
Application of High Level Interface-based
Design to Telecommunications System Hardware

Dyson Wilkes
Ericsson Components Ltd., UK

Dyson.Wilkes@swindon.ericsson.se

M.M. Kamal Hashmi
International Computers Ltd., UK.

Kamal.Hashmi@icl.com
at
a
ve
ired

hat
ed
sed
d

n’s

ut
ol
o
he

et

in

his

an
e

as
as
ss

an
us

of a
y
be

It
pen
ign
ge

e

Abstract
The assumption in moving system modelling to higher levels is
that this improves the design process by allowing exploration of
the architecture, providing an unambiguous specification and
catching system errors early. We used the interface-based high
level abstractions of VHDL+ in a real design, and in parallel with
the actual project to investigate the validity of these claims.

1. Introduction
The design of complex electronic systems is a task that takes large
teams of engineers a considerable time to complete correctly. As
the design gets larger and more complex, the resource needed
seems to increase out of proportion to the task. Comprehension of
the whole design, communication of design intent between the
different teams and, in particular, validation of the design itself
gets harder and takes more time.

The traditional way to solve these problems is to describe the
design at higher levels of abstraction so that larger parts of the
design can be understood, captured and verified quicker. It is
recommended is to consider orthogonal abstractions separately,
and to capture this higher level unambiguously in a formal
language. A good rationale for the methodology is given in [8]. In
the last few years, the separation of the Communication from the
Functionality in a design has been considerably investigated
resulting in many favourable papers, including [4] and [6].

Initially based on an internal language [1], ICL has been
developing an interface-based methodology with abstractions in
t ime, process communication and resource scheduling,
synchronisation and dependencies [7]. This methodology is being
implemented in an extended pure superset of VHDL called
VHDL+ [9], mainly to enable easy and seamless refinement of the
hardware to a synthesizable Register Transfer (RT) level with the
software parts implemented in C++ and communication via
VHDL+ interfaces.

Ericsson has been using VHDL [2] in high level, hierarchical
design flows for a number of years. While the benefits of creating
models above RT level were recognised, the amount of effort
involved in maintaining multi-level models had often proven too
much to be carried on throughout a project. These models
represented the design at different degrees of detail which are
called abstraction levels. One significant problem arose when

dealing with interfaces between the blocks in the design
different abstraction levels. The ability to simulate one block at
detailed level while keeping others at a more abstract level ga
advantages such as faster simulation speed and less work requ
on testbenches. The problem with using standard VHDL was t
it took just as much time to write and check the translators need
to convert the signals between the abstraction levels. Tools ba
on the VHDL+ language promised to solve this problem an
improve other aspects of the design process for Ericsso
telecommunication products.

2. Project Overview
The SYSTEL project to evaluate the VHDL+ methodology set o
to construct and use a multi-level system model of a contr
system for a large public switch called APZ-CP and to try t
demonstrate improvements in the overall design process. T
actual goals were the project were:

• Show if SuperVISE, the ICL VHDL+ tool, could be applied in
the design of a telecommunication system. This had not y
been shown despite its success [4] in ICL for mainframes.

• Create an executable working system model of an APZ-CP
VHDL+.

• Refine one part of the design down to gate level to validate t
part of the flow.

• Show if the design process was improved.

It was important to show both system level modelling and a cle
path to implementation. The results of the project could b
compared with a real production project of the APZ-CP that w
going on at the same time. This was the best way to get an
objective as possible view on the degree of design proce
improvement. Even so, the SYSTEL project could not model
exact APZ-CP nor implement a large part of the system, th
comparisons had to be made with some care.

The design process improvement was to be measured in terms
reduced time to market with equal or better product quality. An
increased opportunities for design re-use were also to
considered as valuable improvement.

3. The VHDL+ Extensions
VHDL+ is a fully compatible super-set of standard VHDL which
is converted to simulatable VHDL by the SuperVISE translator.
has been presented publicly and is being proposed as an o
standard via the IEEE DASC Systems and Interface-based Des
Study Group. This is important since using a proprietary langua
considerably reduces opportunities for reuse.

The main extensions in VHDL+ add the ability to describ
interfaces by adding the primary design unitinterface. An
interfaceis a collection ofmessagesthat may be sent and received
by directional pairs of ends of that interface. The VHDLentity is
extended to allow instances to be connected byinterfaces. Such a
connection is known as aninterface instancebut can be thought of

ate
nit
re
the
igh

t
st
tem
nd
be

is

ts
a

e
r has
ot
of

ues

the
vity
ss.
out

sts
s to
the
ese
the
O
w

e
ed
e

as a channel capable of carrying the messages defined in that
interface. The VHDLarchitectureis extended to allowmessages
to be passed over an interface instance with thesendandreceive
statements. VHDL+ also adds a new way to describe and
encapsulate system behaviour called anactivity. These allow
sequential and parallel behaviour to be more easily described than
in VHDL. Interfacesencapsulate data types with how they are
communicated whileactivitiesencapsulate data items with the
functions that operate on them. The sub-sections give examples of
these two areas of extensions.

Another important extension is the ability to increase the
granularity of time from a precise time, e.g. in nano-seconds, to
clocks and to indeterminate ranges of time and clocks. This can be
used in activities and in interfaces.

3.1 Interfaces
An example of a simple interface with one top level message is
given below:

INTERFACE csi IS
BETWEEN client, server ;
CLOCK clk EVERY 10 ns ; -- 100 MHz
MESSAGE cmd_m(cmd : q_cmd_t) IS

FROM client TO server ;
TAKES 1 clk ;

COMPOSITION
PARALLEL

strobe(’1’) ;
bit0(conv(cmd(0))) ;
bit1(conv(cmd(1))) ;

END MESSAGE cmd_m ;
-- defns of strobe,bit1,etc would go here
END INTERFACE ;

The interfacecsi is defined as having two endsclient andserver.
A clock calledclk is defined to be active every 10 ns. The message
called cmd_mhas one parameter of typeq_cmd_t and is
composed of three lower level messages:strobe, bit0 andbit1. A
function calledconvconverts the data in the composition. When a
cmd_mmessage is sent, it results in all three low level messages
being sent in parallel. As messages are a fixed resource, if there
were only one message calledbit in place ofbit0 andbit1, the
duration ofcmd_mwould be extended while each call tobit
completed. So, ifbit lasted 1 clk the timing constraint ofcmd_m
would be violated. This would result inassertmessages at
simulation run time. Thetakesstatement may be a range of time
or clock ticks and can be useful in a specification model to give
flexibility and controlled non-determinism or in a testbench to
stress a design over its operating region.

The ranges are useful during specification whereas the clock-
oriented timing makes the relation to RT level implementation
very easy. It is also possible to apportion clock cycle time between
the processing and communication of data by including VHDL+
pause statements in the unit architectures.

The interface description is of a declarative form and must be
reversible. It has to take this form as a given interface might have
either end at a lower level, requiring decomposition of a higher
level message from low level messages as well as the reverse
process of composit ion. Figure 1 shows how message
composition works in a model. On the left hand side of the figure
unit A is shown sending a high level messagemes,while unit B
receives its components;aaa, ... at a lower level. In this case the
SuperVISE implementation of the interface description

decomposes the high level messages into the appropri
collection of lower level messages. On the right hand side it is u
A that is working at the lower level, sending messages that a
recognised as the components of a higher level message in
interface description. The interface composes these into the h
level message which unit B is receiving.

This reversibility allows models to be built with components a
different levels of abstraction. This is very useful because te
benches can be reused at any level, components in a sys
simulation can be replaced by a lower level implementation a
checked, and the design of different parts of the system can
done at different rates.

3.2 Activities
An example of activity usage for a FIFO used in the design
given below:

ACTIVITY fifo (cmd : IN q_cmd_t ;
data : INOUT q_data_t ;
done : OUT boolean) IS

...
client : PROCESS
...

fifo(put,d,stat); -- generate request

server1 : PROCESS
...

fifo(get,d,stat); -- service request

server2 : PROCESS
...

fifo(get,d,stat); -- service request

Activity syntax is similar to a procedure but an activity represen
a fixed resource, like messages, and may be called with
maximum concurrency of one. If an activity is called from mor
than one place at a time, one caller gains access and the othe
to wait. All callers will get access but the order of access is n
defined. Also, an activity encapsulates data with the processing
that data because, like a process, it retains its variable val
between activations.

These two properties are exploited in the FIFO example where
queue data and pointers are owned by the FIFO, thus the acti
call mechanism provides the arbitration for simultaneous acce
The code shows a client and two servers. Code has been left
for clarity. If we assume the client is able to generate reque
faster than a single server there are a number of scenario
consider, including: simultaneous access by a server and
client; simultaneous access by both servers. An example of th
scenarios are shown in figure 2 where: the caller with access to
FIFO is shown as; c for client, 1 and 2 for the servers on the FIF
time line; a process waiting for access is shown by a narro
striped box and a busy server is shown by a wide grey box.

It is possible to observe the utilisation of the servers in th
simulation to determine if the queuing scheme has the requir
properties and performance. In this example, the length of tim

A B A B

compositiondecomposition
Figure 1.

mess aaa

aaa

mess

by

of

ssor
t, it
in

is
he
ng
of

sor
ch
ce

m.
e
f
is

be
ll,
be

tep
set
f

in
e
ng

a
ata

ther
taken to put and get items on the FIFO is a critical factor. There is
also a potential problem if the client cannot wait to be served, as
might be the case if it had to be ready to receive messages from
another unit or process.

Although this example is quite simple, it shows that a lot of
complexity can be represented with just a few lines of VHDL+.
The built-in message and activity mechanisms facilitate the use of
a higher level representation of the interaction between units in a
design. This gives VHDL+ the characteristics of a number of
existing system level languages [3] [10] [11] but with the benefits
of being compatible with the standard hardware implementation
language VHDL.

4. Modelling the APZ Central processor
Ericsson’s public telecommunications switch AXE-10 consists of
two main parts: the control system APZ and the switch fabric. The
control system is distributed and has a central processor (CP) to
co-ordinate overall control. This section gives an overview of the
central processor as it was modelled in the project. The APZ-CP
was constructed of a number of ASICs totalling about 2 million
gates.

Table 1. gives a summary of the abstraction levels defined for the
project. These abstraction levels, although of potential use in
other control dominated designs, are not likely to be of general
application. This would be true of any set of abstraction levels as
they are a function of the design domain and the needs of the
design process. There were four levels in all, going from the most
abstract first “Block” level to the least abstract Register Transfer
level. It should be noted that a set of abstractions such as these are
intended to make the design tasks more tractable. It should not be
assumed that the whole system has to be modelled at all levels of
abstraction. In the project, i t was assumed that the CP
communicated directly with the switching parts of the AXE-10
system. Therefore a top level view of the system and its
environment consisted of connections to the telephone network,
calledswitch and the control system, calledCP, as shown in
figure 3.

The switch communicates with the CP using so-calledsignals. A
signal from theswitch might occur when there is an event in the
network, for example, when a subscriber takes their phone off-
hook. On receiving a signal the CP must carry out some operation
and may need to send asignal back to theswitch. This is the
highest level (most abstract) view of the system as was only used

for the testbench In the APZ-CP the processing is done
executing softwareblocksand the act of doing this is called ajob.
This, then, is the next level of detail and the highest level
abstraction used in the system model.

A software block consists of a set of instructions including flow
control and memory access operations. As a specialised proce
like the APZ-CP evolves and hardware becomes more compac
follows that frequently used functions come to be implemented
hardware. Whilst it might be difficult to predict exactly which
parts of the system function might be moved to hardware it
possible to introduce a level of abstraction which decouples t
levels described so far from the instruction level. This decoupli
increases the possibility of model reuse and allows exploration
different dimensions of the design space. Given that proces
instruction sets are one or two steps below the level at whi
modern software is developed, it seems appropriate to introdu
an additional abstraction level into the description of the syste
When high level software code is compiled into machin
instructions the code is grouped into small collections o
sequentially related instructions called basic blocks. Taking th
as a cue and adding the fact that functions that might
implemented in hardware are likely to be equivalent to sma
repetitive code segments, the concept of a software step can
introduced. A block, then, consists of a set of steps and each s
is a set of instructions that operate on a finite set of data. This
of Finite Abstract Machines (FAMs), is the next level o
abstraction in the system description.

5. The System Model
Figure 5 shows an overview of the System Model specified
VHDL+. This level of structural model was used to explore th
system at both job and step levels of abstraction by creati
different architectures for theschedandproc units. This model of
the CP has two kinds of sub-unit, one calledsched: the scheduler
and the other calledproc: the processor. The architecture is
multi-processor with separate and private programme and d
memories. The first processor instance (proc 1) is specialized so
that its data store acts as the central programme store for the o
proc instances.

FIFOclient server1

c

1

2

i

i
j

c

()

2 j
time

server2

Figure 2.

Level →
Granular-
ity ↓ 1:Block 2:Step

3:Instru
-ction 4:RTL

Interface Signal Step Instr.
Cycle

System
Clock

Operation Job LCS and
Jump

ASA
Instruc-
tion

Micro-
instruc-
tion

Data Item Call, Sub-
scriber

Signal
data

Prog.
register

bit vec-
tor, bit

Function Block,
device

Finite
Abstract
Machine

Unit Logic
block

TABLE 1.

switch
CP

signals

Figure 3.

network

ing

he
he

e

on

as
s at
d
fine
also

SP
he

e
ed

The
ate
(a
as
e
its
for

for
he
Working from the left of the diagram, the CPB (Central Processor
Bus) carries messages containing APZ signals between the switch
and the CP. These enter the scheduler unit which maps the signals
into jobs which are enqueued awaiting the processor capable of
running the job. When there is a capable processor, the job is sent
over SP (scheduler-processor bus) via ajob_startmessage which
contains both the job and the target processor identity. The sched
unit expects a proc unit to send ajob_end, signal_m ornull
message. If there is no job for a processor it is sent apoll message
to which sched expects a response. If there is no such response
within a time-out period the proc instance is marked as faulty.

The scheduler keeps track of the “capabilities” of each processor.
A capability is the ability to run a software block and each kind of
job requires a distinct block to be able to be run. If no processor
has a particular capability then the scheduler selects the least
loaded proc unit and sends a load_block job to the pstore proc. On
receipt of thejob_start the pstore proc sends the programme
image to the appropriate proc via the programme bus (PB). Once
a proc is loaded with a block it is the only proc that may run that
kind of job so data consistency is guaranteed. The execution of a
job consists of the execution of a set of steps. The sched unit
directs the signals from the proc units and, where appropriate
converts them to jobs adding them to the queue.

At system start-up the scheduler sends a message with parameter
value equal to one on IDB1. Eachproc unit in the daisy chain
takes that value as its identity and adds one to the number before
passing it to the nextproc. The lastproc is connected back to the
sched. In this way theschedunit learns how many processors
there are in the configuration. All of theproc units are then polled
to check the function of the sched-proc interfaces. If a givenproc
unit does not respond before a time-out then it is marked as faulty.

6. Model Refinement
Theproc andschedunits were further refined to lower levels of
abstraction. They were modelled with job and step level
behaviour and then structurally decomposed. Finally, one of the
components of theschedunit was refined down to RT level and
synthesized to gates to prove the design flow.

The architecture of theschedunit consisted of separate control
and data paths. However, both control and data messages were
included in a single interface description because at this level the
internal interfaces ofschedwere being specified and too many
structural details would have over-constrained the implementation
options. At level 1 the queue inschedwas represented by an
activity while at level 2 it became a separate unit calledsched_q.

The design of theschedunit at level 2 consisted of devising an
architecture and mapping the activity calls and message send
into commands over thecdbus. Figure 6 shows the structure of
thesched unit.

At level 2 the processor’s structure was as shown in figure 7. T
processor unit was partitioned into four sub-units at this level. T
processing core was calledproc_engand it requested enqueued
jobs fromproc_q. The programme and data memories wer
embodied inproc_psandproc_dseach of which connect to the
common external system programme/data bus.

The processor engine core withinproc_engwas modelled down
to abstraction level 3 to show the mapping from step to instructi
level execution. At this level, three unitsinstru , alu andreg_file
formed the kernel of the machine. To retain as much flexibility
possible, the communication was still modelled using message
this level. In this way it was simple to construct a pipeline
processor using the send and receive VHDL+ statements to de
the interaction between units. The interface-based approach
assisted in this partial decomposition process.

The interface between the sched unit and proc units (labelled
in figure 5) was designed down to gate level to show that t
methodology was viable. This work also provided data on th
efficiency of the design process, both in terms of the effort need
and the quality of the result.

As a consequence of this, thesched_sbhsub-unit of sched was
designed down to RT level, and thence synthesised to gates.
RT level implementation of sched_sbh consisted of a Finite St
Machine (FSM) and three other units controlled by it: cntdwn5
5 bit settable down counter), timer and polled. The FSM w
mapped directly from the interface description with som
optimization for speed and area while the timer and polled un
related to the activities at level 2 and the counter was used
control of the variable length part of the messages.

The unit was synthesised to a 0.35µm gate array library using the
Synopsys Design Compiler version 9701. The constraints
synthesis were derived from the interface specification. T

proc
n

proc
2

proc
1

IDB2

schedCPB
SP

IDB1

IDB(n+1)

Figure 5.

PB

sched
-cbh

sched
-sbh

sched
-Qcpb

Figure 6.

sb

sched
-ctrl

cdbus

proc
-Q

proc
-ds

proc
-eng

proc
-ps pdb

pab

sb

ido

idi

Figure 7.

n
re
d
f

ion
gn

the
ils
ch
ally

3.
re

l
el

. It
nto
d

gn
nd

he
ic
ial

or
e
ss
2]
he

oc
6
the
or

nd.
a
ests
r is
his
ne

n.
EL
be
-
ug
resulting total number of gates in the design was 5200 with 4200
of these implementing the FSM. The design, synthesis and gate
level verification of the sched_sbh module took three weeks to
complete. As VHDL+ language implementation at packet level –
the layer between messages and VHDL signals – was not
complete before the end of the project, a simple work-around
using wrappers was used to perform the translation between the
RTL signals and the low level messages.

7. Design Process Benefits
Using VHDL+ in the design flow increased the amount of work
that could be done at the higher levels and thus how much
verification was done at these levels. This, in turn, reduced the
number of bugs found in the later stages of design and eased
implementation and integration.

7.1 Architectural Exploration
The main benefit of VHDL+ over VHDL is that complex
interactions between objects in the design can be hidden in the
interface descriptions and reused between interface instances. The
activity call mechanism also increases the possibility for data
encapsulation and hiding. Due to the ease of designing at this
level, two variations on the top level architecture were explored in
the project. One had a separatepstore unit rather than the
specialisedproc instance. The other was in an earlier version of
the architecture which had all the queues in the sched unit. In both
cases VHDL+ speeded up the design process compared to using
standard VHDL. For example, the activity definition for the queue
function was copied into the level 1 proc model and calls inserted
in the existing code. The pstore functionality was added to the
processor by moving the activity from the special unit to the proc
unit code.

Using a modelling language also helped in the evaluation of the
design alternatives. The interface descriptions with the message
duration feature allowed the architectures to be evaluated against
some feasible t iming constraints. Once these had been
determined, the values formed a specification for the next more
detai led level of implementat ion It was easier to spot
inconsistencies and errors in this form of description than in a
traditional paper document.

7.2 Partitioning and Decomposition
The decomposition process involves the breaking down of
hardware and software units at one level into smal ler
implementable units that interact to yield the required
functionally. The partitioning and decomposition processes,
therefore, interact with each other: units are decomposed and then
functions are partitioned from one level down to a set of
interacting lower level units.

VHDL+ helps in these processes by separating the concerns of
describing the function of each unit from those of specifying the
interaction between them. This assistance was evident in the
project at almost all levels. For example, the details of the
communication betweenschedandproc were kept in thesp
interface description. Also, when the sched unit was decomposed
to level 2, the communication betweensched_ctrland the other
sched sub-units was mostly transparent.

7.3 Implementation
The scope of this project was limited to the implementation of the
hardware aspects of the system. It is hoped that the model would
be suitable for hardware-software co-development at some level

but it is recognised that suitable links to software emulatio
systems would be needed to fully support detailed softwa
development. The structured organisation of function an
communication descriptions in VHDL+ helps in this phase o
design also. The declarative nature of the interface descript
makes for a clearer specification of that aspect of the desi
compared with a typical behavioural model written in VHDL.

At each stage in the design process, VHDL+ helped speed up
task of capturing and verifying the design. Implementation deta
could be added to interfaces or functional parts without too mu
interference between each aspect. It was very easy to parti
implement some aspect of the system, for example, theproc unit
engine was implemented with only its core functions at level
This provided the opportunity to evaluate the micro-architectu
in the context of the entire system.

The transition from suitable VHDL+ to synthesizable RT leve
code was relatively smooth except for the lack of the packet lev
which describes messages in terms of VHDL signal transitions
was possible to map activities and message compositions i
familiar RT level constructs such as FSMs or register an
multiplexer combinations. The increased opportunity for desi
re-use at this level was shown in the design of the buffer a
queue in theproc_q unit. With some additional work certain
VHDL+ constructs might be identified as implying common
structures like FIFOs, queues, stacks and circular buffers. T
ability to imply such elements could raise the level of automat
design synthesis above what is currently available in commerc
tools

7.4 Verification
The generated VHDL from SuperVISE was simulated on Ment
Graphic’s QSIM 5.0 on a Sun UltraSPARC. The stimulus for th
model was provided by a random poisson arrival proce
modulated by a two step Markov chain to model bursty traffic [1
[13]. Simulations were done on a number of configurations of t
design:

• stb2_l2_cfg: All at level 2

• stb2_sbh_wrapper_cfg:sched_sbh at RL level

• stb2_l3_proc_cfg:proc_eng_core at level 3

• stb2_q_wrapper_cfg:proc_q at RT level.

• stb2_l2_rtl_cfg:sched_sbh andproc_q at RTL level.

All of the above configurations contained six instances of the pr
unit. In addition level 2 configurations were created with 4, 8, 1
and 31 instances of the proc unit. These were used to test
scaling of the system capacity. The simulation of a 6 process
configuration running at level 2 ran at a rate of 10 jobs per seco
Comparing this with the fastest simulation of the RTL model of
single real processor which was 300 cycles per second sugg
that the abstract model ran 2000 times faster. This numbe
based on the fact that a typical job consumes 4000 cycles. T
speed-up allowed a considerable amount of simulation to be do
giving a lot of very useful performance and capacity informatio
These results and graphs are included in the public SYST
report [14]. The high level stimulus described above proved to
very effective in revealing design faults. Similarly, the self
checking nature of the interface models increased the b
coverage [15].

s

re
ow
n a
to
d
ge

e
der

E

n

a,

d

.

8. Results and Analysis
The design activity in the production project relating to the units
which were comparable to those designed in this demonstration
project was collated and analysed. The data was based on the
number of lines changed in the RT level code in a given month.

To be able to compare the two design processes, it is necessary to
scale the design effort according to the design complexity. From
the synthesis resul tssched_sbhwas implemented by
approximately 4000 gates. This figure discounts the job buffer
flip-flops as this was implemented as a memory in the production
design. The comparable production circuit was approximately
10,000 gates, excluding memory blocks. This gives a scaling
factor of 2.5. While the design work was done a total of 110 man-
hours (approximately 1 man-month) of effort were recorded.

For comparison, the production design effort on the block
equivalent tosched_sbhcan be taken to be four man-months
which works out to about 500 man-hours expended. This gives a
ratio of 110:500 or 5.6 compared to the 2.5 from the gate count
ratio. Since many project time estimates are based on a linear
relationship between number of gates and time to design this
comparison seems reasonable. It can be concluded that the design
effort from VHDL+ to a synthesised and verified gate level
implementation is a little less that half that observed in the
production project. The detailed figures for the above calculation
are given in [14].

8.1 Using VHDL+ as the Specification
Unlike a specification written in a natural language, the VHDL+
model (unit model and interface model) is complete and
unambiguous. Its behaviour may be explored by simulation, and
when an RTL implementation is written the functional
equivalence with the VHDL+ model can be verified by
simulation. Provided that essential VHDL+ concepts like message
and activity are well understood and simple ways to represent
them in synthesizable VHDL are found, using a VHDL+
specification makes it possible to produce correct RTL code in
much shorter time than if a only a natural language specification
were used.

One possible drawback of using and relying only on the VHDL+
description is that it does not clearly show the design intent and
the reasons behind different design decisions as clearly as a
natural language description might. In some cases a brief
description supporting the interpretation of the code could be
useful. There are a number of classes of system requirements
which cannot be embodied in VHDL+. Examples include
physical characteristics such as size, power consumption. All of
these aspects would still remain in the textual portion of the
specification. It would be appropriate to keep the document as the
overview and use the VHDL+ model as an annex covering the
aspects the VHDL+ handles well.

9. Conclusions and Future Work
We have used the SYSTEL project to demonstrat the use of
SuperVISE and VHDL+ in the design of a telecommunications
system. The system designed had some similarities with the
mainframe computers developed by ICL using the methodology
but the design methodology used in the project was very close to
that used on, for example, ATM switching systems in Ericsson.
Since the project was completed the transaction and packet levels
were added to SuperVISE/VHDL+ making it an extremely

powerful tool for systems level design of telecommunication
systems.

It would be valuable to investigate how to integrate softwa
development with the SuperVise methodology. For example, h
acceptable would step level be to software developers? Ca
compatible set of abstraction levels be found? Is it feasible
think in terms of a common language from which a combine
hardware/software solution is created? Should this langua
originate from the hardware or software domain?

10. Acknowledgments
This investigation – the SYSTEL project [5] – was funded by th
European Commission as ESPRIT project number 23909 un
Directorate General III.

11. References
[1] A.Jebson, C.Jones and H.Vosper:CHISLE: An Engineer’s

tool for hardware system design, ICL Technical Journal Vol.
8 No. 3 May 1993.

[2] IEEE Standard VHDL Language Reference Manual. IEE
Std 1076-1993, The Institute of Electrical and Electronic
Engineers, New York, USA, 1994.

[3] Anders Olsen, Over Færgemand et al.:Systems Engineering
Using SDL-92, Elsevier, 1994.

[4] M.M. Kamal Hashmi and Alistair C. Bruce:Design and
Use of a System-Level Specification and Verificatio
Methodology, IEEE European Design Automation
Conference 1995.

[5] Dyson Wilkes 1996,SYSTEL Project Proposal, EKA/NR/
W-96:136. Ericsson internal document.

[6] J.A. Rowson and A. Sangiovanni-Vincentelli,Interface-
based Design, Proceedings of the 34th Design Automation
Conference 1997.

[7] S. Hodgsom and M.M.K. Hashmi,SuperVISE - System
Specification and Design methodology, ICL Systems
Journal Vol. 12 Issue 2 November 1997.

[8] A. Sangiovanni-Vincentelli, P.C. McGeer and A. Saldanh
Verification of Electronic Systems, Proceedings of the 33rd

Design Automation Conference 1996.

[9] M.M.Kamal Hashmi, ICL: VHDL+ Language Reference
Manual, Available on-line at http://www.icl.com/da.

[10] F. Belina, D. Hogrefe, A Sarma;"SDL with Applications
from Protocol Specification”Prentice Hall, 1991 (SDL, ITU
Recommendation Z.100).

[11] Kenneth J. Turner(editor); "Using Formal Description
Techniques - An Introduction to ESTELLE, LOTOS an
SDL”, Wiley, 1993 (LOTOS, ISO/IEC 8807).

[12] R.B.Cooper, Introduction to Queuing Theory, Edward
Arnold Ltd., 1981

[13] J.F. Hayes, Modelling and Analysis of Computer
Communication Networks, Plenum Press, New York, 1986

[14] Project 23909: SYSTEL - Final Report, European
Commission

[15] Yossi Malka, Avi Ziv, Design Reliability - Estimation
thourgh Statistical Analysis of Bug Discovery Data, Proc
DAC 1998, ACM

	Main Page
	DAC99
	Front Matter
	Table of Contents
	Session Index
	Author Index

