
On ILP Formulations for Built-In Self-Testable
Data Path Synthesis

Han Bin Kim
Dept. of Electr. & Comput. Eng.

Virginia Tech, Blacksburg
VA 24061-0111
1-540-231-4942

hanbink@ee.vt.edu

Dong Sam Ha
Dept. of Electr. & Comput. Eng.

Virginia Tech, Blacksburg
VA 24061-0111
1-540-231-4942

ha@vt.edu

Takeshi Takahashi
Advantest Lab. Ltd.

48-2 Matsubara, Kamiayashi, Aoba-ku
Sendai, Miyagi 989-31, Japan

81-22-392-8731

takeshi@atl.advantest.co.jp

ABSTRACT
In this paper, we present a new method to the built-in self-
testable data path synthesis based on integer linear programming
(ILP). Our method performs system register assignment, built-in
self-test (BIST) register assignment, and interconnection
assignment concurrently to yield optimal designs. Our
experimental results show that our method successfully
synthesizes BIST circuits for all six circuits experimented. All
the BIST circuits are better in area overhead than those
generated by existing high-level BIST synthesis methods.

Keywords
high-level BIST synthesis, built-in self-test, BIST, ILP.

1. INTRODUCTION
High-level built-in self-test (BIST) synthesis aims to embed
BIST capability for the synthesized circuits, and it usually
employs a BIST architecture called the parallel BIST [1]-[6].
The parallel BIST, which is based on random pattern testing,
assigns a test pattern generator and a test data evaluator for
every input/output port of a module (often combinational
circuit) under test.

One of the earliest high-level BIST synthesis methods was
proposed by Papachristou et al. [1]. For their method, all
operations and variables are assigned to avoid self-adjacent
registers, which are undesirable in BIST due to high area
overhead. Their method was refined later to further reduce the
area overhead [2]. Avra proposed an elegant solution to avoid
self-adjacent registers based on register conflict graphs [3].
Parulkar et al. investigated a method that maximizes the sharing
of test registers to reduce the area overhead [4]. The above
mentioned methods focus on minimization of area overhead in
BIST synthesis. To reduce test time in BIST, Harris and
Orailoglu examined conditions that prevent concurrent testing of
modules [5]. In our earlier work, we proposed a method that
considers both area overhead and test time in the synthesis
process [6]. Our method allocates signature registers first, so

that the synthesized BIST circuit is guaranteed be tested in a k-
test session where k is 1, 2, ...N and N is the number of modules.

Hafer and Parker pioneered formulating a high-level synthesis
problem into an integer linear programming (ILP) model in the
early 1980s [7]. Some recent works include Gebotys and
Elmasry and Rim et al. [8] [9]. Gebotys and Elmasry applied an
ILP to architectural synthesis where a scheduling and a
module/register allocation were performed concurrently [8].
Rim et al. presented an ILP model to solve the binding problem
focusing on minimizing hardware resources [9]. A major
advantage of an ILP based approach is that the obtained solution
is optimal though computationally intensive due to the inherent
nature of ILP, which involves an exhaustive search.

In this paper, we propose an ILP based method that performs
system register assignment, BIST register assignment, and
interconnection assignment concurrently to achieve a global
optimality. The objective for our method is to minimize the area
for each k-test session. Hence, our BIST circuit is minimal in
area overhead for each k-test session. Hence, like our earlier
method presented in [6], our ILP-based method offers a range of
designs with different figures of merit in area and test time.

We assume that readers understand basics of ILP. Otherwise,
readers may refer to [10]. The paper is organized in the
following manner. In Section 2, we briefly explain high-level
synthesis and describe necessary terms. In Section 3, we
describe the proposed ILP formulations for BIST register and
interconnection assignments. Section 4 contains experimental
results. Section 5 concludes the paper.

2. BACKGROUND
High-level synthesis involves scheduling, module assignment,
and register assignment. Among the three operations, register
assignment has the greatest impact on the parallel BIST and
hence is the subject of the paper. In this paper, we consider
DFGs in which scheduling and module assignment have been
completed. All examples given in this section are for the DFG
and data path given in Fig. 1.

Gray lines in the DFG denote clock cycle boundaries called
control steps. A register should be assigned to each input or
output variable on a clock boundary, and this process is called
register assignment. If two variables overlap at a control step,
the two variables are incompatible. Two incompatible variables
should be assigned to two different registers. The data path in
Fig. 1(b) is obtained under a register assignment: R0 = {0, 4},
R1 = {1, 3, 6}, and R2 = {2, 5, 7}.

_

Permission to make digital/hardcopy of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, the copyright notice, the title of the publication
and its date appear, and notice is given that copying is by permission of ACM, Inc.
To copy otherwise, to republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
DAC 99, New Orleans, Louisiana
(c) 1999 ACM 1-58113-109-7/99/06..$5.00

The horizontal crossing of a control step is the number of
variables for the control step. Therefore, the minimum number
of registers required for the synthesis of a DFG is equal to the
maximal horizontal crossing of the DFG. The minimum number
of modules necessary for a type of operation is directly obtained
from the maximum currency of the operation. The data path
logic in Fig. 1(b) contains the minimum number of registers
(three) and the minimum number of modules (two). We assume
that the numbers of registers and modules to be used for the
synthesis of a DFG are known a priori.

2.1 Terms
The following nomenclatures are defined for a DFG and are
used for our ILP model described in this paper.

• oV is the set of operations: oV = {8, 9, 10, 11}.

• vV is the set of variables: vV = {0, 1, 2, …, 7}.
• l is the label of an input port of an operation. The leftmost

input port is labeled as 0, the next right port as 1, and so
on. An input port is designated by its label.

• I(o) is the set of input ports for an operation o: I(8) = {0,1}
and I(9) = {0,1}.

• iE is the set of ordered triples (v, o, l) defined for the
inputs of all operations where o is an operation, l is an
input port of the operation, and v is the variable on the

input port l: iE = {(0,8,0), (1,8,1), (3,9,0), (4,9,1),
(4,10,0), (2,10,1), (5,11,0), (6,11,1)}.

• oE is the set of ordered doubles (o, v) defined for the
outputs of all operations where o is an operation and v is

the output variable of the operation: oE ={(8,4), ((9,5),
(10,6), (11,7)}.

• T is the set of control steps: T = {0, 1, 2, 3}.
• C is the set of constants: C = ∅.

The following nomenclatures are defined for a data path logic to
be synthesized from a DFG.
• R is the set of the registers: R = {0, 1, 2}.
• M is the set of modules: M = {3, 4}.
• I(m) is the set of input ports of a module m where m∈M:

I(3) = {0,1} and I(4) = {0,1}.

A binary variable xvr (xom) is 1 only when a variable (operation)
v (o) is assigned to a register (module) r (m) and is 0 otherwise.
Each variable (operation) should be assigned to only one
register (module).

An interconnection from a register r to an input port l of a
module m is allowed (if and) only if there exists an edge
between at least one variable v assigned to the register and at
least one operation o assigned to the module. In other words, a
binary variable rmlz is 1 only if there is at least one edge (v, o, l)

∈Ei in the DFG such that v is assigned to r and o is assigned to
m. Similarly, a binary variable mrz is 1 only if there is an

interconnection between the output of a module m to a register r
and is 0 otherwise. For details on register assignment and
interconnect assignment, refer to [9] and [10].

2.2 BIST Synthesis and Test Registers
Two constraints are imposed in our BIST synthesis (and in most
BIST synthesis systems). First, test pattern generators and
signature registers are reconfigured from existing system
registers. In other words, all test registers function as system
registers during normal operation. Second, extra paths are not
added for testing. It can be seen easily that the constraints can
be met through reconfiguration of existing registers into four
different types of test registers described below.

A system register may be converted into one of four different
types of test registers: a test pattern generator (TPG), a multiple
input signature register (short for signature register), a built-in
logic block observer (BILBO), or a concurrent BILBO
(CBILBO) [11],[12]. If a register should be a TPG and a
signature register (SR) at the same sub-test session, it should be
reconfigured as a CBILBO. If a register should behave as a TPG
and an SR, but not at the same time, it should be reconfigured as
a BILBO. Reconfiguration of a register into a CBILBO requires
double the number of flip-flops of the register.

3. PROPOSED ILP FORMULATIONS
In the following, we present ILP formulations for BIST register
assignments and interconnection assignments, multiplexer
assignments, which are derived directly from interconnection
assignments. The ILP formulations are solved to minimize an
objective function for each k-test session, in our case hardware
area in terms of the number of transistors, where k is 1, 2, ...N
and N is the number of modules of the DFG. Hence, our method
finds an optimal (in area) BIST design for each k-test session.

3.1 Interconnection Assignment
One of the constraints for the proposed BIST synthesis is not to
add extra paths dedicated for testing. A straightforward
minimization of a cost function may create adverse paths in the
synthesized data path. In order to prevent such adverse paths, it
is necessary to impose some constraints as described below.

Using an auxiliary binary variable vromlz , the condition can be

formulated as follows for non-commutative modules.

)(,, ,0
,

mIlMmRrzz
ov VoVv

rmlvroml ∈∈∈∀≥−∑
∈∈

(1)

i
vromlomvr ElovMmRrzxx ∈∈∈∀≥⋅−+),,(,, ,02 (2)

Upon rmlz =1, Eq. (1) requires at least one auxiliary binary

variable vromlz to be 1. From Eq. (2), the auxiliary variable can

be 1 only if 1=vrx , 1=omx , and (v, o, l) ∈Ei. Therefore, the

two equations guarantee the existence of an edge between the
variable v and the input port l of the operation o if rmlz =1. In a

1

2

3

0

+

*

*

0 1 2

3 4

5 6

7

8

9
10

11

+

(a) Data flow graph

R0 R1 R2

+ *

M3
M4

(b) A data path

Figure 1. A data flow graph and a synthesized data path

similar manner, interconnections from modules to registers can
be formulated.

Commutative operations, in which the two input ports can be
swapped, are modeled as follows [9]. Inputs are applied to input
ports of the operation through pseudo-input ports. Let a binary
variable sl*,l,o = 1 if a connection exists between a pseudo-input
port l* and an input port l of an commutative operation o.
Hence, Eq. (3) should replace Eq. (2) for a commutative
operation.

i
vromlollomvr

Elov

oIlMmRrzsxx

∈

∈∈∈∀≥⋅−++

*),,(

),(,, ,03,*,
(3)

3.2 Multiplexer Assignment
Let an integer variable rm represent the number of wires

connected to an input of a register r. In other words, the variable
represents the number of the multiplexer inputs attached at the
input of a register r. Similarly, an integer variable mlm

represents the size of the multiplexer attached to an input port l
of a module m. The process is formulated in (4) and (5).

 , Rrmz r
Mm

mr ∈∀=∑
∈

(4)

)(, , mIlMmmz ml
Rr

rml ∈∈∀=∑
∈

(5)

The total number of n-input multiplexers is obtained by
scanning all mlm variables for all inputs of registers and

modules.

3.3 BIST Register Assignment
The proposed method tries to find an optimal BIST circuit for
each k-test session where k is from 1 to N and N is the number
of modules. Two notations are used in the subsection. A variable
p lables a sub-test session (which tests a subset of modules of
the BIST circuit) performed during a k-test session, where p = 1,
2, … k. A set K is defined as the set of sub-test sessions, which
is {1, 2, …k} for a k-test session. We present ILP formulas for
BIST register assignments in the following.

3.3.1 Signature Register Assignment
In this subsection, we formulate the assignment of SRs for our
ILP model. All examples given in this subsection refer to the
data path in Fig. 2. Note that the partial data path, when
registers are properly reconfigured for BIST, can be tested in
one test session or two test sessions.

A binary variable mrps is 1 only if a register r is reconfigured as

the SR for a module m in a p sub-test session. Otherwise, the
variable is 0. A register r, when reconfigured to an SR, can test a

module m only if there is an interconnection from the module m
and the register r. Hence, the following condition should hold.

RrMmsz
Kp

mrpmr ∈∈∀≥− ∑
∈

, ,0 (6)

There are eight mrps variables (i.e., s3,0,1, s4,0,1, s3,1,1, and s4,1,1

for p=1 and s3,0,2, s4,0,2, s3,1,2, and s4,1,2 for p=2) for K={1, 2}.
Among the eight variables, the above equation sets two
variables, s4,1,1, and s4,1,2, to 0 since 41z =0. In other words,

register R1 cannot be reconfigured as an SR for module M4 in
either sub-test session.

The next condition is that each module should be tested only
once in a sub-test session p during the entire k-test session.
Thus,

Mms
KpRr
mrp ∈∀=∑

∈∈
 ,1

,
(7)

Example: s3,0,1 + s3,1,1 + s3,0,2 + s3,1,2 = 1 and s4,0,1 + s4,0,2 = 1 for
module M3 and module M4

Finally, although an SR may be shared by several modules
during testing, it should not be shared in the same sub-test
session. Hence,

KpRrs
Mm

mrp ∈∈∀≤∑
∈

, ,1 (8)

For register R0 under the two-test session, Eq. (8) yields s3,0,1 +
s4,0,1 ≤ 1 for p=1 and s3,0,2 + s4,0,2 ≤ 1 for p=2.

3.3.2 Test Pattern Generator Assignment
In this subsection, we formulate the assignment of TPGs. All
the illustrations given in this subsection refer to Fig. 3. Note
that the data path can be tested in a 1-test session or a 2-test
session.

A binary variable rmlpt is 1 only if a register r is the TPG for an

input port l of a module m in a p sub-test session. As for the case
of the SR assignment, a TPG needs a connection from the
register and the input of the module. Each input port of a
module m needs only one TPG for the entire k-test session. The
following two equations specify them.

)(, , ,0 mIlMmRrtz
Kp

rmlprml ∈∈∈∀≥− ∑
∈

(9)

)(, ,1
,

mIlMmt
KpRr

rmlp ∈∈∀=∑
∈∈

(10)

From (9), we need to consider only ten variables, t0,3,0,1, t1,3,1,1,
t1,4,0,1, t2,3,1,1, and t2,4,1,1 for p=1 and t0,3,0,2 , t1,3,1,2 , t1,4,0,2 , t2,3,1,2 ,
and t2,4,1,2 for p=2, for the data path. All other binary variables

rmlpt are set to 0 due to the lack of interconnections. Eq. (10)

Figure 3. A partial data path for a TPG assignment

R0 R1 R2

+ *
M3 M4

TPG TPGTPG

Figure 2. A partial data path for an SR assignment

R0 R1

+ *

M4

SR SR

M3

yields the following equations for module M3: t0,3,0,1 + t0,3,0,2 = 1
and t1,3,1,1 + t1,3,1,2 + t2,3,1,1 + t2,3,1,2 = 1.

All TPGs assigned to the inputs of a module and the SR of the
module should be active in the same sub-test session as
specified below.

KpMmtt
Rr

prm
Rr

prm ∈∈∀=− ∑∑
∈∈

 , ,010 (11)

KpMmts
Rr

prm
Rr

mrp ∈∈∀=− ∑∑
∈∈

 , ,00 (12)

For example, t0,3,0,1 – (t1,3,1,1 + t2,3,1,1) = 0 for module M3 under
p=1 from (11), and s3,0,1 + s3,1,1 - t0,3,0,1 = 0 from (12).

Finally, a TPG should not be shared between the two input ports
of a module. This requirement is necessary to achieve high fault
coverage. Thus,

KpMmRrtt prmprm ∈∈∈∀≤+ , , ,110 (13)

3.3.3 BILBO and CBILBO Assignment
To formulate the BILBO and CBILBO assignment, we need to
define a binary variable x. A binary variable x is 1 when ∑i xi is
at least 1 and is 0 otherwise where xi is a binary variable. In
other words, the variable x is the OR operation of all xis. A
variable x is formulated as follows.

.s ofnumber the toequalconstant a is where,0 ii
i

ii xxxxx ∑ ≥−⋅

(14)

For example, let xi, i=1, 2, 3 have values x1=0, x2=1, and x3=0.
Then, ix is 3, and ∑i ix is 1. The variable x should be 1 to

satisfy (14). x is the 0 only if all xis are 0.

We describe a condition that requires a register be reconfigured
into a BILBO or a CBILBO first. Then, we elaborate the case
where the register should be reconfigured into only a CBILBO.
A binary variable tr (sr) is 1 only when a register r is used as a
TPG (an SR) in at least one sub-test session. If both tr and sr

are1, then the register r should be reconfigured into a BILBO or
a CBILBO. Eq. (15) determines if a register r is used as a TPG,
and Eq. (16) determines if it is used as an SR. Only if the
register is used as a TPG and an SR, a binary variable br is set to
1 due to (17) and (18). Hence, br =1 indicates that the register r
should be reconfigured into either a BILBO or a CBILBO.

Rrttt
KpmIlMm

rmlprrmlp
∈∀≥−⋅ ∑

∈∈∈
 ,0

),(,
(15)

 ,0
,

Rrsss
KpMm

mrprmrp ∈∀≥−⋅ ∑
∈∈

(16)

Rrbts rrr ∈∀≤−+ ,1 (17)

Rrbts rrr ∈∀≥⋅−+ ,02 (18)

In the above, we identified the case where a register should be a
BILBO or a CBILBO. We refine the case next. If a register is
used as a TPG and an SR in the same sub-test session p, the
register should be reconfigured as a CBILBO. Otherwise, it
should be a BILBO. First, let us check the case for a TPG. A
binary variable trp is 1 if a register r is used as a TPG in a sub-
test session p and is 0 otherwise. It is formulated as

., ,0
)(,

KpRrttt
mIlMm

rmlprprmlp
∈∈∀≥−⋅ ∑

∈∈
(19)

Note that a binary variable rmlpt is set to 1 only if a register r is

the TPG for an input port l of a module m in a p sub-test session.
Hence, Eq. (19) sets the binary variable trp to 1 if a register r is a
TPG of any module in a sub-test session p.

Next, let us check the case for an SR. A binary variable srp is 1 if
a register r is used as an SR in a sub-test session p and is 0
otherwise. The formulation is

., ,0 KpRrsss
Mm

mrprpmrp ∈∈∀≥−⋅ ∑
∈

(20)

Note that a binary variable mrps is 1 only if a register r is used

as the SR for a module m in the p sub-test session. Hence, Eq.
(20) sets the binary variable srp to 1 if a register r is used as an
SR for any module in a sub-test session p.

Eq. (21) and (22) sets a binary variable crp to 1 only if trp=1 and
srp=1. In other words, crp is 1 only if a register r is reconfigured
into a TPG and an SR in the same sub-test session p. Hence, the
register should be reconfigured into a CBILBO. Finally, a binary
variable cr is set to 1 due to Eq. (22) if there is at least one sub-
test session which requires a register r to be reconfigured as a
CBILBO. This implies that the register r should be a BILBO if
crp =0 (under br =1).

KpRrcts rprprp ∈∈∀≤−+ , ,1 (21)

KpRrcts rprprp ∈∈∀≥⋅−+ , ,02 (22)

Rrccc
Kp

rprrp ∈∀≥−⋅ ∑
∈

 ,0 (23)

3.3.4 Constants
An operation in a DFG may receive constant values on an input
port. If an input port is not connected to any variable in the
DFG, there is no register to be reconfigured into a TPG for the
input port. Therefore, a case in which an input port is connected
to only constants should be avoided in the assignment process if
possible. In order to avoid such as a case, previous equations (9)
through (12) need to be modified slightly. To conserve space,
the modified formulas are omitted.

3.4 Objective Function
The objective of an ILP is to minimize an objective function,
i.e., cost function, for the ILP formulations. The cost function to
be minimized for the proposed ILP model represents hardware
area (in terms of transistor count) and is given below.

cc
nn ttmmccbbt tssrr NwNw Nw Nw Nw Nw Nw n ++++++ ∑

where
nmcbtsr N N N N NN and ,,,,, are the number of system

registers, SRs, TPGs, BILBOs, CBILBOs, and n-input
multiplexers, respectively. A variable ctN is the number of

constants that should be reconfigured into TPGs. Necessary ILP
formulations for computation of the numbers are not shown due
to the space limit. Weights,

nmbtsr wwwww and ,,,, are the

number of transistors for the corresponding hardware. The
weight ctw is the cost for constants. We assign ctw a large

number greater than any other weight to avoid, if possible, the
case in which a port needs an extra TPG or an extra wire to an
existing TPG.

3.5 Reduction of the Search Space
A register assignment in high-level synthesis is to assign a
subset of compatible variables into a register. Therefore, n
incompatible variables are assigned to n different registers.
Since all the possible assignments are isomorphic, an arbitrary
selection of an assignment does not affect the quality of the
solution. However, it reduces the search space by n!. We employ
the method for our ILP model to reduce the search space.

4. EXPERIMENTAL RESULTS
In this section, we present experimental results on the
performance of our proposed method, called ADVBIST. We
also compare the performance of ADVBIST with three other
BIST synthesis methods: RALLOC proposed by Avra, BITS
proposed by Parullkar et al., and our previous method ADVAN
[3],[4],[6]. For the implementation of RALLOC and BITS, we
followed the algorithms presented in [3] and [4], respectively.
We used a commercial ILP solver to solve the ILP formulations
of ADVBIST [13].

4.1 Background
We measured the performance of the four BIST synthesis
systems for six data. Two data flows called tseng and Paulin,
respectively, are widely adopted for benchmarking high-level
BIST synthesis. The other four data flow graphs are a 6th order
FIR (finite impulse response) filter, a 3rd order IIR (infinite
impulse response) filter, a 4-point DCT (discrete cosine
transformation) circuit, and a 6-tap wavelet filter. The other four
data flow graphs were synthesized using HYPER [14]. The
width of the data path logic is eight for all the circuits. The
reference circuits, which were used to measure the area
overhead of BIST designs, were obtained through an ILP for
data path synthesis. The reference circuits are optimal in area.

In this paper, the area of a circuit is represented by the transistor
count of registers and multiplexers in the circuit. The data path
logic of a circuit is not considered in the transistor count. The
number of transistors in test registers and multiplexers is based
on the circuits of [11] and [12] and is given in Table 1. In the
table, #Trs and #MuxIn denote the number of transistors and the
number of multiplexer inputs, respectively. Note that the
transistor counts of registers and multiplexers are the weights of
our objective function described in Section 3.4.

Table 1. Number of transistors of 8-bit test registers and
multiplexers

a) Test registers

Type Reg. TPG SR BILBO CBILBO

#Trs 208 256 304 388 596

b) Multiplexers

#MuxIn 2 3 4 5 6 7

#Trs 80 176 208 300 320 350

4.2 Experimental Results
We conducted experiments for the six circuits to measure the
performance of the proposed method. We set a limit on the
execution time, which is 24 CPU hours, in running the ILP
solver. Hence a solution may not be optimal if obtained without
searching all the possible solution space due to the time limit.
Experimental results on area overhead (%) and processing time

of ADVBIST for each test session are given in Table 2. The
entries marked with “*” are the ones whose processing time
reached the CPU time limit.

Table 2: Performance of the proposed method ADVBIST

Ckt k=1 k=2 k=3 k=4

tseng overhead 33.8 28.2 25.7 -

time 58s 1m 22s 35s -

overhead 37.5 28.1 25.3 25.3
paulin

time 4h 42m 0s 24m 55s 11m 40s 59m 34s

overhead 30.1 21.2 15.3 -
fir6

time 17m 34s 40m 16s 23h 56m 4s -

overhead 23.6 17.3 16.3 -
iir3

time 3h 11m 8s 2h 6m 26s 2h 50m 8s -

overhead 23.3* 24.9* 45.5* 28.3*
dct4

time 24h 24h 24h 24h

overhead 13.9 11.3 11.3 -
wavelet6

time 11m 9s 10h 5m 15s 14h 39m 24s -

As shown in the table, ADVBIST successfully synthesized a
BIST data path for each test session for all six circuits. Among
the 20 BIST designs obtained by ADVBIST, 16 circuits are
optimal (i.e., minimal) in area, and the four circuits of dct4 may
not be optimal.

The area overhead of ADVBIST ranges from 11 percent to 46
percent. Since the area overhead of a circuit is calculated
without considering the area for the data path logic modules, the
actual area overhead will be much lower than the ones presented
in the table. For example, the area overhead of paulin is 37.5
percent for k=1. The actual area overhead would be reduced to
about 15.9 percent under a certain implementation of the data
path logic. Therefore, the area overhead of ADVBIST is small to
moderate for all six circuits. Note that the area overhead of the
16 optimal BIST designs is minimal and cannot be reduced any
further.

We compare the performance of ADVBIST with three other
BIST synthesis systems, ADVAN, RALLOC and BITS
[3],[4],[6]. To make the comparison meaningful, the six data
flow graphs used in the experiment employed the same
scheduling and the same module assignment for all four BIST
systems. The performance of the four high-level BIST synthesis
systems is presented in Table 3. The table shows the case in
which the number of test sessions is maximal for a given circuit.
The number of test sessions for a circuit is given under the
circuit name in the table. Column headings for the table are
explained below.

R: total number of registers,
T (S): number of TPGs (SRs),
B (C): number of BILBOs (CBILBOs),
M: total number of multiplexer inputs,
Area: total number transistors of the registers and the

multiplexers,
OH: the area overhead of the BIST design (%)

From the table, ADVBIST performs better than the other
systems in area overhead for all circuits. Since five of the six
BIST circuits of ADVBIST are optimal in area, they are
expected to be better than other designs. However, even the non-
optimal BIST circuit for dct4 is better than other designs. For

some circuits, area overhead of ADVBIST is substantially less
than that for the other methods. For example, the area overhead
of ADVBIST is 11 percent for wavelet6, while that for the other
methods are in the range of 27 to 45 percent. It should be
pointed out that ADVBIST and our previous method ADVAN
do not add any additional registers. However, RALLOC needs
one additional register for fir6, iir3, and wavelet6, while BITS
requires one additional register for dct4. The addition of
registers incurs large area overhead as can be seen in Table 4.

Table 3. Performance of various high level BIST synthesis
systems

Ckt Method R T S B C M Area OH(%)

Ref. 5 14 1600

ADVBIST 5 2 1 2 0 14 2152 25.7

ADVAN 5 2 1 0 0 23 2368 32.4

RALLOC 5 1 0 3 0 14 2300 30.4

tseng

(3)

BITS 5 2 1 1 0 20 2436 34.3

Ref. 5 19 1856

ADVBIST 5 2 2 1 0 23 2484 25.3

ADVAN 5 3 1 0 0 26 2684 30.8

RALLOC 5 1 0 3 0 25 2892 35.8

paulin

(4)

BITS 5 2 0 0 1 27 3024 38.6

Ref. 7 20 2576

ADVBIST 7 4 1 0 0 26 3040 15.3

ADVAN 7 2 1 0 0 28 3308 22.1

RALLOC 8 1 1 2 0 36 4212 38.8

fir6

(3)

BITS 7 1 0 0 1 24 3280 21.5

Ref. 6 22 2224

ADVBIST 6 5 1 0 0 23 2656 16.3

ADVAN 6 3 1 0 0 32 3432 35.2

RALLOC 7 1 0 2 0 38 4212 47.2

iir3

(3)

BITS 6 2 0 2 0 29 3176 30.0

Ref. 6 24 2320

ADVBIST 6 3 1 1 0 32 3236 28.3

ADVAN 6 3 1 0 0 35 3420 32.2

RALLOC 6 1 1 2 0 37 3812 39.1

dct4

(4)

BITS 7 1 1 0 1 38 4180 44.5

Ref. 7 25 2880

ADVBIST 7 2 2 0 0 31 3248 11.3

ADVAN 7 2 1 0 0 46 4182 31.1

RALLOC 8 1 0 3 0 50 5186 44.5

wavelet6

(3)

BITS 7 1 0 2 0 40 3946 27.0

Close examination of the BIST circuits reveals that the better
performance of ADVBIST is largely due to less multiplexer
area. The number of multiplexers and the size of individual
multiplexers are sensitive to the BIST register assignment,
which differentiates essentially the four BIST synthesis systems.

5. SUMMARY
In this paper, we presented a new approach based on integer
linear programming (ILP) that performs the three register
assignment tasks concurrently to yield optimal designs. In
addition, our approach finds an optimal register assignment for

each k-test session. Our experimental results show that the

proposed method successfully synthesized BIST circuits for
every k-test session for all six circuits experimented. Among 20
BIST circuits, 16 circuits are minimal in area overhead. Our
method performs better for all circuits in area overhead than the
other three BIST synthesis systems.

The major limitation of the proposed method lies in the long
processing time for large designs. Several measures such as
heuristics to reduce the search space and partition of designs
may be employed to address the problem. Further research is
necessary in this area to fully utilize the potential of ILP based
approaches in high-level BIST synthesis.

6. REFERENCES
[1] C.A. Papachristou, S. Chiu, and H. Harmanani, "A data

path synthesis method for self-testable designs, " Proc. 28th

Design Automation Conf., pp. 378-384, June 1991.

[2] H. Harmanani and C.A. Papachristou, "An improved
method for RTL synthesis with testability tradeoff," Intl.
Conf. on Computer-Aided Design, pp. 30-35, Nov. 1993.

[3] L.J. Avra, "Allocation and assignment in high-level
synthesis for self-testable data paths," Proc. Int. Test Conf.,
pp. 463-472, Oct. 1991.

[4] I. Parulkar, S. Gupta, and M.A. Breuer, “Data path
allocation for synthesizing RTL designs with low BIST
area overhead,” Proc. 32nd Design Automation Conf., pp.
395-401, June 1995.

[5] A. Orailoglu and I.G. Harris, “Microarchitectural synthesis
for rapid BIST testing,” IEEE Trans. Computer-Aided
Design, Vol.16, No. 6, pp. 573-586, June 1997.

[6] H.B. Kim, T. Takahashi, and D.S. Ha, "Test session
oriented built-in self-testable data path synthesis,” Proc.
Int. Test Conf., pp. 154-163, Oct. 1998.

[7] L. Hafer and A. Parker, “A formal method for the
specification, analysis, and design of register-transfer level
digital logic,” IEEE Trans. on Computer-Aided Design,
Vol. 2, pp. 4-18, Jan. 1983.

[8] C.H. Gebotys and M.I. Elmasry, “Global optimization
approach for architecture synthesis,” IEEE Trans.
Computer-Aided Design, Vol. CAD-12, pp.1266-1278,
Sept. 1993.

[9] M. Rim, A. Mujumdar, R. Jain, and R. DeLeone, “Optimal
and heuristic algorithms for solving the binding problem,”
IEEE Trans. on VLSI Systems, Vol. 2, No. 2, pp. 211-225,
June 1994.

[10] G. DeMichelli, Synthesis and Optimization of Digital
Circuits, McGraw Hill, 1994.

[11] Koenemann, B.J. Mucha, and G. Zwiehoff, “Built-in logic
block observation techniques,” Proc. Int. Test Conf., pp.
37-41, Oct. 1979.

[12] L.-T. Wang and E.J. McCluskey, “Concurrent built-in logic
block observer (CBILBO),” Proc. Int. Symp. on Circuits
and Systems, pp. 1054-1057, May 1986.

[13] CPLEX 6.0 Reference Manual, ILOG, 1998.

[14] M. Potkonjak and J. Rabaey, “A scheduling and resource
allocation algorithm for hierarchical signal flow graphs,”
Proc. 36th Design Automation Conf., pp. 7-12, June 1989.

	Main Page
	DAC99
	Front Matter
	Table of Contents
	Session Index
	Author Index

