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Abstract
Retiming is an optimization technique for synchronous circuits in-
troduced by Leiserson and Saxe in 1983. Although powerful, re-
timing is not very widely used because it does not handle in a sat-
isfying way circuits whose registers have load enable, synchronous
and asynchronous set/clear inputs. We propose an extension of re-
timing whose basis is the characterization of registers into register
classes. The new approach called multiple-class retiming handles
circuits with an arbitrary number of register classes. We present re-
sults on a set of industrial FPGA designs showing the effectiveness
and efficiency of multiple-class retiming.

1 Introduction
Retimingis a powerful optimization technique for synchronous cir-
cuits that was introduced by Leiserson and Saxe in 1983 [8]. It con-
sists of moving the sequential elements (registers) in a circuit while
preserving its I/O behavior. Retiming can be used (1) to reduce the
clock period of a circuit (minperiodretiming) and (2) to reduce its
number of registers while achieving a given clock period (minarea
retiming); the latter is of most practical interest.

Since the seminal work by Leiserson and Saxe [8, 9], many re-
searchers have contributed to the theoretical and practical aspects
of retiming. Originally designed to handle edge-triggered flip-flops,
retiming has been extended to also handle multi-phase level-clocked
latches [6, 10]. Efficient implementations [16, 12, 11] have made
retiming applicable to large circuits. Important contributions have
been made to apply retiming to circuits with reset states [19, 4, 18,
13]. Finally, it has been shown that retiming can be used together
with existing combinational optimization techniques [14, 2, 3, 15,
5], to further improve circuit performance.

Despite its proved effectiveness and efficiency, retiming has not
been very widely used in industrial logic synthesis tools. One of
the main technical reasons for this is that most available retiming
packages do not handle in a satisfying way the circuits that engi-
neers really design today. In practice, these packages work well on
circuits whose registers do not have synchronous or asynchronous
set/clear inputs, as well as no synchronous load enable input.

However, most modern technologies offer registers with asyn-
chronous, and/or synchronous reset inputs, as well as a synchronous
load enable input (also called clock enable). For instance, every
logic block in a Xilinx XC4000 FPGA contains two D-type edge-
triggered flip-flops with asynchronous reset and synchronous load
enable inputs which can be connected to arbitrary signals [20]. As
shown by the results presented in Section 6, fully exploiting these
capabilities is absolutely mandatory to achieve high design quality.
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Figure 1: Two ways of retiming registers with load enables.

This is illustrated in Fig. 1 on a circuit that has two registers with
load enable inputs. To apply existing retiming approaches, complex
registers are transformed into simple registers with some additional
logic to implement the synchronous load enable and reset behaviors.
This transformation transforms the circuit a) into c), which is larger
than a). Note that a register with asynchronous reset input has no
equivalent synchronous circuit with a simple register and additional
logic. Moving the simple registers forward results in circuit d). It
can be seen that applying this retiming step results in an additional
area cost of two registers and two multiplexors.

Camposano and Pl¨oger showed [1] that registers can be moved
togetherwith their load enable inputs if they are connected to the
same load enable signal. For instance, both registers in Fig. 1a) have
the same synchronous load enable signal and thus can be moved
forward together with theirEN input to produce circuit b) which is
much smaller than circuit d). Similar conditions for registers with
asynchronous and synchronous reset inputs were presented by Sing-
hal et al. [18]. However, both works only discuss the conditions
for a single retiming step and do not present a comprehensive ap-
proach for computing a retiming solution. A first general approach
to this problem was proposed by Legl et al. in [7], but they did not
present any implementation showing thatminperiodand minarea
could both be solved in an effective and efficient way.

In this paper we present a practical and comprehensive approach
calledmultiple-class retiming, or mc-retiming, which allows to ef-
ficiently and effectively compute a minperiod or minarea retiming
solution for circuits designed with a variety of different registers.
MC-Retiming is an extension of retiming that manipulates complex
registers. The registers are classified intoregister classeswhich are
used to determine how far backward and forward each register can
be moved in the circuit. This information is then used to map the
problem of multiple-class retiming into abasic retiming problem
which can be efficiently solved using existing retiming approaches.
Thus, the big advantage of mc-retiming is that it can reuse many of
the efficient techniques available for basic retiming.

After giving background information on basic retiming in Sec-
tion 2, we introduce in Section 3 the multiple-class retiming prob-
lem using a retiming graph model in which we classify the registers
into register classes. In Section 4 we show how to map the mul-
tiple-class retiming problem into a basic retiming problem. Sec-
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tion 5 presents an efficient implementation of multiple-class retim-
ing in which we reuse existing basic retiming approaches. Finally,
we present in Section 6 experimental results obtained with this im-
plementation on a set of industrial FPGA designs.

2 Basic Retiming
The basic retiming approach presented by Leiserson and Saxe [9]
handles sequential circuits whose registers are controlled by a sin-
gle clock and possibly have reset values. A sequential circuit is
represented by a vertex-weighted, edge-weighted, directed graph
G = (V;E;d;w), called retiming graph. Each combinational gate
and each primary input and output port is modeled by a vertexv2V.
An edgeeuv models a connection from an output of gateu to an in-
put of gatev, passing through an arbitrary number of registers. A
host vertex vh is introduced to model the environment of the circuit,
together with edges fromvh to all primary inputs, and edges from
all primary outputs tovh. The vertex weightd(v) is the propagation
delay of the corresponding gatev. The edge weightw(euv) is the
number of registers along the interconnection from gateu to gatev.
For a pathp : u; v from vertexu to vertexv, the path weightw(p)
is the sum of the edge weights along the path, and the path delay
d(p) is the sum of the vertex delays along the path including the de-
lays of verticesu andv. Finally,W(u;v) denotes the minimum path
weight of all paths fromu to v, andD(u;v) denotes the maximum
path delay among all minimum weighted paths fromu to v.

A retimingof G is an integer-valued vertex labelingr : V ! Z.
By definition, the retiming (or lag) valuer(v) is the number of layers
of registers moved from the fanout to the fanin edges ofv. If r(v) is
negative, registers are actually moved from the fanin to the fanout
edges ofv. The edge weights after applyingr to G are calculated
using

wr(euv) = w(euv)+ r(v)� r(u):

A retiming is legal if all edge weightswr(euv) are nonnega-
tive (circuit constraints). A clock periodφ is said to befeasible
for G if there exists a legal retiming ofG such that any path with
D(u;v) > φ has at least one register on it in the retimed graph (pe-
riod constraints). A clock period is thus feasible if there exists a
retiming that satisfies the linear difference constraints

circuit constr.: r(u)� r(v) � w(euv); 8euv2 E
period constr.: r(u)� r(v) � W(u;v)�1; 8D(u;v)> φ:

The satisfiability of these constraints and an appropriate set of
retiming values can be efficiently computed, e.g., by theFEASal-
gorithm [9]. Using the FEAS algorithm and binary search, it is easy
to compute the minimum feasible clock periodφmin.

To solve the minimum area retiming problem, Leiserson and
Saxe introduced a cost function that takes into account the possible
sharing of the registers on the different fanout edges of each vertex
[9]. This cost function, together with the circuit and period con-
straints, forms a special integer linear program (ILP) whose solution
can be computed using a minimum-cost flow algorithm [9]. Re-
cently, very efficient reduction techniques have been presented for
this ILP formulation resulting in a significant speedup [16, 12, 11].

3 Multiple-Class Retiming
This section shows how a circuit with complex registers can be re-
timed without transforming these registers into simple registers and
additional logic. It introduces register classes and explains how
classes are added to a retiming graph.

3.1 Retiming Circuits with Multiple-Class Registers
Most sequential elements in synchronous circuits can be represented
by the generic register shown in Fig. 2a). Each register has a signal
connected to the data inputD, the data outputQ, and to the clock
input. Additionally, a register can have inputsSS or SC andAS or
AC which allow to synchronously and asynchronously set or clear
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Figure 2: a) generic registerl and b) corresponding mc-retiming
graph with registerlC of register classC

the register, and a synchronous load enable inputEN. If a register
has, e.g., no load enable capability, then the synchronous load en-
able inputEN of the generic register is deactivated by connecting it
to a signal representing the constant 1.

Generic registers must fulfill certain conditions to be moved
across a combinational logic gate. In general, such a retiming step is
valid if it yields a circuit which is asufficiently old replacement[8]
of the original circuit. It has been shown in [1] that, for registers
with synchronous load enable inputs, moving a layer of registers
across a gate is valid if all registers are connected to the same load
enable signal. The same condition holds for the clock inputs of the
registers, because it is necessary to preserve the temporal equiva-
lence of the circuit [17]. Registers with reset inputs can be moved if
the reset signals are equivalent [18].

Since the validity of moving registers depends on the connected
control signals, we classify the registers of a circuit using the signals
connected to the control inputs.

Definition 1 (Register Class)A register class C is characterized
by a tuple (clk, load, rsync, rasync) of signals. A register l belongs
to class C iff each signal connected to its control inputs is logically
equivalent to the corresponding signal of the class. Two registers
are said to becompatibleiff they belong to the same register class.

It follows from this definition that a layer of registers can be
moved across a logic gate if all registers are compatible.

3.2 Retiming Graph for Multiple-Class Circuits
A circuit which contains multiple register classes is called amul-
tiple-class circuit. Since the validity of moving registers in a mul-
tiple-class circuit directly depends on which classes these registers
belong to, we have to model the class information in the retiming
graph. Especially, it is no longer sufficient to store only the num-
ber of registersw(e) on an edgee of the retiming graph, as the
registers on the edge may belong to different classes. Therefore,
we introduce a modified retiming graphGmc = (V;E;d; l) which
we call amultiple-class retiming graphor, in short, amc-graph.
Fig. 2b) shows how a generic register is modeled in the mc-graph.
Instead of a weightw(e), we attach toe a sequence of registers
l(e) = [l1; � � � ; lw(e)]. l1 corresponds to the register closest to the
source of the edge, whilelw(e) is the register closest to the sink of the

edge. The superscriptC at a registerlC denotes the class to which
it belongs. In the presence of reset inputs, a register is labeled with
appropriate valuess;a 2 f0;1;�g which specify the synchronous
and asynchronous reset values of the register, respectively. For each
control signal, except the clock signals, we introduce an output ver-
tex in the mc-retiming graph and an edge from the vertex generating
the signal to the corresponding output vertex. This is necessary to
ensure that these signals get correctly handled through retiming.

A valid mc-retiming stepfor a vertexv can be performed as
depicted in Fig. 3. For instance, for a forward mc-retiming step at
vertexv, there must be a completelayer of compatibleregisters at
the sink of the fanin edges ofv. The last registers of the fanin edges
are removed, and a new layer of registers with the same register
class is inserted at the source of the fanout edges ofv.

As in the basic retiming approach, we define a retiming for a mc-
graph as an integer-valued vertex labelingr :V ! Z. A mc-retiming
r is legal for a multiple-class circuit, if it can be implemented by a
sequence of valid mc-retiming steps.
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Figure 3: A valid multiple-class retiming step

4 Mapping Multiple-Class to Basic Retiming
This section presents the simple mechanisms that allow us to map
the problem of retiming a multiple-class circuit onto the basic re-
timing problem which can then be solved efficiently by existing ap-
proaches to basic retiming.

4.1 Multiple-Class Retiming Constraints
A legal mc-retiming can only move layers of compatible registers.
As a consequence, a valuer(v)> 0 is valid for the vertexv of a mc-
graph if there existr(v) complete layers of registers on the fanout
paths of vertexv, and if each layer is made of compatible registers.
This ensures that we can performr(v) valid mc-retiming steps back-
ward across vertexv. This also means that the number of complete
layers of compatible registers in the transitive fanout ofv determines
the maximum valid retiming value which we denotebackward mc-
retiming bound rmc

max(v). By analogy, a valuer(v) < 0 is valid if
there existjr(v)j complete layers of compatible registers on the fanin
paths of vertexv. If k is the number of complete layers of compatible
registers in the transitive fanin ofv, then the minimum valid retim-
ing value is given by theforward mc-retiming bound rmc

min(v) =�k.
These mc-retiming bounds can be used to express the conditions

for a mc-retimingr to be legal:

circuit constr.: r(u)� r(v)� w(euv); 8euv2 E (1)
class constr.: rmc

min(v)� r(v)� rmc
max(v); 8v2V: (2)

As in basic retiming, the circuit constraints ensure that retiming
does not create negative edge weights. In addition, the class con-
straints guarantee that at each vertexv only valid mc-retiming steps
are performed. Thus, we can consider a legal mc-retiming to be a
legal basic retiming with additional constraints set on the retiming
values.

The mc-retiming bounds can be easily computed on the mc-
graph. Instead of traversing the register layers reachable in the tran-
sitive fanin or fanout of a vertex, we adopt a different procedure
which was proposed in [7]. In order to compute the backward mc-
retiming bounds, we move registers backward as long as we can
apply valid mc-retiming steps in the graph. Thereby, we count the
number of registers which are moved across each vertex. When no
more valid backward moves are possible, the mc-retiming graph is
maximallybackward retimed, and the number of registers moved
across each vertexv is equal to the backward mc-retiming bound
rmc
max(v). Similarly, to compute the forward mc-retiming bounds,

we move the registers forward as far as possible using valid mc-
retiming steps only. In the maximally forward retimed graph the
negative number of registers moved across a vertexv equals the for-
ward mc-retiming boundrmc

min(v).
Note that we do not consider reset values while computing the

retiming bounds. Although this may result in maximal backward
retiming bounds which can actually not be achieved due to justifi-
cation conflicts, we decided to ignore reset values for two reasons.
First, it was shown in [13] that retiming constraints which guaran-
tee justifiable reset values are generally not unique resulting in a
large number of different constraint sets. Thus, in order to find the
optimal solution a retiming must be computed for each constraint
set. Second, the backward justification of reset values can com-
putationally be very expensive. Thus, we want to justify only those
backward retiming steps which are actually required by the retiming
solution. Our experiments have shown that the number of required
backward retiming steps is usually much smaller than the number
of retiming steps performed during maximal backward retiming.

Thus, by not considering reset states we compute a unique set
of class constraints. Only when implementing the retiming solution
do we compute equivalent reset states and take appropriate action
in case of a justification conflict. Section 5.2 gives more details on
how we compute equivalent reset states.

4.2 Register Sharing for Multiple-Class Registers
Minimum area retiming requires that we take register sharing at the
gate output into account to get correct area estimation. The prob-
lem here is that if we directly apply the cost function introduced
by Leiserson and Saxe [9] to count registers in the mc-graph, this
would produce a register count that would be smaller than the ac-
tual count. Indeed, registers belonging to different classes cannot be
shared. In the example in Fig. 4a) we would report a shared register
count of 2. But the registers of classC1 andC2 cannot be shared so
that the area cost is actually 3.

Recently, Maheshwari and Sapatnekar proposed an extended
register sharing model [13] which takes into account restricted shar-
ing due to different reset values. Their model could also be adapted
to work with multiple-class retiming. However, this model results
in a general 0/1-MILP retiming formulation which is much more
expensive to solve than a minimum-cost flow problem. We suggest
a new approach in which the graph is modified so that the register
count is no longer underestimated by the sharing cost function of
Leiserson. The resulting problem can still be solved using an effi-
cient minimum-cost flow algorithm.

In a mc-graph, the sharing cost function underestimates the reg-
ister count if registers of different classes appear in a register layer
on the fanout edges of a vertex. In Fig. 4a) the second register layer
gives an example for this case. In order to detect these cases, we
make the following two observations. First, any register layer which
results from a forward move across a multiple-fanout vertex can be
unrestrictedly shared at the fanout edges because all inserted reg-
isters belong to the same class. Second, any register layer which
can be moved backward across a multiple-fanout vertex can also
be shared. Otherwise, it could not be moved backward. Thus, the
shared register count is potentially wrong only for those registers
which are in their maximal backward position.

Fig. 4b) shows the example mc-graph with its registers in the
maximal backward position. The backward mc-retiming bounds
are depicted at the vertices. In order to estimate the shared regis-
ter count, we heuristically identify the largest number of sharable
registers and separate them from the remaining registers. The set of
sharable registers is found by traversing the register layers from the
sources to the sinks of the fanout edges. At each layer, we select
the registers that constitute the largest set of compatible registers.
Then, we proceed to the next layer using only the edges of the re-
cently selected registers. In Fig. 4b), all registers on the left side of
the cutline can be shared while the registers on the right side of the
cutline cannot be shared with any register on the left side.

Our goal is to forbid the registers that are at the right of the
cutline to move onto the fanout edges ofu where they would be
considered as sharable by the area cost function. To do this, we
introduce a separation vertexsi with zero delay on each edgeeuvi

along the cutline. Thereafter, each non-sharable register is placed
on the edge of a single-fanout vertex and is thus counted as one reg-
ister. We prevent the non-sharable register to move backward across
the separation vertices by specifying appropriate backward retiming
bounds. Ifwb(esivi ) denotes the weight of the edgeesivi after max-
imal backward retiming, then the backward retiming bounds of a
vertexsi is given by

rmc
max(si) = max(rmc

max(vi)�wb(esivi );0): (3)

Informally, if we rewind the maximal backward retimed graph to its
starting position, thenrmc

max(si) is the number of registers that have to
pass the cutline in order to undo the maximal backward retiming at
vertexvi . Using this procedure, we also find how the initial registers
must be distributed on the edgeseusi andesivi . Fig. 4c) shows how
the initial mc-graph is finally modified to account for multiple-class
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register sharing. Note that each register which enters an edgeesivi

from vertexvi during retiming is immediately passed to edgeeusi as
long asr(si)< rmc

max(si). This is because a register placed oneusi has
a lower cost than a register placed onesivi .

The above transformation is performed at each multiple-fanout
vertex before solving the minarea retiming problem. It must be
noted that there are certain situations where the register count is
overestimated by our approach. If, e.g., in Fig. 4b) the registers on
the edgeeuv4 swap their classes, then the first registers ofeuv3 and
euv4 could be shared. This is not detected by our sharing model,
because it separates only the largest set of sharable registers at a
multiple-fanout vertex. However, these cases occur only if registers
are in maximal backward position which does not seem to happen
very often in practice. Furthermore, it is more desirable to overesti-
mate the area during retiming rather than to underestimate it.

5 Efficient Implementation
A technically relevant implementation of multiple-class retiming
must be able to compute a minimum area retiming for a minimum
feasible clock period. This is achieved by performing the following
steps which summarize the overall mc-retiming approach:

1. Generate the mc-graphGmc from the circuit description.
2. Derive the retiming boundsrmc

max(v) andrmc
min(v) using maxi-

mal backward and forward retiming, respectively.
3. Modify the retiming graph so as to improve the estimation of

the shared register count during minarea retiming.
4. Compute a minimum period retiming subject to the retiming

bounds to get the minimum feasible clock periodφmin.
5. Compute a minimum area retiming subject to the minimum

feasible clock periodφmin.
6. Relocate the registers in the circuit according to the computed

retiming values. Thereby, compute an equivalent synchro-
nous and asynchronous reset state.

We have already discussed Steps 1 – 3 in the previous sections.
These steps are performed very fast, especially since we do not con-
sider reset states during maximal backward retiming. In the remain-
der of this section we focus on how to efficiently compute the re-
timing solutions and the equivalent reset states for the retimed mul-
tiple-class circuit.

5.1 Computing a Multiple-Class Retiming Solution
The previous sections show that we can view the mc-retiming prob-
lem on the mc-graphGmc as a basic retiming problem where upper
and lower bounds are imposed on the retiming values. Addition-
ally, the graphGmc is modified by introducing separation vertices to
provide a more reasonable estimation of the shared multiple-class
register count. Thus, the mc-retiming problem can be solved by any
retiming approach as long as the retiming bounds are satisfied.

We implemented basicminperiodandminarearetiming using
the efficient algorithms presented by Shenoy and Rudell [16]. These
algorithms, however, cannot directly handle retiming bounds set on
vertices. To overcome this limitation, we rewrite the corresponding
class constraints in (2) as a set of difference constraints using the re-
timing value of the host vertex. We can assumer(vh) to be 0, since

registers are not allowed to move across inputs and outputs of the
circuit. Thus, from (2) we get two difference constraints which are
r(vh)� r(v) � �rmc

min(v) and r(v)� r(vh) � rmc
max(v). These differ-

ence constraints can be modeled by an edge from the host vertexvh
to v with weightw(evhv) =�rmc

min(v) and an edge fromv to vh with
weight w(evvh) = rmc

max(v). The complete retiming problem to be
solved during minarea retiming for a target clock periodφ in Step 5
is then given by the following ILP formulation:

min ∑
v2V

c(v) � r(v)

subject to
circuit constr.: r(u)� r(v) � w(euv); 8euv2 E

class constr.: r(vh)� r(v) � �rmc
min(v); 8v2V

r(v)� r(vh) � rmc
max(v); 8v2V

period constr.: r(u)� r(v) � W(u;v)�1; 8D(u;v)> φ:

The cost coefficientc(v) is determined for each vertexv accord-
ing to the sharing cost model of Leiserson and Saxe [9]. In order
to solve the minimum period retiming problem of Step 4, the cost
function is omitted and the minimum clock periodφmin resulting in
a feasible set of constraints is determined by binary search.

Note that the number of class constraints is small compared
to the possibly huge set of period constraints. The algorithm pre-
sented in [16] already makes use of efficient techniques to reduce
the number of period constraints of which many are redundant. We
expect to further reduce the overall number of constraints by using
the technique proposed by Maheshwari and Sapatnekar [12, 11].
They showed that additional bounds on retiming values can be ef-
fectively used to further prune the set of constraints resulting in a
much smaller ILP.

5.2 Computing Equivalent Reset States
Our technique for reset state computation is similar to the one pro-
posed by Even et al. [4]. They move registers across several logic
gates and then compute new reset values using forward implication
or backward justification across the retimed logic gates. These steps
are iterated until all registers are in their final position.

Since backward justification can be very expensive, our idea is
to break down the justification task into justification steps as easy to
execute as possible, as long as this provides a valid solution. Only
if this simple approach fails to find a justification, do we perform
a possibly more expensive justification. This mechanism is the fol-
lowing. Like [4], we concurrently compute a new reset state while
moving registers into their final position. However, we compute
new reset values each time a layer of registers is moved across a
gate, which means that we just have to justify across one gate at a
time, which is usually not expensive. This operation has been im-
plemented using BDDs.

In a backward justification step we select as many don’t cares
for the reset values as possible. This helps to avoid conflicts in sub-
sequent backward justification steps and also improves the register
sharing potential. If a justification conflict occurs, we try to resolve
the conflict by aglobal justificationstep. In this case, we trace the
conflicting registers back to their original positions together with
other registers involved in moving backward the conflicting regis-
ters. Then, we try to compute a justification for the larger portion of
logic gates. On success, we update the reset values and proceed.



1

11
1

1

1

b)a)

1
0

-

1 0

1

0v4

v3

1

v3

v2

v4

0

v2
1

Figure 5: Computing reset values a) by local justification, b) by
global justification.

If we cannot resolve the conflict by global justification, the re-
timing solution cannot be implemented, and we have to compute a
new retiming solution. Beforehand we set an upper retiming bound
on the vertex where the conflict occurred such that the non justifi-
able backward move is no longer allowed.

Fig. 5 illustrates our approach with an example. The numbers
above the gates denote the retiming values to be applied to the cir-
cuit. The first two steps consist of moving the registers across the
NAND gatev3 and the inverterv4, and local justification produces
reset values for the registers inserted on the fanin edges ofv3 and
v4 (see Fig. 5a)). The following backward move across the AND
gatev2 produces a conflict due to the different reset values on the
fanout edges. Therefore, the registers are traced back to the original
registers and a global justification is performed across gatesv2;v3,
andv4, as depicted in Fig. 5b).

In the experiments, our approach has shown to be very efficient.
In less than only 1% of all justification steps we had to resort to
global justification step in order to resolve a conflict. More impres-
sively, we never encountered an example where we actually had to
compute a new retiming solution due to a non-resolvable conflict.
This shows that in practice computing equivalent reset states can be
done in reasonable time using rather simple methods.

6 Results
We have developed a software package implementing the multiple-
class retiming that we have presented here. As mentioned in Sec-
tion 5, this package has been built on top of the efficient basic min-
imal period and minimal area retiming engine presented in [16].
Backward justification has been implemented using BDDs. This
section presents the experimental setup that we have used to eval-
uate this new package, and then gives the results that we have ob-
tained on real life industrial circuits using this setup. Note that it
would not make sense to give results on standard benchmark cir-
cuits, like the ISCAS circuits, because they do not contain complex
register and are also not available as RT-level HDL source, from
which we could derive complex registers using an HDL analyzer.

The multiple-class retiming package has been integrated in an
existing state-of-the-art logic synthesis system for FPGAs. This sys-
tem provides us with scripts to perform logic synthesis, optimization
and mapping of circuits for minimal area as well as for minimal area
for best delay. Both the logic optimization and mapping are archi-
tecture specific, i.e., they both make use of the specific features of
the target FPGA architecture to produce higher quality results. For
instance, when mapping logic and arithmetic operators on a Xilinx
XC4000E [20], it makes use of the hardwired carry chain logic to
get the best performance.

Each circuit used here is an industrial circuit described at the RT-
level in VHDL or in Verilog. This source code is first run through
an HDL analyzer which produces a technology independent gate
level netlist. Remarkable elements of this netlist are the registers,
which can have a synchronous load enable inputEN, as well as
synchronousSS/SC and asynchronousAS/AC set/clear inputs.

Table 1 gives the areas and delays of each circuit after optimiza-
tion, mapping, place and route, onto a Xilinx XC4000E, using the
minimal area for best delay script. Since registers on a XC4000E
do not have synchronous set/clear inputs, all such inputs inferred
by the HDL analyzer are decomposed into additional logic before

Table 1: Circuit Characteristics
Name AS=AC EN #FF #LUT Delay
C1

p p
35 89 32:4

C2
p p

12 69 28:2
C3

p
26 48 27:4

C4
p

301 1185 160:4
C5

p p
88 140 29:1

C6
p

1027 1268 72:4
C7

p p
315 523 37:6

C8
p

79 145 36:1
C9

p p
79 416 73:3

C10
p p

206 885 48:1

Totals 2168 4768 545:0

Table 2: Retiming Results
Name #Class #Step #FF #LUT Delay Rlut Rdelay
C1 8 6=106 48 115 29:1 1:29 0:90
C2 3 14=63 23 70 24:5 1:01 0:87
C3 4 3=35 29 66 24:4 1:38 0:89
C4 11 285=1528 342 1135 97:9 0:96 0:61
C5 15 11=149 88 134 26:7 0:96 0:92
C6 1 7=1889 1080 1268 51:6 1:00 0:71
C7 40 56=728 337 534 36:3 1:02 0:97
C8 7 2=97 102 140 34:6 0:97 0:96
C9 6 15=1017 111 467 62:7 1:12 0:86
C10 5 31=1508 219 710 39:7 0:80 0:83

Total 2379 4639 427:5 0:97 0:78

the optimization and mapping. On the other hand, all asynchronous
set/clear and synchronous load enable inputs are used during map-
ping. For each circuit, columnsAS/AC andEN indicate whether the
circuit contains registers with asynchronous set/clear and synchro-
nous load enable inputs respectively. Column#FF is the number of
registers in the circuit. Column#LUT is the number of lookup ta-
bles (LUT) in the mapped circuit, andDelay is the minimal period of
the circuit. This delay is the maximal delay over all combinational
paths in the circuit, computedafter place and route using Xilinx
timing analyzer [20].

In order to evaluate the new retiming package, the mapping
script was modified to include a retiming step. A command “re-
time” was inserted after the circuit has been completely mapped.
The circuit is then seen as a netlist of Xilinx primitives, e.g., LUTs,
carry chains, and special buffers. We decided to run retiming at this
point because it allows us to compute delays for the combinational
gates that are as close as possible to the actual delays in the FPGA.
This is particularly important when dealing with carry chains for in-
stance. The command “retime” is run with the minimal area for best
delay objective. A command “remap” was also added to the script
to remap the combinational part of the circuit after retiming.

Table 2 presents the results obtained with this modified script.
The first part provides information about the retiming process itself,
while the second part provides information about its effect. Column
#Classis the number of classes in the mc-graph of the circuit. In col-
umn#Stepthe first number is the total number of layers of registers
that have been actually moved in the circuit. The second number
is the total number of all possible valid mc-retiming steps in the
mc-graph, computed during the maximal backward and forward re-
timing phase. Column#FF is the number of registers in the retimed
circuit, #LUT its number of LUTs, andDelay its maximal combina-
tional delay. Finally,Rlut andRdelay are the ratio of columns#LUT
andDelay, respectively, over the corresponding columns of Table 1.

First of all, the overall “retime” command finished for all cir-
cuits within 60 seconds of CPU time on a Sun Ultrasparc (333 Mhz),
showing the efficiency of our retiming approach. On average, about
90% of the time was used by the basic retiming approach, and 7% of
the time was spent in register relocation and reset state computation.
Only 3% of CPU time was used for building the mc-graph, comput-
ing the classes and retiming bounds, and modifying the graph for
register sharing. This shows that the computational overhead caused



Table 3: Retiming Results without using Load Enable Inputs
Name #FF #LUT Delay Rlut1 Rdelay1 Rlut2 Rdelay2
C1 35 103 30:2 1:16 0:93 0:90 1:04
C2 23 71 24:8 1:03 0:88 1:01 1:01
C3 35 72 24:7 1:50 0:90 1:09 1:01
C4 453 1422 86:7 1:20 0:54 1:25 0:89
C5 94 173 30:1 1:24 1:03 1:29 1:13
C6 1080 1268 51:6 1:00 0:71 1:00 1:00
C7 363 748 37:3 1:43 0:99 1:40 1:03
C8 119 192 42:4 1:32 1:17 1:37 1:23
C9 122 477 63:3 1:15 0:86 1:02 1:01
C10 214 728 39:6 0:82 0:82 1:03 1:00

Totals 2538 5254 430:7 1:10 0:79 1:13 1:01

by our extension to retiming is very small.
Note that for all processed designs, the number of register layers

actually moved is much smaller than the number of layers that can
possibly be moved. Also note that over 99% of all needed back-
ward justifications could be performed locally. This means that the
cost of backward retiming is kept as low as possible. Although of
course this cannot always be the case, we think that this is still very
encouraging in practice.

Retiming proves to be fairly effective, with the largest delay re-
ductions being obtained for the three largest circuits (C4, C6, C10).
The penalty incurred on the combinational area by the process is
non existent or very small for a majority of the designs, although
3 out of the 10 designs see their number of LUTs grow more than
10%. The penalty on the number of registers is more significant,
with an average ratio of the penalty equal to 1:10.

In another experiment we compared the results presented in Ta-
ble 2 with the results we obtain if we don’t preserve the load enable
inputs for retiming. In order to do so, we added at the beginning of
the script a command that decomposes the synchronous load enable
inputs of all the registers in the design. The results for this script are
presented in Table 3. The first part of the table gives the number of
registers, the number of LUTs, and the maximal delay in the circuit
mapped using this modified script. These values are then compared
with the values presented in Table 1 (Rlut1 andRdelay1) and with
the values presented in Table 2 (Rlut2 andRdelay2).

The columnRdelay2 shows that there is only one circuit (C4)
for which the resulting delay is better than the one given in Ta-
ble 2. This can happen since after decomposing the load enable
inputs there may be less restrictions in moving registers around re-
sulting in a better delay improvement. For circuitC4 this comes,
however, with a very significant area penalty of 32% more regis-
ters and 25% more LUTs. For all other designs, the delay in the
retimed design is larger than the one reported in Table 2. Overall,
after decomposing the load enable inputs retiming produces circuits
that are 21% faster than the original circuits, but with 17% more
registers and 10% more LUTs, while using the load enables during
multiple-class retiming produces circuits that are 22% faster than
the original circuits, with 10% more registers and 3% less LUTs.

7 Conclusion
In this paper we have presented an extension of the basic retiming
algorithm which allows us to apply retiming on circuits designed to
take advantage of the complex registers available in modern hard-
ware technologies, such as registers with synchronous load enable,
and synchronous and asynchronous set/clear inputs.

We have implemented this new retiming algorithm, called mul-
tiple-class retiming, integrated it in a state-of-the-art FPGA synthe-
sis environment, and reported results obtained on a set of industrial
FPGA designs. We think that these results are quite encouraging,
because they show that the computational overhead caused by the
extension is very small compared with its benefits on the processed
circuits.
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