1 Introduction

State traversal of Finite State Machines (FSMs) is an important
technique for logic verification, synthesis, and test generation of
sequential circuits. As circuits become larger, more efficient state
traversal techniques are required.

State traversal of an FSM from a given set of initial states com-
putes the set of all the reachable states. Explicit approaches are
not applicable to large FSMs because the number of the reachable
state sets may be exponential to the number of flip-flops. Symbolic
traversal [1] represents both state transition relations and state sets
with Binary Decision Diagrams (BDDs) and implicitly traverses
state transition graphs in breadth-first manner by iteratively com-
puting the images until a fixed point is reached. Symbolic traversal
has been refined in many successive works (e.g., [2, 3, 4, 5]). In
most practical examples, the symbolic approach is able to handle
significantly larger FSMs than the explicit ones.

The efficiency of symbolic traversal largely depends on the sizes
of the BDDs it handles. Since variable ordering has a significant ef-
fect on the BDD size, good variable ordering is indispensable to ef-
ficient symbolic traversal. Although several static ordering heuris-
tics for symbolic traversal have been proposed [2, 6], it is difficult to
find a good static ordering for the state transition relations and every
image computation. Dynamic variable reordering [7] of BDDs is a
widely used technique in sequential verification using BDDs. The
approach drastically reduces BDD sizes during symbolic traversal,
mainly because each image computation handles different state sets
in general and requires different variable orderings. However, it is
still not possible to handle many examples. This has led to a recent
increase in the attention paid to variable reordering for efficient se-
quential verification [8].

In symbolic traversal based on partitioned transition relations
[2, 3], a present state variable and its corresponding next state vari-
able (henceforth referred to as a state pair) are usually kept adjacent
in the variable order throughout the computation. This means that
the size of the BDD representing the image does not change in the
substitution of the next state variables with the present state vari-
ables at the end of image computation. It also makes it possible to
do the substitution in a piecemeal fashion, by combining it with the
And-Exists operations. However, the state pair grouping approach
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restricts the reduction ability of dynamic reordering especially dur-
ing image computation. On the other hand, not grouping the state
pairs may cause BDD size explosion in the substitution at the end of
each image computation. This paper proposes a lazy group sifting
for dynamic variable reordering during state traversal. The pro-
posed method relaxes state pair grouping criteria to produce better
variable orderings during image computation without causing BDD
size blowup in the substitution of next state variables with present
state variables at the end of image computation.

It is well known that pairwise grouping of present state variables
with their corresponding next state variables is generally a good
heuristic for dynamic variable reordering in sequential verification
[9]. However our experimental results indicate that lazy group sift-
ing can be more robust than the approaches that either uncondition-
ally group variable pairs or never group them.

This paper is organized as follows. Section 2 introduces the ter-
minology and the notation; and it then summarizes the basic sym-
bolic traversal algorithm and the dynamic variable reordering al-
gorithm. Section 3 describes the lazy group sifting approach for
efficient symbolic traversal. Section 4 is devoted to the experimen-
tal results. Section 5 presents conclusions and summarizes future
work.

2 Preliminaries

2.1 Finite State Machine (FSM)

A finite state machine M is a 6-tuple M I O S S0 , where
I O and S are finite nonempty sets of inputs, outputs, and states,
respectively; : I S S is the state transition function; : I S
O is the output function; and S0 S is the initial state set. Without
loss of generality, we only consider completely specified FSMs.

In this paper we assume that all the input, output, and state sym-
bols are encoded. Let w w1 w2 wm , x x1 x2 xn ,
and y y1 y2 yn be input vector, present state vector, and
next state vector, respectively. The state transition function for
the i-th next state variable can be written as yi fi w x 1 i
n. We denote the state transition function vector f by f w x

f1 w x f2 w x fn w x .
An FSM is an abstract model describing the behavior of a se-

quential circuit. Conversely, a sequential circuit can be viewed as
an implementation of an encoded FSM.

2.2 Set Representation using BDDs

BDDs [10] are used to represent and manipulate Boolean functions.
To represent a set A 0 1 n by a Boolean function, we define the
characteristic function A of set A as follows:

x1 x2 xn A A x1 x2 xn 1

BDDs are used to represent and manipulate state sets by means of
their characteristic functions.
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Traverse(S0 x , f w x )
1. Reach x From x S0 x ;
2. while (1)
3. To y Image From x f w x ;
4. To x To y y x;
5. New x To x Reached x ;
6. if (New x /0) return Reached x ;
7. Reached x Reached x To x ;
8. From x BestBdd New x Reached x ;
9.

Figure 1: Basic state traversal algorithm.

2.3 Symbolic Traversal

The traversal of the state space of a sequential circuit is done
by repeated computation of an image. The image of state set
From by state transition function vector f f1 f2 fn is the
set Image From f y 0 1 n y f w x w 0 1 m x
From The image can be calculated as follows:

Image From f w x From
n

i 1
yi fi

T w x y n
i 1 yi fi is called the transition relation. Since T

is often too large, partitioned transition relations Ti i 1 r are
used, where T r

i 1 Ti. Image computation based on partitioned
transition relations is done by iterating the following operation for
i 1 r:

P s P Ti (1)

Here s are the variables that can be quantified after the conjunction.
P is an intermediate result of image computation and is called a
partial product.

The basic flow of state traversal is shown in Fig.1. Here
BestBdd f g returns a function h with a small BDD such that
f h g. Note that the result of Image From f is in terms of
y variables. To handle large sets of states, BDDs are used for effi-
ciency. State traversal using BDDs is called symbolic traversal.

2.4 Dynamic Variable Reordering

Since variable ordering has a significant impact on the BDD size,
dynamic variable reordering is indispensable to efficient symbolic
traversal. It is generally based on the sifting algorithm [7], in which
each variable in turn is moved up and down to greedily find the
best among all possible positions. The algorithm of basic dynamic
variable reordering is as follows:

Repeat (1) and (2) for each variable in some order:

(1) Sift the variable up and down, remembering the total BDD
node size for each permutation thus generated.

(2) Select the best permutation such that the total BDD size is
minimum.

Dynamic variable reordering based on the sifting algorithm often
produces good orders but tends to be time consuming. To speed up
sifting, several techniques have been proposed [11, 12, 8]. These
methods attempt to restrict the search space of sifting to reduce
computation time. In [11] variables are moved only within fixed
blocks which are determined from structural analysis of the BDDs.
In [12] a small BDD sample is chosen from the entire BDDs that
are considered for minimization. Then sifting is done on the sam-
ple and the resulting order is applied to the original BDDs. The ap-
proach of [8] is intended for symbolic model checking. The method

selects variables that need to be repositioned and reorders only such
variables. Our approach is also intended for sequential verification.
However, we address another issue in reordering for state traver-
sal. We address how to handle the present state variables and the
next state variables. Since the technique we propose in this paper
is orthogonal to the above approaches, it is possible to combine our
technique with them.

2.5 Present and Next State Variable Grouping

In many model checkers, a present state variable and its correspond-
ing next state variable are grouped and are always kept adjacent in
the order during state traversal. We call this approach the state pair
grouping approach. To handle groups of variables instead of sin-
gle variables in dynamic variable reordering, group sifting is used.
Group sifting consists of moving a group of variables, instead of a
single variable. There is another conventional approach, in which
none of the state pairs are grouped and each variable is sifted freely
in reordering. We call this approach the state pair ungrouping ap-
proach. The merit of state pair grouping is that the relative order
of the present state variables is the same as that of the next state
variables. This means that the size of the BDD representing the im-
age does not change in the substitution of next state variables with
present state variables at the end of each image computation (Line 4
in Fig.1). However, state pair grouping restricts the reduction abil-
ity of dynamic reordering during image computation. There are a
lot of functions whose BDD sizes are drastically larger in the inter-
leaved order than the minimum sizes. Therefore state pair grouping
may cause a blowup of the partial product BDD during image com-
putation. On the other hand, state pair ungrouping may cause BDD
size explosion in the substitution at the end of each image computa-
tion. This means that additional reordering may take place in each
substitution. The additional reordering may cause further reorder-
ing in the next image computation, because the good intermediate
order during image computation is discarded. Furthermore, a non-
interleaved order requires more work to do the substitution itself.

2.6 Group Sifting

In this paper the group sifting scheme based on [13] is utilized.
In the scheme two types of groups, hard groups and soft groups,
are considered. A hard group is a group passed to the reordering
procedure by the caller. In general hard groups can be nested. The
state pair grouping approach can be considered as hard grouping of
all the state pairs. A soft group is a group created by the reordering
procedure. A variable is sifted up and down, while it is checked
against its adjacent variable for soft grouping. If the test succeeds,
a soft group is created. Soft groups are dissolved at the end of the
reordering procedure.

Group sifting attempts to find a group of variables that should be
sifted together. Several criteria have been proposed for soft group-
ing: symmetry[14], extended symmetry, and the method of the sec-
ond difference [13]. These criteria are application-independent. In
the next section we introduce new criteria intended for state traver-
sal and sequential verification in general.

3 Lazy Group Sifting

In this section a lazy group sifting approach for dynamic variable
reordering is proposed. The lazy group sifting proposed here re-
laxes the state pair grouping criterion. We will discuss how to relax
the grouping criterion in detail.

The state pair grouping approach always keeps the state pair ad-
jacent for the substitution of y variables with x variables, while the
state pair ungrouping approach sifts variables freely. Therefore the
state pair ungrouping is likely to produce better variable orderings
during image computation. In the state pair ungrouping approach,



however, the relative order of the present state variables may be
totally different from that of the next state variables. There is a
tradeoff between BDD sizes in image computation and those in the
substitution at the end of image computation. Lazy group sifting is
an in-between approach. It consists of two techniques:

a) selecting state pairs to be grouped or not grouped,

b) taking into account the distance between the variables of un-
grouped state pairs.

Lazy group sifting attempts to keep state pairs as close as possible
if the size of partial product BDD, which is often the largest BDD
in state traversal, does not increase.

3.1 Selecting State Pairs To Be Grouped

In this subsection we describe which state pairs should be grouped.
Groups consist of hard groups and soft groups. We also select state
pairs that will remain ungrouped throughout the state traversal.

3.1.1 Hard Grouping

First we create hard groups. We select state pairs (xi yi) for hard
grouping such that:

The corresponding flip-flop (FF) is a -FF [4], that is, no next
state function depends on xi, or

The next state function fi depends on xi, and xi is the only
present state variable on which fi depends.

In the first case, xi can be quantified before image computation,
and thereby hard grouping of xi and yi does not increase total BDD
sizes. In the second case, xi and yi should be grouped even in image
computation. This analysis can be done before state traversal.

3.1.2 Hard Ungrouping

Some next state functions do not depend on the corresponding
present state variables. We call them independent state pairs.
For example, pipelined circuits have many independent state pairs.
There is no need to keep independent state pairs adjacent during
image computation, because they are not related to each other.
Since image computation requires more computational effort than
the substitution of y variables with x variables at the end of im-
age computation, it is better not to group independent state pairs.
In lazy sifting, independent state pairs are ungrouped before state
traversal and never grouped throughout the traversal. Even when
state pairs are ungrouped, the distances between the present state
variables and their corresponding next state variables are taken into
account, as will be explained in Subsection 3.2.

3.1.3 Soft Grouping

A soft group is a group created by the reordering algorithm [13].
Lazy group sifting tries to create soft groups of present state vari-
ables and their corresponding next state variables using the follow-
ing criteria.

Variables that become adjacent during sifting are tested to see
whether (a) they are corresponding present and next state variables
and (b) they should be grouped. Sifting may then continue with the
group instead of the single variable. The groups are dissolved at the
end of the sifting procedure.

Now the problem is which variables should be grouped in
this framework. Grouping present state variables with their
corresponding next state variables may impair the reduction ability.
However, some state variables have not been introduced yet in the
partial product P in Eq.1, or have been quantified out of it when

reordering takes place. Such variables can be grouped, because
they do not appear in the support of the partial product, in which
many present and next state variables may interact. Specifically,
the lazy group sifting algorithm outlined above can be detailed as
follows:

Repeat (0) to (2) for each variable in some order:

(0) Remember the current total BDD node size N.

(1’) Sift the variable v up and down, remembering the total BDD
node size for each permutation and grouping v with the adja-
cent variable w if all the following conditions are satisfied:

They are corresponding present and next state vari-
ables,
Current total BDD node size is not larger than N,
w is not in the support of the partial product.
w has already been sifted,

(2) Select the best permutation such that the total BDD size is
minimum.

The idea behind this procedure is that a state variable should be
soft-grouped with the corresponding variable if the grouping does
not increase the partial product BDD size. When a state variable is
not in the support of the partial product, the position of the variable
does not affect the partial product BDD size. Therefore it should be
grouped with the corresponding variable. The second condition for
total BDD sizes in Step 1’ guarantees that the resulting total BDD
size will not increase as a result of reordering.

3.2 Taking into Account the Distance Between State
Pairs

It is better to keep a present state variable and its corresponding next
state variables as close as possible even when they are not grouped,
if the total node size does not increase. This is done by modifying
Step 2 in Subsection 3.1.3. The modified step is as follows:

(2’) Select the best permutation such that the total BDD size is
minimum. In the case of a tie, select the closest position to
the corresponding state variable.

Instead of Step 2’, one can use the following Step 2” when BDD
sizes still blow up during the substitution of next state variables
with present state variables:

(2”) Among the permutations in which the total node size is not
larger than minimum , select the best permutation such
that the distance of the state variable and its corresponding
variable is minimum.

Here is a small number to be given as a parameter. could be
minimum , minimum 1 , or N.

3.3 Positioning Variables To Be Introduced

Since next state variables are introduced by a series of And-Exists
operations in image computation based on partitioned transition re-
lations, some next state variables may only appear in the support of
partitioned transition relations but not in the partial product, when
reordering takes place. The reordering cannot find a good place for
the variables in terms of the partial product BDD size. Positioning
such variables affects the BDD sizes in subsequent steps.

In state pair ungrouping, those next state variables are placed
such that the BDD size of partitioned transition relations depending
on the variables is minimal. On the other hand, state pair grouping
puts them next to their corresponding present state variables. Lazy
group sifting puts them next to their corresponding variables only
if total BDD size is not larger than that in the initial position.



4 Experimental Results

We implemented lazy sifting in VIS [15] with the CUDD pack-
age [16]. Experiments were carried out on a 400MHz Pen-
tium II machine with 1GB of RAM. We used several ISCAS’89,
ISCAS’89-addendum benchmark circuits and some other exam-
ples. “s5378opt” is a version of s5378 optimized by sequential re-
dundancy removal. “bpb” is a branch prediction buffer that works
in two stages. “cps1364” is a flat description of a landing gear con-
troller. “sfeistel” is a cryptography circuit. “soap” is a circuit which
implements a distributed mutual exclusion algorithm [17]. In our
experiments we used VIS with the default settings. Good variable
orders for the partitioned transition relations are used as initial or-
ders. Automatic dynamic variable reordering is enabled after the
partitioned transition relations are built.

Table 1 compares reachability analysis with the lazy group sift-
ing method (“lazy”) against those with the state pair grouping ap-
proach (“group”) and the state pair ungrouping approach (“un-
group”). Method “lazy” utilizes the algorithm in Section 3, where

minimum. Column 1 shows the name of the circuit. “s3271-8”
means that the traversal of s3271 is partial and is done for only 8
steps, i.e. the sequential depth is 8. Column 2 shows the number
of flip-flops in the circuit. Columns 3–5 compare the peak memory
sizes of the reachability analysis. Columns 6–8 compare the peak
numbers of live BDD nodes. Columns 9–11 compare run times in
seconds. The figures in bold face show the best results among the
three methods. The bottom row shows the arithmetic mean, when
each best result is assumed to be 1.

The experimental results show that the proposed approach works
well. As for peak BDD nodes, “lazy” obtains the best result for all
examples except for “s1269”, where no reordering takes place in
the substitution of y variables with x variables even in state pair
ungrouping. This shows that lazy sifting can reduce peak BDD
nodes. As for run times, “lazy” obtains the best result for most ex-
amples. Group sifting sometimes produces much worse results than
state pair ungrouping and lazy sifting, as one can see in “s4863”
and “s5378-4”. This means that interleaved orders are not suit-
able for some circuits. On the other hand, state pair ungrouping
requires much more computation cost than state pair grouping and
lazy group sifting in “s3271”, “cps1364”, and “sfeistel.” These re-
sults indicate that lazy group sifting is more robust than the state
pair grouping or the state pair ungrouping approaches. It may be
worth noting that the apparently not so great performance of lazy
sifting in terms of peak memory is partly due to CUDD allocating
memory based not only on need, but also on availability.

Table 2 shows statistics of dynamic variable reordering in reach-
ability analysis. Columns 2–4 compare times in seconds for dy-
namic reordering in reachability analysis. Data in parentheses show
times in seconds for dynamic reordering during the substitution of
the next state variables with the present state variables at the end of
image computation. Columns 5–7 compare the numbers of reorder-
ing invoked. Data in parentheses show the numbers of reordering
invoked during the substitution at the end of image computation.
Columns 8–10 compare the maximum ratios of BDD sizes of image
sets after the substitution over those before the substitution. Only
the substitutions in which no reordering took place are considered.
“–” shows that there are no such substitutions, that is, in every sub-
stitution variable reordering took place.

Table 2 indicates that lazy group sifting reduces times for re-
ordering not only in the substitution at the end of image computa-
tion but also in image computation. Compared to “ungroup”, the
number of reorderings invoked during the substitution are reduced
in lazy sifting in many cases. Even when no dynamic reordering
took place in the substitution, the maximum ratios of BDD sizes of
image sets after the substitution over those before the substitution
are reduced in almost all the cases. These results shows that, com-
pared to the state pair ungrouping approach, lazy sifting efficiently
reduces the BDD sizes both in the image computation and in the

substitution.
Table 3 shows the numbers of hard/soft-grouped state pairs in

lazy sifting. Columns 3–4 show the number of the total hard-
grouped state pairs. Column 3 shows the number of -FFs. Column
4 shows the number of state pairs (xi yi) such that xi is the only
present state variable on which the next state function fi depends.
Columns 5 shows the number of hard-ungrouped state pairs. Col-
umn 6 shows the average number of soft-grouped state pairs. These
results indicate that the state pair grouping approach is not effective
for examples with many hard-ungrouped pairs, e.g., “s4863” and
“s5378-4”, and that lazy sifting is likely to group many state pairs
on the examples in which the state pair grouping approach is more
effective than the state pair ungrouping approach, e.g., “s3271-8”
and “cps1364” .

5 Conclusion

In this paper the lazy group sifting approach for dynamic variable
reordering during state traversal has been proposed. The proposed
method relaxes the idea of pairwise grouping of present state vari-
ables and their corresponding next state variables. This is done to
maximize the flexibility of sifting variables of BDDs during image
computation without causing BDD size blowup in the substitution
of next state variables with present state variables after each image
computation. Experimental results indicate that the proposed ap-
proach works well. This paper shows the possibility of combining
the state pair grouping approach with the state pair ungrouping one.

Future work is to investigate more sophisticated heuristics for
lazy group sifting criteria. One approach is to find a good heuristic
for determining the value in Step 2” shown in Section 3.2. We are
also interested in estimating the “right” position of variables that
are not yet introduced in the partial product. Another direction for
future work is to show the effectiveness of our method in model
checking.
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circuit FFs hard pairs hard soft pairs
FFs others ungrouped (avg.)

s1269 37 1 8 8 5.6
s1423-10 74 2 1 1 49.5

s1512 57 0 11 0 27.2
s3271-8 116 1 26 4 111.2
s3330 132 12 0 3 90.0
s4863 104 0 0 104 0

s5378opt 121 37 0 82 1.7
s5378-4 179 17 0 161 1.0

bpb 36 0 16 0 17.2
cps1364 231 0 0 7 85.7
sfeistel 293 0 0 0 253.5
soap 140 0 0 24 55.0

Table 3: Numbers of hard/soft groups in lazy sifting.
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