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Abstract

We present a methodology for the watermarking of synchronous se-
quential circuits that makes it possible to identify the authorship of
designs by imposing a digital watermark on the state transition graph
of the circuit. The methodology is applicable to sequential designs
that are made available as firm Intellectual Property (IP), the desig-
nation commonly used to characterize designs specified as structural
descriptions or circuit netlists.

The watermarking is obtained by manipulating the state transi-
tion graph of the design in such a way as to make it exhibit a chosen
property that is extremely rare in non-watermarked circuits, while, at
the same time, not changing the functionality of the circuit. This ma-
nipulation is performed without ever actually computing this graph
in either implicit or explicit form. We present both theoretical and
experimental results that show that the watermarking can be created
and verified efficiently.

1 Introduction and related work

Watermarking is a technique traditionally used to securely identify
the authenticity of the source of official documents, usually in paper
format. The name comes from the original technique that used semi-
transparent marks made on paper.

Recently, the application of similar techniques to protect and iden-
tify documents in other formats has raised considerable interest. In
particular, digital watermarking has been applied to the protection of
intellectual property in digital form [1]. Digital watermarking em-
beds digital information in a piece of intellectual property, in such a
way that it is very hard to remove and, in general, also very hard to
detect. The hidden information can be anything that uniquely iden-
tifies the author or proprietary of the piece of intellectual property
and that is undetectable to the human perception. If necessary, the
digital watermark can be used in court to prove the ownership of the
piece of IP. More commonly, the presence (or potential presence) of a
digital watermark will discourage unauthorized use of the intellectual
property, thus avoiding the need for legal action altogether.

In the context of digital systems design, the interest in watermark-
ing stems from the fact that, increasingly, reuse-based design method-
ologies offer the promise of increased productivity and reduced time
to market. In this work, we are concerned with the protection of in-
tellectual property for digital hardware designs.

Hardware made available as intellectual property may be described
in a variety of forms. From behavioral descriptions in hardware de-
scription languages (HDL) to actual layouts, the problem of protect-
ing IP from being used in inappropriate ways is relevant to both the
IP producer and the computer aided design (CAD) companies that
develop the integration software.

Traditionally, IP has been classified as hard, firm or soft, accord-
ing to the degrees of freedom left to the user to manipulate it. Hard
IP, available, for instance, in the form of a partially (or totally) routed
layout, cannot be modified by the user, and should be used as is.
Soft IP, on the other hand, needs to be processed and can be mapped
to a variety of supports. Firm IP is used to represent designs that are
made available at an intermediate level of abstraction, such as netlists
or structural descriptions.

A variety of techniques has been proposed for watermarking dif-
ferent steps of the design process [3]. In particular, algorithms have
been proposed for watermarking solutions of general purpose opti-
mization problems, for combinational logic synthesis solutions [7],
for FPGA mappings of digital circuits [8] and to identify the results
of the final layout design stage [3]. Recently, a watermarking proce-
dure for finite state machines for which the state transition graph can
be extracted has also been proposed (STG) [10].

Although these results are important they do not allow a designer
to achieve the objective of identifying the origin of a given complex
digital design, made available in the form of firm IP. For these rea-
sons, the work we describe here aims at protecting the design itself
by encoding a digital watermark on the STG of the circuit.

2 Watermarking by state transition graph manipulation

The basic idea is to change the STG in such a way that a specific
topological property is present in the sequence of states traversed by
a sequence of inputs that corresponds to a given signature. If this
property is chosen in the right way, it will rarely be present in de-
signs that have been obtained independently, but will be present in
any design that is a copy of the original one, even if this design is
manipulated and changed in a variety of ways. For the method to be
efficient and robust, the change in the STG has to be accomplished
without actually storing the STG, either in explicit or implicit form.

We will assume that the sequential design in question represents
a fully synchronous design, and that the specification of its function-
ality, from an input/output perspective is publicly available. We will
also consider that the set of inputs and outputs is well identified and
that each input is known by a specific name, described in a publicly
available data sheet. We further assume that a specific ordering is
used on the inputs and that the design is specified in the form of a
structural description (e.g., a netlist).

The typical user will start from such a description, map it, if
needed, to a specific technology, perform retiming and other logic
level optimizations, and use it as part of more complex designs. The
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difficulty arises when a user that has access to the description of this
piece of IP wishes to use it in ways that are not compatible with the
existing agreement between him and the IP provider.

In this case, the user may decide to perform a variety of changes
to the IP description that may make it difficult to identify the origin
of the design. Straightforward ways to change such a design include
signal renaming, re-synthesis of the combinational logic, re-encoding
of the states, retiming, redundancy removal or accrual, etc. If the de-
sign is not marked in some way that makes it easy to identify, it may
be impossible to prove that it was actually stolen. In fact, equivalent
functionality is not proof of wrongdoing, as the input/output specifi-
cations are public and a re-design from scratch is always possible.

2.1 Creating the watermark

The basic idea underlying the proposed method can be described in
a simple way. The IP rightful owner starts by defining an arbitrary
long string that clearly describes her ownership rights. For example,
she may decide to mark the design with the message“This design
is the property of the Regents of the University of California”.
After encrypting this message with her private key of a known public
key cryptosystem, she uses a one-way hash function, such as MD5,
to obtain a compact signature of this arbitrarily long sentence. In
this particular case, MD5 will produce a 128 bits message digest that
is hard to invert, i.e., it is computationally infeasible to find another
message that hashes to that same value.

She then breaks this sequence of 128 bits into a sequence of input
combinations. For example, if the design has 16 inputs, the sequence
of 128 bits defines a unique sequence of 8 input combinations.

She then proceeds to change the STG in such a way that the se-
quence of states reached by this sequence of inputs exhibits a specific
property, that is rare in non-modified STGs. This property is purely
topological and does not depend on the specific encoding used for
the states, the number of registers or the details of the combinational
logic.

If, later on, she wishes to prove in court that someone stole her
piece of IP, she only has to show that the sequence of 128 bits ob-
tained from her message defines a path in the STG such that the set
of traversed states exhibits that specific property.

3 Watermarking state transitions graphs

3.1 De�nitions

This section introduces some general definitions that will be used
throughout the paper.

Definition 1 A Mealy type finite state machine (FSM) is a tupleM =�
�;�; Q; q0; �; �

�
where� 6= ; is a finite set of input symbols,

� 6= 0 is a finite set of output symbols,Q 6= ; is a finite set of states,
q0 2 Q is the initial “reset” state, �(q; a) : Q � � ! Q is the
transition function, and�(q; a) : Q��! � is the output function.

We will assume thatQ = fq0; q1; : : :g and will use will useq; r; v 2
Q to denote a particular state,a 2 � a particular input symbol and
b 2 � a particular output symbol. For finite state machines with
multiple binary inputs,ak, 1 � k � n will represent the value of the
k-th binary input variable andqk the value of thek-th state variable.
In general, for multibit variables like a state or an input value, we
will use superscripted variables to denote the value of a particular
bit. For example, given an FSM and a specific encoding of its states,
�j(q; a) represents thej-th bit of the next state obtained with inputa
in stateq. Additionally, we will usexi, yi, si andti to denote thei-th
input variable, output variable, state variable and next state variable,
respectively.

We will use BDDs [2] as a data structure to represent implicitly
the transition and output functions of the finite state machine under

study, a method that is well known in the logic verification literature
and first proposed in the seminal work of Coudert et al. [4].

Given a setS = fs1; : : : ; szg of present-state variables, a set
X = fx1; : : : ; xng of primary inputs and a setT = ft1; : : : ; tzg of
next-state variables, we define the transition relationT (S;X; T ) as
follows:

Definition 2 The transition relation of a finite state machineM =�
�;�; Q; q0; �; �

�
defined overS, X andT is:

T (S;X; T ) =

i=zY

i=1

(t
i
� �

i
(S;X)) (1)

It is well known that, given a a transition relation, it is possible to
compute the pre-image of a set of statesC defined by its characteris-
tic function using the expressions:

PImg(C) = P (S) = 9X 9T C(T )T (S;X; T ) (2)

3.2 Modi�cation imposed on the structure of the STG

Consider the original STG for the design. The sequence of input
combinationsa1; : : : ; am will traverse a sequence of (not necessarily
distinct) states,qt1 ; : : : ; qtm , starting at the reset state,q0 = qt0 . Let
r0 = q0 and the sequence of STG edges traversed by this sequence
bee1; : : : ; em.

The particular STG modification we propose in this section, and
that will be used to evaluate experimentally the method, is obtained
by performing a number of changes in the state transition graph.
For each time stepi, 1 � i � m, we will create a stateri. Let
R = fr1; : : : ; rmg. The modified STG is created by performing the
following operations:

1. Duplicate all the states and transitions in the STG, creating a
statevi for each stateqi 2 Q. LetV = fv0; : : : ; vjQ�1jg.

2. For1 � i � m create stateri by duplicating stateqti and all
its outgoing edges. Stateqti is left unmodified.

3. For each value ofi, 1 � i � m, stateqti has as one of its
incoming edges,ei. This edge originates at stateri�1. Make
this edge point to stateri instead. Edgeei now originates in
stateri�1 and terminates inri.

4. Replace every outgoing transition from staterm to a stateqi 2
Q by a transition tovi, the duplicate ofqi created in step 1.

After this procedure terminates, the sequence of inputsai will
start atr0 = q0 and traverse the sequence of statesr1; : : : ; rm. The
next input will cause a transition to a statevi in V . Note that there is
no other sequence of inputs that will traverse this specific sequence
of states. As an example, consider the STG shown in figure 1. For
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Figure 1: State transition graph of the original design.

this example, assume a three bit signature given by010, that, for this
STG, traverses statesq0; q1; q2; q3. After creating statesr1; : : : ; rm
together with the statesvi, and after changing the source and destina-
tion of the involved edges in figure 1 we will obtain the STG shown
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Figure 2: The modified state transition graph.

in figure 2. Note that, in this modified STG, the only way to traverse
statesr1; : : : ; rm in this order, is to apply the sequencea1; : : : ; am.
We now claim that the sequence of statesr1; : : : ; rm traversed by
the application of input sequencea1; : : : ; am exhibits a very specific
property that can be used to identify this design, regardless of the
state encoding used. This property is the following:

Property 1 Each stateri, 1 � i � m can only be reached from state
ri�1:

8ri 8q �(q; a) = ri ) q = ri�1 (3)

Proof: By construction of the STG, each stateri has only one
incoming edge, and this edge comes from stateri�1.
2

The existence of this property for a given sequence of inputs
can now be checked, as described in section 3.3. Clearly, the pres-
ence of this property for the sequencea1; : : : ; am is not an absolute
proof that this design was marked with this specific signature. In-
deed, given an arbitrary random sequence of inputsa1; : : : ; am and
an STG, randomly picked from some arbitrary distribution, there is a
finite, non-null, probability,P�, that the sequence of states traversed
by a1; : : : ; am exhibits property 1. We will callP� the probability of
a false positive watermark detection.

Although it is hard to derive upper bounds for the value ofP�, we
present empirical evidence that, for the large majority of the designs,
P� is very low.

Additionally, we will define a second less strict property that is
also exhibited by the sequence of statesr1 : : : ; rm:

Property 2 Each stateri, 1 � i � m can only be reached from state
ri�1 by applying inputai:

8ri �(ri�1; a) = ri ) a = ai (4)

Proof: this result is a direct consequence of the way statesri were
defined, with only one incoming transition fromri�1.
2

Clearly, property 2 is usually less strict than property 1. Property
1 states that there is only one particular state in the pre-image of
ri, while property 2 states that there is only one input minterm that
causes the transition fromri�1 to ri, but leaves open the possibility
of other edges incoming intori, possibly coming from other states
in the STG. Although this does not happen in the modified STG, this
weaker property may be useful against attacks that change unreached
parts of the STG.

These two properties lead to the our main result, that represents
the cornerstone of the watermarking procedure:

Theorem 1 The STG, modified in accordance with the procedure de-
scribed above, and represented by(�;�; fQ [ V [ Rg; q0; �0; �0)
is equivalent to the original STG and exhibits properties 1 and 2 for
the sequence of inputsa1; : : : ; am.

Proof: We have already shown that the modified STG exhibits
the referred properties. To prove that the STG’s are equivalent, note
that for everyi, vi � qi, since the states inV were obtained by
copying the state transitions for the statesqi in Q. Therefore, state
rm is equivalent toqtm , since the outgoing edges of these states go
to equivalent states. By induction, every stateri, 1 � i < m is
equivalent toqti , which shows that the final STG is equivalent to the
original.
2

3.2.1 Changing the STG using direct circuit manipulation

One important characteristic of the STG modification proposed in
the previous section is that it can be obtained by a relatively simple
manipulation of the circuit that realizes the original FSM.

The basic idea is to use a set of new registers to count the number
of inputs that, so far, matched the desired input sequenceai. This
modification is performed using the following sequence of actions:

1. Create a numberk of new registers wherek = dlog
2
(m+2)e.

Arrange thek new registers as a counterC that can count from
0 tom+ 1.

2. Createm and gatesGi, 1 � i � m and connect their inputs
so that the output ofGi is one iff the inputs have the values
specified inai.

3. Create anand gateG0 that detects the configuration forq0 in
the original state variablessi. Connect its output as an extra
input of gateG1.

4. Connect thek bit counter such that the following is true:

� For1 � i < m,Cnext  C+1 if Gi = 1 andC = i�1.

� Cnext  m+ 1 if C = m _ C = m+ 1

� Otherwise,Cnext  0

Figure 3 illustrates the modifications that need to be made in the cir-
cuit to obtain the modified STG. For illustration purposes, counterC
has three synchronous control inputs:En, Rst andLd , that enable
its counting, reset it and enable the external load. External load has
priority over count enable and reset. Analyzing these changes, it is
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Figure 3: Changes in the circuit that create the desired modifications
on the STG.

straightforward to verify that the STG of the modified circuit has the
following characteristics:



� Until gateG1 becomes active, the circuit behaves identically
to the original one, with all the registers in counterC keeping
the value 0.

� When inputa1 is applied in stateq0, the output of gateG1

becomes 1 and the counterC increments to 1.

� For each successive application ofai, 2 � i � m, applied in
this order, gateGi becomes active and the counterC is incre-
mented up to the valuem. If some other input is applied, the
counter is reset to0.

� Once the counter reaches the valuem, its value is incremented
tom+ 1 in the next clock cycle and stays at that value.

This behavior realizes the STG described in the previous section and
illustrated in figure 2. For this circuit, the registers in counterC can
be viewed as representing an extra set of state variables. Statesqi
correspond to the counter having the value 0. Statesri, 1 � i � m
correspond to values inC varying from 1 tom. Finally, states inV
correspond toC having the valuem+ 1.

We remark that the presence of gateG0 is actually not necessary,
and that the STG still exhibits all the properties described above even
if this gate is not there. If this gate is not present, there will exist a
sequence of states with the properties exhibited byr1; : : : ; rm start-
ing at each stateqi in Q. There will be, in fact,jQj chains of states
with these properties. By default, the watermarking procedure does
not include gateG0, unless specified by the user.

Although the modified circuit shown in figure 3 has a functional-
ity represented by a modified STG, clearly the value of the extra state
variables does not affect the value of the outputs. Therefore, although
this change modifies the STG in such a way as to create the desired
watermark, it is trivial to remove it by simply removing any logic and
registers not connected to the primary outputs1.

The next step will make the extra state variables influence the
value of the primary outputs, thereby making their removal a compli-
cated and time consuming process. The idea is to change the state
encodings in such a way that the new state variables will change
value even when inputs not belonging to the sequence representing
the signature are applied. Note that the circuit in figure 3 is a fully
synchronous circuit. By adding two transcoders (one before and the
other one after the registers) the newly introduced state variables will
not only influence the value of the primary outputs, but will also
change value for inputs other thana1; a2:::am. In our experiments,
the transcoders shown are obtained by performing a series of lin-
ear transformations. An elementary linear transformation transforms
the set of variablesX = fx1; : : : ; xi; : : : ; xj ; : : : ; xng in the set of
variablesX 0

= fx1; : : : ; xi; : : : ; xi � xj ; : : : ; xng: Any function
F : X ! f0; 1gk can be transformed into a functionF 0 of the trans-
formed variablesF 0

: X 0
! f0; 1gk. An arbitrary linear transforma-

tion can be obtained by a series of elementary linear transformations,
each one of them implementable by the use of twoexor gates, one
gate in the transcoder used before the registers and one gate in the
transcoder used after the registers. Many other transcoder functions
may be used in actual applications of the method.

It may seem that the extra circuits added to obtain the modified
finite state machine will have such a complexity that the method will
impose a large overhead if applied to any circuit of medium complex-
ity. Note, however, that the final circuit can be optimized using any
logic synthesis tools available. This optimization may also include
retiming operations, which means that the extra delay added will not
be as significant as it may seem from a cursory analysis of the proce-
dure. The experimental results in section 5 show that, in most cases of
interest, the area and delay overhead are very small and well within
the range of normal variations expectable from the performance of
state of the art synthesis tools.

1For example, thesweep command in SIS would remove any extraneous logic and
registers, not required to compute the values of the primary outputs.

3.3 Watermark veri�cation

Given a specific design and a signature, the verification of the pres-
ence of the corresponding watermark in that design can be made be
checking for the presence of the desired properties for the set of states
traversed by inputsa1; : : : ; am. Although the theoretical worst case
complexity of this procedure is provably high, it can usually be per-
formed with reasonable computational resources using one of the ap-
proaches described in the following sections. We start by describing
how property 1 can be verified.

3.3.1 Implicit computation of the pre-image

Given the transition relation for the circuit and the state codes for the
setR of states reached bya1; : : : ; am, it is straightforward to check
for the presence of property 1.

This can be done by computing the pre-image of each stateri.
Given a transition relationT (S;X; T ), the pre-image of a setR of
states, defined in terms of the variablesT can be computed using
expression (2). By performingm pre-image computations, one for
each stateri, the check for property 1 is successful if, for1 � i � m,
PImg(frig) = fri�1g.

In practice, and for complex designs, it may be difficult or impos-
sible to computeT . In this case, it is possible to perform the above
computation without actually computingT . To avoid the need to
actually compute the transition relation, we note that to compute the
pre-image of a stateri, represented by the values of the state variables
r1i ; r

2

i ; : : : ; r
z
i it is sufficient to compute the following expression:

PImg(frig) = 9X

j=zY

j=1

�
j
(S;X) � r

j
i (5)

In general, the computation of this expression requires much less
computational resources than the computation of the full transition
relation, since, in expression (5),rji represents a constant value.

3.3.2 Using ATPG to compute the Pre-Image

Although the techniques shown in the previous section are easy to
state and understand, their applicability is restricted to small and
medium size designs. Given the nature of the property one is in-
terested in verifying, the use of ATPG techniques provides the most
efficient method to check for its existence. Knowing the set of states
R traversed bya1; : : : ; am, and knowing the specific primary input
values that exercised each transitionei, it is possible to use a standard
ATPG tool to answer the following question: Is it true that for each
value ofi, 1 � i � m, �(q; a) = ri ) q = ri�1 ?

This question can be answered by forcing specific values for the
output signals that correspond to the next state variables that repre-
sentri and using the ATPG tool to findall the assignments to the
state variablesS that justify the observed output values. This is eas-
ily done by building the circuit in figure 4 and verifying that:

� For each stateri, a test for the faultnodeX stuck at0 implies
thatsj = r

j
i�1

.

� No test exists for the faultnodey stuck at0.

To understand the way the algorithm works, note that an input pattern
for the faultnodeX stuck at 0in figure 4 will generate the values of
the previous state variables, and the input combination required to
exercise the transition. If this pattern corresponds to a state other
thanri�1, then property 1 is not valid. Otherwise, the property may
be present. On the other hand, if a test exists for the faultnodeY
stuck at0, it means that states other thanri�1 are in the pre-image of
ri.
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ATPG techniques.

3.3.3 Verifying property 2

The results described in the previous sections describe how a circuit
can be tested for the presence of property 1, given a specific signature.

It will be useful, in some cases, to be able to check also for the
presence of property 2. This property, although slightly more likely
to appear by chance in an unmarked STG, is more resilient to re-
moval by sophisticated attacks, and its presence is also sufficiently
conclusive to prove the presence of the watermark.

Clearly, the approach described in section 3.3.1 can be easily
adapted to check for property 2. In fact, it is sufficient to verify if
the expression

9S

j=zY

j=1

�
j
(S;X) � r

j
i

j=zY

j=1

s
j
� r

j
i�1

(6)

is true only forX = ai. If that is the case, then it exists one and
exactly one input combination that leads from stateri�1 to stateri.

In an analog way, it is easy to adapt the ATPG based method de-
scribed in section 3.3.2, by using the circuit in figure 5 and verifying
that, for each stateri, a test exists fornodeX stuck at0 and no test
exists for the conditionnodeY stuck at0.
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Figure 5: Circuit required to verify the presence of property 2 using
ATPG techniques.

4 Possible attacks on the method

There are several different ways in which an attacker may try to cir-
cumvent the methodology presented in this work and falsely claim a
given piece of IP as his own. For absolute lack of space, we will only
address very briefly some of the possibilities, with many more details
being given in an extended version of this work.

Basically, an attacker may try to remove the watermark by per-
forming extensive circuit manipulation and redundancy removal. A

few possibilities are: re-synthesis of the combinational logic, retim-
ing of the circuit, arbitrary re-encoding of the states and combina-
tional redundancy removal. All these approaches will fail, since, by
not taking into consideration the sequential behavior of the circuit,
they will fail to remove the properties imposed by the watermark.

More powerful approaches include STG extraction followed by
state reduction [9], and sequential redundancy removal based on im-
plicit state enumeration [6]. These approaches have the potential to
remove the watermark, but are, in general, too expensive to apply to
any designs of medium or large complexity. Their range of applica-
bility is briefly addressed in the following section.

5 Implementation and results

To test the applicability of the method described in this work, we
implemented the watermarking method described in this work and
integrated it with the SIS [5] framework.

More specifically, we created three commands in SIS, that al-
lowed us to perform a number of experiments. These commands are:

� create watermark This command takes the current sequential
network and creates a watermark, given a signature.

� verify watermark This command takes the current sequential
network and checks for the presence of the watermark of a spe-
cific signature.

� verify random watermark This command checks for the pres-
ence of randomly generated watermarks in a given design.

5.1 Experimental results

We used the extended set of ISCAS89 sequential benchmarks to eval-
uate the impact of the watermarking process. The size of the circuits
in this benchmark varies widely, ranging from circuits that are too
small to be effectively watermarked by the method proposed here to
circuits that can be representative of real designs in terms of com-
plexity and size.

For this set of benchmarks, we inserted the watermark that corre-
sponds to a specific signature (actually, the one described in section
2.1), and evaluated the time and resources required to create, verify
and attempt to remove the watermark. We also evaluated the im-
pact of the watermarking creation process, both on circuit size and
on circuit delay. The circuits were optimized before and after water-
marking with the algebraic script from SIS, and mapped to the MSU
library. The machine used to run the experiments was a 350 MHz
Pentium II with 128 MBytes of memory.

Table 1 summarizes the results obtained. This table lists some
statistics for each circuit (registers, literals and delay) together with
the CPU times for watermark creation and for watermark verification
using the two techniques described in sections 3.3.1 and 3.3.2. It
also shows the area and delay overhead imposed by the watermarking
procedure. We remark that, although the area and delay overhead
are important for the smaller circuits, they are almost negligible for
the larger circuits. In fact, for the last 10 circuits, the average area
increase is only 3.2% and the average delay increase is 0.2%. For the
last 5 circuits, the area and delay actually decrease, on the average,
respectively 0.4% and 0.3%. These results mean that for circuits of
reasonable size, the watermarking procedure has a negligible impact
on both the performance and the used silicon area.

5.2 False positive detections and successful attacks

By checking for the existence of random watermarks it is possible to
estimate the value ofP�, the probability of a false positive detection.
From the total of 44 circuits, only one circuit (s3271) exhibited an
empirical value ofP� higher than 0 (0.04)2.

2Note that we performed a relatively small number of experiments (compared with
the number of total watermarks) andP� may not be exactly 0 for the other circuits.



Table 1: Statistics for circuits in the ISCAS89 benchmark, CPU times
for watermark creation and verification and observed area and delay
overheads.

Statistics CPU Overhead
Circuit Reg Lits Del. Cre. ATPG BDD % Lits % Del
s27y 3 19 6.8 0.0 1.9 0.8 2747.4 273.5
s820y 5 516 20.6 0.0 0.9 0.8 57.8 16.5
s832y 5 547 18.2 0.0 0.8 0.5 47.0 34.1
s1488y 6 1154 28.8 0.1 2.9 1.7 29.5 7.6
s1494y 6 1182 27.0 0.1 3.0 1.7 30.9 16.3
s386y 6 254 12.4 0.0 1.4 0.6 153.5 85.5
s510y 6 432 16.8 0.0 0.6 0.8 59.3 25.0
s208y 8 125 12.8 0.0 0.7 0.4 252.8 54.7
s27n3y 9 175 32.0 0.0 2.8 1.3 296.6 15.0
s298y 14 186 15.8 0.0 4.6 2.1 312.4 53.2
s344 15 231 19.6 0.0 1.1 1.0 155.0 24.5
s349 15 243 18.4 0.0 1.1 1.1 146.1 32.6
s420 16 260 24.2 0.0 0.6 0.4 88.1 5.8
s641y 17 259 34.6 0.0 0.3 0.3 70.3 -2.3
s713y 17 266 35.2 0.0 0.3 0.3 68.4 -4.0
s1196y 18 974 26.8 0.0 1.4 0.7 27.7 4.5
s1238 18 1041 29.8 0.1 1.5 0.7 26.8 8.7
s991y 19 531 63.6 0.0 0.3 3.2 50.7 6.6
s382 21 260 15.6 0.0 5.5 3.3 213.8 76.9
s400 21 269 15.6 0.0 5.6 3.4 201.9 76.9
s444 21 273 17.6 0.0 5.0 1.6 197.4 47.7
s526 21 323 16.0 0.0 5.0 2.1 168.7 67.5
s526n 21 325 16.0 0.0 5.0 2.1 167.4 67.5
s499y 22 340 15.6 0.1 32.8 7.9 261.8 153.8
s967y 29 697 19.8 0.0 1.0 0.5 35.6 2.0
s635 32 336 53.4 0.1 12.4 4.0 220.8 8.2
s838 32 531 46.6 0.0 0.4 0.4 31.8 6.4
s938 32 492 46.4 0.0 0.4 0.4 42.1 7.3
s1269 37 769 44.4 0.0 1.0 223.8 28.3 0.5
s1512 57 857 33.2 0.1 1.7 6.7 25.8 -13.9
prolog 65 1218 26.6 0.1 0.8 3.7 12.6 4.5
s3330 65 1222 28.2 0.1 0.9 3.9 16.4 4.3
s1423 74 1108 74.2 0.1 1.5 26.3 23.7 0.0
s4863 81 2680 83.8 0.1 1.4 26.6 6.2 0.0
s3271 116 2108 31.2 0.1 1.9 1.7 8.6 7.7
s9234 135 1816 26.6 0.1 1.4 3439.3 6.2 -1.5
s5378 162 2068 24.0 0.1 1.8 15.7 5.4 -7.5
s3384 183 2097 82.2 0.1 3.6 2589.5 7.3 -1.5
s6669 231 4141 96.0 0.2 2.0 failed 6.8 6.2
s13207 453 3769 41.4 0.4 8.9 36.1 5.1 -3.4
s15850 540 6130 70.2 0.6 27.0 470.6 2.1 -2.3
s38584 1294 17910 307.0 2.1 239.2 2468.8 0.7 4.8
s38417 1463 19258 113.8 3.4 137.2 failed -5.2 -3.0
s35932 1728 19086 349.2 1.9 172.9 failed -5.0 2.3

This value ofP� is simply a property of the circuit. Some circuits
will exhibit a high value ofP�, and, for these, the method, if ap-
plied, can be attacked. For all the circuits that were watermarked, we
also attempted to remove the watermark using one of the following
methods: a) sequential redundancy removal based on implicit state
enumeration [6] and b) state transition graph extraction and reduc-
tion [9]. In table 1 circuits for which is was possible to remove the
watermark are marked with ay. These experiments were performed
in a Sun Ultra1 machine with 384Meg of memory, with the timeout
set at 24 hours of CPU time.

The results in this table show that attacks that actually remove the
watermark are limited, for the examples and computational resources
used, to circuits with less than 32 registers. Any realistic design that
needs to be protected using these techniques is likely to be consider-
ably more complex than this limit, thereby making the watermarking
technique proposed very resilient to these and related attacks.

6 Conclusions and future work

This work presented a novel methodology for the watermarking of
sequential digital designs that is, for reasonably sized designs, robust
to attacks and easy to verify. This technique is the first one proposed

in the literature that actually protects a design specified as a netlist,
and should therefore be very interesting to designers interested in pro-
tecting their intellectual property rights. This is specially true given
the strong motivation for reuse of blocks that is the key for increased
effectiveness in the design of complex systems.

There are many interesting directions for future research in this
area. Characterization, both from a theoretical and practical stand-
point, of the class of designs for which the method is secure is an
interesting topic for future research.

It is also clear that this work describes only one specific tech-
nique, applicable in a very particular setting. More general tech-
niques, that may include functional changes in the design should
be studied and analyzed, and may eventually lead to watermarking
methods that may be even more robust and hard to attack.

Finally, we believe the more interesting direction for future re-
search consists on investigating the possibility of generalizing this or
similar approaches to a larger class of design specifications, includ-
ing, potentially, soft IP available in the form of behavioral HDL. This
technique could also be extended to the watermarking of software,
an application with enormous potential impact given the amount of
investment made in the development of reusable software modules.
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