
Hybrid Product Term and LUT Based Architectures Using
Embedded Memory Blocks

Frank Heile
Altera Corporation

101 Innovation Drive
San Jose, CA 95134

frank@altera.com

Andrew Leaver
Altera Corporation

101 Innovation Drive
San Jose, CA 95134

aleaver@altera.com

ABSTRACT
The Embedded System Block (ESB) of the APEX20K
programmable logic device family from Altera Corporation
includes the capability of implementing product term macrocells
in addition to flexibly configurable ROM and dual port RAM. In
product term mode, each ESB has 16 macrocells built out of 32
product terms with 32 literal inputs. The ability to reconfigure
memory blocks in this way represents a new and innovative use of
resources in a programmable logic device, requiring creative
solutions in both the hardware and software domains. The
architecture and features of this Embedded System Block are
described.

Keywords
Product terms, RAM, heterogeneous architecture.

1. INTRODUCTION
The Embedded System Block (ESB) of the APEX20K family of
programmable logic devices from Altera Corporation has evolved
from the FLEX10K and FLEX10KE Embedded Array Blocks
(EAB) [1]. The Embedded Array Block of the FLEX10K is a
highly configurable block of RAM that can also be initialized at
configuration time to be a ROM block. The block contains 2048
bits that can be configured into RAMs or ROMs of the following
sizes: 2048 x 1, 1024 x 2, 512 x 4 and 256 x 8. In the
FLEX10KE family the EAB has been changed to 4096 bits of
dual port RAM with the following configurations: 2048 x 2, 1024
x 4, 512 x 8 and 256 x 16.

In the APEX20K family of programmable logic devices, the EAB
is now called the Embedded System Block because of the
additional functionality of product term mode. As a ROM/RAM
block, the ESB consists of 2048 bits of dual port memory that can
be configured as 2048 x 1, 1024 x 2, 512 x 4, 256 x 8 and 128 x
16. For an overview of the APEX20K device family, see the
Altera web-site [2] or the APEX20K data-sheet [3].

In product term mode the APEX20K ESB [4] can be configured
to implement a macrocell similar to the macrocells in the
MAX7000 family of CPLDs. A MAX7000 macrocell uses

product terms that can be ORed or XORed together to implement
logic functions. In particular, the APEX20K ESB can be
configured to implement up to 16 product term macrocells with 2
product terms each at one extreme, or a 1 product term macrocell
with 32 product terms at the other extreme. The level of flexibility
allowed is that anywhere between 1 and 16 output product term
macrocells can be implemented as long as the total number of
product terms does not exceed 32. There are 32 literal inputs
available in “true” and “complement” form for all of the product
terms in an ESB.

An EAB in ROM mode can be used as a large many-input LUT.
Wilton [5][6] and Cong and Xu [7] have provided algorithms for
mapping logic into ROMs to more efficiently utilize memory
blocks. They found great success in the ability of FLEX10K
EABs to implement logic as ROMs. These EABs as ROMs
effectively increase the density of programmable logic devices by
allowing large numbers of LUTs to be combined into one EAB.
This can also increase the speed of designs as large combinatorial
functions with many inputs can be implemented in one level of
logic in an EAB ROM, instead of requiring multiple levels of 4-
input LUTs. For example, one FLEX10K EAB can implement a
single output function of up to 11 inputs, or an 8-output function
of up to 8 inputs. An ESB in product term mode greatly enhances
this capability since, for example, the APEX20K ESB can
implement a 16-output function of up to 32 inputs. The one
advantage of a ROM is that it is guaranteed that it can always
implement a logic function as long as the function does not
exceed the ROM’s input and output capabilities. An ESB in
product term mode will not, for example, be able to implement all
functions of 32 inputs. However, in practice, many logic
functions of interest to logic designers can be implemented
efficiently in product terms [8]. One confirmation of this
statement is the wide popularity of product term based
programmable logic devices, such as the previously mentioned
MAX7000 family.

Previous work by Kaviani and Brown [9] addressed the issue of
combining fixed proportions of product terms and LUT resources
on the same device, and showed that the ability to split logic
between these two resources resulted in a more efficient overall
utilization of the device. All currently offered commercial
programmable logic devices require the user to choose between an
entirely product term based architecture such as Altera’s
MAX7000, and LUT-based architectures such as the Altera
FLEX10KE and Xilinx XC4000 families.

2. PRODUCT TERM MODE
The FLEX10K EAB has 2048 bits of RAM organized as 64 rows
and 32 columns. This same organization has been carried over to

the APEX20K ESB. To implement product term mode for the
APEX20K ESB the RAM cell has been modified, some additional
circuitry has been added to the row address decoders and logic to
implement a MAX7000-style macrocell has been added to the
RAM output block. The RAM cell was modified by adding a pass
gate so that the column bit line will only be pulled low when the
cell is programmed to contain a “1” value – the bit line will never
be pulled high by a RAM cell. This change is shown in Figure 1.
To make this cell modification work, the buffer at the end of the
column bit line is replaced by a sense amplifier with a pull-up
resistor which is used to determine if any of the RAM cells are
pulling the column bit line low. Thus if no cells are pulling low,
the output will be “1”, but if one or more cells are pulling low, the
output will be “0” - thus implementing a logical NOR, which by
deMorgan’s inversion is equivalent to an AND gate.

A simplified overall block diagram for a APEX20K ESB in the
RAM or ROM mode of operation is shown in Figure 2. In this
figure there are 16 bits of data that can be written into the RAM
(DI15..0), 11 bits of write address (WA10..0), 11 bits of read address
(RA10..0), a write enable signal (WE) and the data that is output
from the RAM (DO15..0). In addition to the connections shown,
the read and write column decode blocks need to know the mode
of the ESB to correctly enable the 32 column lines used for
reading and writing data. The ESB mode will be one of 2048 x 1,
1024 x 2, 512 x 4, 256 x 8 or 128 x 16. The APEX20K ESB can
also optionally have the inputs and outputs registered; for clarity,
these registers and the associated clocks and other control signals
are not shown in Figure 2.

When the APEX20K ESB is put into product term mode, its
operation changes as shown in the simplified block diagram of
Figure 3. In this mode the input to the block are the 32 product
term literals labeled as D31..0. These 32 data input signals will
reuse many of the signals that are the inputs to the ESB in RAM
mode. As an example, the 16 bit data input bus, the 11 bit read
address bus and the low order 5 bits of the write address bus can
be used as the 32 literal input signals for the ESB in product term
mode. The outputs from the RAM block will be the 32 signals
labeled as “column bit read” which are then the inputs to the sense
amps and macrocells.

Figure 4 shows the macrocell logic for the APEX20K ESB. Since
there are 16 output drivers available for the ESB block when it is
in RAM mode and since there are 32 product terms available it
seems sensible to create 16 macrocells with 2 product terms per
macrocell. The APEX20K ESB macrocell is very similar to the
MAX7000 macrocell except that there are only 2 product terms
instead of the 5 product terms per macrocell in the MAX7000.
Another difference is that the clock and other secondary signals
for the flip-flop of the macrocell are selected from an ESB-wide
set of signals, which is similar to the way that the secondary
signals for flip-flops in the regular 4-LUT Logic Array Blocks
(LABs) are selected. In particular the ESB has 2 clocks and 2
clears and each flip-flop can independently choose from those

row
write

row
read

data
column
write

column
bit
read

row
write

row
read

data
column
write

column
bit
read

(a) Original RAM cell

(b) Product term RAM cell

Figure 1 – RAM Cells

R
ow

 D
ecode

&
 W

rite L
ogic

Column Decode
& Write Logic

2048 Bits of RAM

32 columns
x 64 rows

Column Decode
& Read Logic

RA 10..0 RA 10..6

RA 5..0
32

column bit read

WA 10..0

WE
WA 5..0

WA 10..6

row write

row read

6

6 data column write
3232

DI15..0

11

1

64

64

11 5

16

5

DO 15..016

Figure 2 – ESB in RAM mode

clocks and clears. Of course each macrocell can also choose to
bypass the register and instead output a combinatorial signal.

The product term selection matrix allows each macrocell to use
anywhere from 2 to 32 product terms. When the 3rd through
32nd product terms are used, they will be borrowed from the other
macrocells in the ESB and are called parallel expanders. The
ESB does not implement the shared logic expander capability that
is available in the MAX7000 devices. As a substitute for this
shared logic expander feature, one of the product terms in each
macrocell can be inverted. This allows a logic function where
some number of the product terms consist of single literals to have
all of these single literal product terms implemented in just one
inverted product term.

In Figures 1 through 4 we have shown the major architectural
features of the APEX20K ESB block. However, we have not
shown many of the important details. For example, in most cases
the RAM has been treated as if it was an asynchronous device. In
actuality, we expect most applications will use the ESB in a
synchronous manner. For example, in the RAM mode all of the
read and write addresses, the data to be written and the various
control signals can be synchronously registered to one or another
of the two clocks available per ESB, or they can be asynchronous.
We expect the synchronous mode to be used more often because

the timing requirements are much easier for the synchronous
design. In addition the synchronous design technique is ideal for
pipelined designs.

An example of another detail we have not yet mentioned is that
some muxes have been eliminated from the diagrams for clarity.
These muxes will typically choose between using one or another
signal depending on the ESB mode chosen. For example, if you
examine Figures 2 and 3 you would see that we need a 2-to-1 mux
in the vicinity of the 16 ESB outputs to choose between the RAM
data read (Figure 2) and the macrocell logic (Figure 3). Another
example is a 2-to-1 mux that would be needed to choose between
the “row read” signals generated by the “Row Decode and Write
Logic Block” (Figure 2) and the 32 literal true and complement
signals (Figure 3).

3. ADVANTAGES OF ESB PRODUCT
TERM MODE

The two primary motivations for implementing product term
mode in embedded memory blocks are increased logic utilization
and improved performance.

When we design a programmable logic device with ESBs, we
want to include enough memory blocks to implement the majority
of designs that use memory. However, there are always designs
that use less than the full amount of memory and some designs
that use no memory at all. The addition of product term mode in
the ESB allows us to implement logic in what would otherwise be
unused ESBs, resulting in a more efficient use of the die area.
This efficiency gain is almost free, since there is very little
additional circuitry required in the ESB to implement the product
term mode. An alternative method for trading off memory and
logic utilization is to build memories from the logic resources
(LUTs) already in the device. However we find that for modern
designs which have larger memory requirements the stitching
required to do this imposes penalties in both the performance and
utilization of routing resources, and adds additional stress on the
software.

An additional benefit comes from the fact that we now have both
product term and LUT-based logic on the same device. Though
lookup tables predominate in the high-density programmable
logic world, some forms of logic are always better suited to
product term implementation than to lookup table implementation
(e.g. wide-input functions and state-machines). Research by
Kaviani and Brown [9] shows that significant area gains can be
obtained from an architecture combining both product terms and
LUTs over a purely LUT-based architecture.

On the performance side, the implementation of wide-input
functions in small lookup tables causes an increase in the delay
path and a corresponding performance hit. Though this problem
can be alleviated somewhat with the addition of programmable
cascade-style logic between the LUTs, product term
implementation of this portion of the logic is a much more
efficient solution for achieving the necessary delay goals.

4. CONCLUSIONS AND FUTURE WORK
In this paper we have described a novel method for re-using
memory blocks in a programmable logic device to implement
product term logic. Our ideas have been implemented in the
embedded system block of the APEX20K family of
programmable logic devices from Altera.

2048 Bits of RAM

32 columns
x 64 rows

(32 product terms w/
 32 true/comp literals)

Sense Amps &
16 Macrocells

D31..0

32
column bit read

row write

row read

data column write
3232

64

6432

DO15..016

Figure 3 – ESB in Product Term Mode

Sense Amps

column
bit

read
signals

Product T
erm

Selection M
atrix

.

..

...

Parallel Logic Expanders
(from other Macrocells)

D Q

Clrn

ESB-wide Clock& Clear Signals

DOn

Figure 4 – ESB 2 Product Term Macrocell

With product term support we are able to better utilize die area by
trading off the logic and memory requirements specific to
individual designs, and can accommodate wide-input functions
more suitable to product term implementation than to lookup
tables. This gives both area and delay advantages over purely
LUT-based programmable logic architectures. Since the bulk of
the circuitry is already present in the device as embedded
memory, the overhead that is required to support product term
mode is minimal.

One open issue for further research is the generation of software
algorithms to take advantage of these flexible resources. An
interesting avenue for software research would be to study how to
efficiently partition the netlist into the portions best suited for
ROM, product term and LUT implementation, subject to the
amount of logic and memory resources left in the part after
standard memories have been generated. An additional step
would be to solve the same problem subject to delay constraints,
implementing the wide-input and delay-critical portions of the
logic in product terms, and the remainder of the logic in LUTs.
The tradeoff between product term and LUTs affects software
tools from synthesis and technology mapping through place and
route.

5. ACKNOWLEDGMENTS
We would like to acknowledge Mike Hutton for his valuable
suggestions and help at improving this paper. However, any
quality defects remaining are still the responsibility of the authors.

6. REFERENCES
[1] Altera Corporation, “Altera Data Book”, 1998

[2] http://www.altera.com

[3] Altera Corporation, “APEX20K Data Sheet”, 1999.

[4] F. Heile, “Programmable Logic Array Device with Random
Access Memory Configurable as Product Terms”, United
States Patent Pending.

[5] S. Wilton, “SMAP: Heterogeneous Technology Mapping for
FPGAs with Embedded Memory Arrays”, Proc. ACM 6th

International Symposium on FPGAs, FPGA98, Monterey,
CA., Feb. 1998, pp. 171 - 178.

[6] S.Wilton, “Architectures and Algorithms for Field-
Programmable Gate Arrays with Embedded Memory.” Ph.D.
Thesis, University of Toronto, 1997.

[7] J. Cong and S. Xu, “Technology Mapping for FPGAs with
Embedded Memory Blocks”, Proc. ACM 6th International
Symposium on FPGAs, FPGA 98, Monterey, CA., Feb.
1998, pp. 179-188.

[8] F. Heile and A. Leaver, “Heterogeneous Technology
Mapping for LUTs and Product Terms”, United States Patent
Pending.

[9] A. Kaviani and S.J. Brown, “Hybrid FPGA Architecture”.
Proceedings of the 4th International Symposium on FPGAs,
FPGA 96, Feb 1996.

[10] S. Wilton, J. Rose and Z. Vranesic, "Memory-to-Memory
Connection Structures in FPGAs with Embedded Memory
Arrays." Proceedings of the 5th International Symposium on
FPGAs, FPGA 97, Feb 1997. (Submitted to IEEE Trans.
VLSI).

[11] S. Wilton, J. Rose and Z. Vranesic, " Memory/Logic
Interconnect Flexibility in FPGAs with Large Embedded
Memory Arrays," in CICC 96, the IEEE Custom Integrated
Circuits Conf., San Diego, CA, May 1996, pp. 144-147.

	Main Page
	FPGA'99
	Front Matter
	Table of Contents
	Session Index
	Author Index

