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Abstract le forward
Retiming is an optimization technique for synchronous circuits in- retiming M)
troduced by Leiserson and Saxe in 1983. Although powerful, re-
timing is not very widely used because it does not handle in a sat- a) load enable b)
isfying way circuits whose registers have load enable, synchronous &transformaﬂon
and asynchronous set/clear inputs. We propose an extension of re- le le
timing whose basis is the characterization of registers into register forward
classes. The new approach called multiple-class retiming handles retiming
circuits with an arbitrary number of register classes. We present re-
sults on a set of industrial FPGA designs showing the effectiveness
and efficiency of multiple-class retiming. c) d)

. Figure 1: Two ways of retiming registers with load enables.
1 Introduction
Retimingis a powerful optimization technique for synchronous cir- Thisis illustrated in Fig. 1 on a circuit that has two registers with
cuits that was introduced by Leiserson and Saxe in 1983 [8]. It con-load enable inputs. To apply existing retiming approaches, complex
sists of moving the sequential elements (registers) in a circuit whileregisters are transformed into simple registers with some additional
preserving its /O behavior. Retiming can be used (1) to reduce thelogic to implement the synchronous load enable and reset behaviors.
clock period of a circuitfiinperiodretiming) and (2) to reduce its  This transformation transforms the circuit a) into c), which is larger
number of registers while achieving a given clock perigdnarea than a). Note that a register with asynchronous reset input has no
retiming); the latter is of most practical interest. equivalent synchronous circuit with a simple register and additional
Since the seminal work by Leiserson and Saxe [8, 9], many re-logic. Moving the simple registers forward results in circuit d). It
searchers have contributed to the theoretical and practical aspectsan be seen that applying this retiming step results in an additional
of retiming. Originally designed to handle edge-triggered flip-flops, area cost of two registers and two multiplexors.
retiming has been extended to also handle multi-phase level-clocked Camposano and &jjer showed [1] that registers can be moved
latches [6, 10]. Efficient implementations [16, 12, 11] have made togetherwith their load enable inputs if they are connected to the
retiming applicable to large circuits. Important contributions have same load enable signal. For instance, both registers in Fig. 1a) have
been made to apply retiming to circuits with reset states [19, 4, 18,the same synchronous load enable signal and thus can be moved
13]. Finally, it has been shown that retiming can be used togetherforward together with theiEN input to produce circuit b) which is
with existing combinational optimization techniques [14, 2, 3, 15, much smaller than circuit d). Similar conditions for registers with
5], to further improve circuit performance. asynchronous and synchronous reset inputs were presented by Sing-

Despite its proved effectiveness and efficiency, retiming has nothal et al. [18]. However, both works only discuss the conditions
been very widely used in industrial logic synthesis tools. One of for a single retiming step and do not present a comprehensive ap-
the main technical reasons for this is that most available retimingProach for computing a retiming solution. A first general approach
packages do not handle in a satisfying way the circuits that engi-t0 this problem was proposed by Legl et al. in [7], but they did not
neers really design today. In practice, these packages work well orPresent any implementation showing tmainperiod and minarea
circuits whose registers do not have synchronous or asynchronou§ould both be solved in an effective and efficient way.
set/clear inputs, as well as no synchronous load enable input. In this paper we present a practical and comprehensive approach

However, most modern technologies offer registers with asyn- calledmultiple-class retimingor mc-retiming which allows to ef-
chronous, and/or synchronous reset inputs, as well as a synchronouiciently and effectively compute a minperiod or minarea retiming
load enable input (also called clock enable). For instance, everysolution for circuits designed with a variety of different registers.
logic block in a Xilinx XC4000 FPGA contains two D-type edge- MC-Retiming is an extension of retiming that manipulates complex
triggered flip-flops with asynchronous reset and synchronous loadregisters. The registers are classified iegister classesvhich are
enable inputs which can be connected to arbitrary signals [20]. Asused to determine how far backward and forward each register can
shown by the results presented in Section 6, fully exploiting thesebe moved in the circuit. This information is then used to map the
capabilities is absolutely mandatory to achieve high design quality. problem of multiple-class retiming into ldasic retiming problem
which can be efficiently solved using existing retiming approaches.
Thus, the big advantage of mc-retiming is that it can reuse many of
the efficient techniques available for basic retiming.
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tion 5 presents an efficient implementation of multiple-class retim-  load >— | s
ing in which we reuse existing basic retiming approaches. Finally, EN Q a 0

we present in Section 6 experimental results obtained with this im- u>—p > v

plementation on a set of industrial FPGA designs. r_synch— ssisc r_sync O——O r_syncout
r-asynd>—— Asiac r_asyncO—>O r_asyncout

2 Basic Retiming ) cIkD—] b) load O——Q load.out

The basic retiming approach presented by Leiserson and Saxe [Qfl

handles sequential circuits whose registers are controlled by a sinFigure 2: a) generic registérand b) corresponding mc-retiming

gle clock and possibly have reset values. A sequential circuit is graph with registef® of register clas€

represented by a vertex-weighted, edge-weighted, directed graph

G = (V,E,d,w), calledretiming graph Each combinational gate the register, and a synchronous load enable it If a register

and each primary input and output port is modeled by a vertex. has, e.g., no load enable capability, then the synchronous load en-
An edges,y models a connection from an output of gat® an in- able inputEN of the generic register is deactivated by connecting it
put of gatev, passing through an arbitrary number of registers. A to a signal representing the constant 1.

host vertex yis introduced to model the environment of the circuit, Generic registers must fulfill certain conditions to be moved
together with edges from, to all primary inputs, and edges from  across a combinational logic gate. In general, such a retiming step is
all primary outputs tar. The vertex weightl(v) is the propagation  valid if it yields a circuit which is aufficiently old replacemeri8]

delay of the corresponding gate The edge weighiv(eyy) is the of the original circuit. It has been shown in [1] that, for registers
number of registers along the interconnection from gettegatev. with synchronous load enable inputs, moving a layer of registers
For a pathp : u~» v from vertexu to vertexv, the path weightv( p) across a gate is valid if all registers are connected to the same load
is the sum of the edge weights along the path, and the path delaynable signal. The same condition holds for the clock inputs of the
d(p) is the sum of the vertex delays along the path including the de-registers, because it is necessary to preserve the temporal equiva-
lays of verticess andv. Finally, W(u,v) denotes the minimum path  lence of the circuit [17]. Registers with reset inputs can be moved if
weight of all paths fronu to v, andD(u,v) denotes the maximum  the reset signals are equivalent [18].

path delay among all minimum weighted paths frono v. Since the validity of moving registers depends on the connected
A retiming of G is an integer-valued vertex labelingV — Z. control signals, we classify the registers of a circuit using the signals

By definition, the retiming (or lag) valugv) is the number of layers ~ connected to the control inputs.

of registers moved from the fanout to the fanin edges fr(v) is Definition 1 (Register Class)A register class C is characterized

negative, registers are actually moved from the fanin to the fanoutby atuple (clk, load, 1sync, rasync) of signals. A register | belongs

edges ofv. The edge weights after applyimgio G are calculated 5 ¢jass C iff each signal connected to its control inputs is logically

using equivalent to the corresponding signal of the class. Two registers
Wr (€uv) = W(€uy) +1(V) = F(u). are said to becompatibleiff they belong to the same register class.

A retiming is legal if all edge weightsw, (e,y) are nonnega-
tive (circuit constrainty. A clock periodo is said to befeasible
for G if there exists a legal retiming @& such that any path with
D(u,v) > @ has at least one register on it in the retimed grgg# (
riod constrainty. A clock period is thus feasible if there exists a

It follows from this definition that a layer of registers can be
moved across a logic gate if all registers are compatible.

3.2 Retiming Graph for Multiple-Class Circuits

retiming that satisfies the linear difference constraints A circuit which contains multiple register classes is calleshal-
o tiple-class circuit Since the validity of moving registers in a mul-
circuit constr.: r(u) —r(v) < w(ew), Vew € E tiple-class circuit directly depends on which classes these registers
period constr.: r(u) —r(v) < W(u,v)-1, VD(uv)>@. belong to, we have to model the class information in the retiming

fgraph. Especially, it is no longer sufficient to store only the num-
ber of registerav(e) on an edgee of the retiming graph, as the
. : ; : g registers on the edge may belong to different classes. Therefore,
gorithm [9]. LrJ]smg_the FE,?\S a_Iglorlt:lmkand binary search, it is easy wg introduce a mogified ryetimingggrarihmc — (V.E,d,) which
to compute the m|n.|r7.1um easible C_OC_ periggin ) we call amultiple-class retiming graptor, in short, amc-graph

To solve the minimum area retiming problem, Leiserson and Fig. 2h) shows how a generic register is modeled in the mc-graph.
Saxe introduced a cost function that takes into account the possiblanstead of a weightv(e), we attach toe a sequence of registers
Shanng of the I’egISt_el’S on the dlffeI:ent far‘IO_ut e_dgeS of e_ach Verte)i(e) — “1, .. '7|W(e)]' ll Corresponds to the register closest to the
[9]. This cost function, together with the circuit and period con- gq,rce of the edge, whilg ) is the register closest to the sink of the
straints, forms a special integer linear program (ILP) whose solution . N )
can be computed using a minimum-cost flow algorithm [9]. Re- €dge. The superscrifit at a registet™ denotes the class to which
cently, very efficient reduction techniques have been presented foit Pelongs. In the presence of reset inputs, a register is labeled with

this ILP formulation resulting in a significant speedup [16, 12, 11]. appropriate values,a € {0,1,—} which specify the synchronous
and asynchronous reset values of the register, respectively. For each

control signal, except the clock signals, we introduce an output ver-
3 Multiple-Class Retiming tex in the mc-retiming graph and an edge from the vertex generating
This section shows how a circuit with complex registers can be re-the signal to the corresponding output vertex. This is necessary to
timed without transforming these registers into simple registers andesure that these signals get correctly handled through retiming.

additional logic. It introduces register classes and explains how A valid mc-retiming stefior a vertexv can be performed as
classes are added to a retiming graph. depicted in Fig. 3. For instance, for a forward mc-retiming step at

vertexv, there must be a complel@yer of compatibleregisters at
the sink of the fanin edges of The last registers of the fanin edges
?re removed, and a new layer of registers with the same register

The satisfiability of these constraints and an appropriate set o
retiming values can be efficiently computed, e.g., by REASal-

3.1 Retiming Circuits with Multiple-Class Registers
Most sequential elements in synchronous circuits can be representegiass js inserted at the source of the fanout edges of

by the generic register shown in Fig. 2a). Each register has a signal” ag in the basic retiming approach, we define a retiming for a mc-
connected to the data inpD\, the data outpuQ, and to the clock  graph as an integer-valued vertex labeliny — Z. A mc-retiming

input. Additionally, a register can have inpS or SC andAS or r is legal for a multiple-class circuit, if it can be implemented by a
AC which allow to synchronously and asynchronously set or clear sequence of valid mc-retiming steps.
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Thus, by not considering reset states we compute a unique set
of class constraints. Only when implementing the retiming solution

forward do we compute equivalent reset states and take appropriate action
in case of a justification conflict. Section 5.2 gives more details on
backward how we compute equivalent reset states.
Figure 3: A valid multiple-class retiming step 4.2 Register Sharing for Multiple-Class Registers
Minimum area retiming requires that we take register sharing at the
4 Mapping Multiple-Class to Basic Retiming gate output into account to get correct area estimation. The prob-

lem here is that if we directly apply the cost function introduced
By Leiserson and Saxe [9] to count registers in the mc-graph, this
would produce a register count that would be smaller than the ac-
tual count. Indeed, registers belonging to different classes cannot be
shared. In the example in Fig. 4a) we would report a shared register
count of 2. But the registers of cla€g andC, cannot be shared so

This section presents the simple mechanisms that allow us to ma
the problem of retiming a multiple-class circuit onto the basic re-
timing problem which can then be solved efficiently by existing ap-
proaches to basic retiming.

4.1 Multiple-Class Retiming Constraints that the area cost is actually 3.
A legal mc-retiming can only move layers of compatible registers. Recently, Maheshwari and Sapatnekar proposed an extended
As a consequence, a valug) > 0 is valid for the vertex of a mc- register sharing model [13] which takes into account restricted shar-

graph if there exist(v) complete layers of registers on the fanout ing due to different reset values. Their model could also be adapted
paths of vertew, and if each layer is made of compatible registers. to work with multiple-class retiming. However, this model results
This ensures that we can perforfw) valid mc-retiming steps back-  in a general 0/1-MILP retiming formulation which is much more
ward across vertex. This also means that the number of complete expensive to solve than a minimum-cost flow problem. We suggest
layers of compatible registers in the transitive fanout @étermines ~ a new approach in which the graph is modified so that the register
the maximum valid retiming value which we dendigckward mc- count is no longer underestimated by the sharing cost function of
retiming bound §5,(v). By analogy, a value(v) < 0 is valid if Leiserson. The resulting problem can still be solved using an effi-
there existr (v)| complete layers of compatible registers on the fanin cient minimum-cost flow algorithm.
paths of vertex. If kis the number of complete layers of compatible In a mc-graph, the sharing cost function underestimates the reg-
registers in the transitive fanin of then the mlnlmumcvahd retim- - ister count if registers of different classes appear in a register layer
ing value is given by théorward mc-retiming boundfiii,(v) = =K. on the fanout edges of a vertex. In Fig. 4a) the second register layer
These mc-retiming bounds can be used to express the conditiongjiyes an example for this case. In order to detect these cases, we
for a me-retiming to be legal: make the following two observations. First, any register layer which
circuit constr.: r Sn%) —r(v) <w(ew), VeweE (1) results from a forward move across a multiple-fanout vertex can be
class constr.: rMS (v) <r(v) < rMC(v), WweV. 2 unrestrictedly shared at the fanout edges because all inserted reg-
isters belong to the same class. Second, any register layer which
As in basic retiming, the circuit constraints ensure that retiming can be moved backward across a multiple-fanout vertex can also
does not create negative edge weights. In addition, the class conbe shared. Otherwise, it could not be moved backward. Thus, the
straints guarantee that at each ver@nly valid mc-retiming steps  shared register count is potentially wrong only for those registers
are performed. Thus, we can consider a legal mc-retiming to be ayhich are in their maximal backward position.
legal basic retiming with additional constraints set on the retiming Fig. 4b) shows the example mc-graph with its registers in the
values. maximal backward position. The backward mc-retiming bounds
The mc-retiming bounds can be easily computed on the mc-are depicted at the vertices. In order to estimate the shared regis-
graph. Instead of traversing the register layers reachable in the tranter count, we heuristically identify the largest number of sharable
sitive fanin or fanout of a vertex, we adopt a different procedure registers and separate them from the remaining registers. The set of
which was proposed in [7]. In order to compute the backward mc- sharable registers is found by traversing the register layers from the
retiming bounds, we move registers backward as long as we carsources to the sinks of the fanout edges. At each layer, we select
apply valid mc-retiming steps in the graph. Thereby, we count the the registers that constitute the largest set of compatible registers.
number of registers which are moved across each vertex. When nd hen, we proceed to the next layer using only the edges of the re-
more valid backward moves are possible, the mc-retiming graph iscently selected registers. In Fig. 4b), all registers on the left side of
maximallybackward retimed, and the number of registers moved the cutline can be shared while the registers on the right side of the
across each vertexis equal to the backward mc-retiming bound ~cutline cannot be shared with any register on the left side.
Max(V). Similarly, to compute the forward mc-retiming bounds, Our goal is to forbid the registers that are at the right of the
we move the registers forward as far as possible using valid mc-cutline to move onto the fanout edges wfvhere they would be
retiming steps only. In the maximally forward retimed graph the considered as sharable by the area cost function. To do this, we
negative number of registers moved across a veregals the for-  introduce a separation vertexwith zero delay on each edgay,
ward mc-retiming boundX (v). along the cutline. Thereafter, each non-sharable register is placed
Note that we do not consider reset values while computing the on the edge of a single-fanout vertex and is thus counted as one reg-
retiming bounds. Although this may result in maximal backward ister. We prevent the non-sharable register to move backward across
retiming bounds which can actually not be achieved due to justifi- the separation vertices by specifying appropriate backward retiming
cation conflicts, we decided to ignore reset values for two reasonsbounds. Ifw,(esy,) denotes the weight of the edggy, after max-
First, it was shown in [13] that retiming constraints which guaran- imal backward retiming, then the backward retiming bounds of a
tee justifiable reset values are generally not unique resulting in avertexs is given by
large number of different constraint sets. Thus, in order to find the mc _ me (y,
optimal solution a retiming must be computed for each constraint Mmax(S) = MaXmax(Vi) —Wh(€sv ), 0). (3)
set. Second, the backward justification of reset values can com4nformally, if we rewind the maximal backward retimed graph to its
putationally be very expensive. Thus, we want to justify only those starting position, thefjiS,(s) is the number of registers that have to
backward retiming steps which are actually required by the retiming pass the cutline in order to undo the maximal backward retiming at
solution. Our experiments have shown that the number of requiredvertexv;. Using this procedure, we also find how the initial registers
backward retiming steps is usually much smaller than the numbermust be distributed on the edgeg, andesy,. Fig. 4c) shows how
of retiming steps performed during maximal backward retiming.  the initial mc-graph is finally modified to account for multiple-class
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Figure 4: Modification for register sharing; a) initial mc-graph, b) maximal backward retiming; the cut separates a maximal set of sharable
registers, ¢) mc-graph modified for register sharing.

register sharing. Note that each register which enters ane&gge  registers are not allowed to move across inputs and outputs of the

from vertexv; during retiming is immediately passed to edgg as circuit. Thus, from (2) we get two difference constraints which are

long asr(s) < rMsx(s)- This is because a register placedegg has r(vh) —r(v) < —rme(v) andr(v) —r(vn) < rigdVv). These differ-

a lower cost than a register placedey, . ence constraints can be modeled by an edge from the host vgrtex
The above transformation is performed at each multiple-fanout t0 V with weightw(ey,v) = —rgi(v) and an edge frona to vi, with

vertex before solving the minarea retiming problem. It must be weightw(ew,) = rig{v). The complete retiming problem to be

noted that there are certain situations where the register count isolved during minarea retiming for a target clock perid Step 5

overestimated by our approach. If, e.g., in Fig. 4b) the registers onis then given by the following ILP formulation:

the edgea,y, swap their classes, then the first registersef and min'S c(v)-r(v)

euy, could be shared. This is not detected by our sharing model, 2

because it separates only the largest set of sharable registers at a subject to ve

multiple-fanout vertex. However, these cases occur only if registers

: ) . - circuit constr.:  r(u)—r(v) < w| , Veyw € E
are in maximal backward position which does not seem to happen  ~ jass constr.- r(\(,hg —rgvg z 7&?#,&’)(\,) v\e/“év
very often in practice. Furthermore, it is more desirable to overesti- F(V)— r(v) < rmgl(r:/) T Wwev
. . . . . -_ )
mate the area during retiming rather than to underestimate it. period constr.: r(u)—r(v) < W(U,v)—1, VD(u,v) > .

- . The cost coefficient(v) is determined for each vertexaccord-
5 Efficient Implementation ing to the sharing cost(model of Leiserson and Saxe [9]. In order
A technically relevant implementation of multiple-class retiming to solve the minimum period retiming problem of Step 4, the cost
must be able to compute a minimum area retiming for a minimum function is omitted and the minimum clock periggin resulting in
feasible clock period. This is achieved by performing the following a feasible set of constraints is determined by binary search.
steps which summarize the overall mc-retiming approach: Note that the number of class constraints is small compared

: c - o to the possibly huge set of period constraints. The algorithm pre-
1. Generate the mc-gra@i™ from the circuit description. sented in [16] already makes use of efficient techniques to reduce

2. Derive the retiming boundsng,(v) andrgi(v) using maxi-  the number of period constraints of which many are redundant. We
mal backward and forward retiming, respectively. expect to further reduce the overall number of constraints by using

3. Modify the retiming graph so as to improve the estimation of the technique proposed by Maheshwari and Sapatnekar [12, 11].
the shared register count during minarea retiming. They showed that additional bounds on retiming values can be ef-

4. Compute a minimum period retiming subject to the retiming fectively used to further prune the set of constraints resulting in a
bounds to get the minimum feasible clock periggh. much smaller ILP.

5. Compute a minimum area retiming subject to the minimum
feasible clock periothin.

6. Relocate the registers in the circuit according to the computed
retiming values. Thereby, compute an equivalent synchro-
nous and asynchronous reset state.

5.2 Computing Equivalent Reset States

Our technique for reset state computation is similar to the one pro-
posed by Even et al. [4]. They move registers across several logic
gates and then compute new reset values using forward implication
or backward justification across the retimed logic gates. These steps
We have already discussed Steps 1 — 3 in the previous sectionsare iterated until all registers are in their final position.

These steps are performed very fast, especially since we do not con-  Since backward justification can be very expensive, our idea is
sider reset states during maximal backward retiming. In the remain-to break down the justification task into justification steps as easy to
der of this section we focus on how to efficiently compute the re- execute as possible, as long as this provides a valid solution. Only
timing solutions and the equivalent reset states for the retimed mul-f this simple approach fails to find a justification, do we perform

tiple-class circuit. a possibly more expensive justification. This mechanism is the fol-
lowing. Like [4], we concurrently compute a new reset state while
5.1 Computing a Multiple-Class Retiming Solution moving registers into their final position. However, we compute

The previous sections show that we can view the mc-retiming prob-N€W reset values each time a layer of registers is moved across a
lem on the mc-graplB™ as a basic retiming problem where upper 92ate, which means that we just have to justify across one gate at a
and lower bounds are imposed on the retiming values. Addition- fime, which is usually not expensive. This operation has been im-
ally, the graptG™cis modified by introducing separation vertices to plementgd uk?/:/ng dB.DD?%: . | don’
provide a more reasonable estimation of the shared multiple-class In a backward justification step we select as many don't cares
register count. Thus, the mc-retiming problem can be solved by any/or the reset values as possible. This helps to avoid conflicts in sub-
retiming approach as long as the retiming bounds are satisfied. Sequent backward justification steps and also improves the register
We implemented basiminperiod and minarearetiming using sharing potential. If a justification conflict occurs, we try to resolve
the efficient algorithms presented by Shenoy and Rudeli [16]. Thesetn€ conflict by aglobal justificationstep. In this case, we trace the
algorithms, however, cannot directly handlé retiming bounds set onconflicting registers back to their original positions together with
vertices. To overcome this limitation, we rewrite the corresponding Other registers involved in moving backward the conflicting regis-
class constraints in (2) as a set of difference constraints using the rel€rS: Then, we try to compute a justification for the larger portion of
timing value of the host vertex. We can assurfa) to be 0, since logic gates. On success, we update the reset values and proceed.



Table 1: Circuit Characteristics

Name [| AS/AC | EN | #FF | #LUT | Delay
C1 v | v/ | 35| 89| 324
C2 v v 12 69| 282
C3 vV | 26| 48| 274
Ca /| 301| 1185] 1604
C5 Vi v | 88| 140] 291
. . e C6 v 1027 1268| 724
Figure 5: Computing reset values a) by local justification, b) by C7 V 7 | 315] 523 376
global justification. Cs v 791 145 361
C9 v |V | 79 416 733
If we cannot resolve the conflict by global justification, the re- C10 vV v/ | 206|] 885] 481
timing solution cannot be implemented, and we have to compute a [Totals]] [ [2168] 4768] 5450 |
new retiming solution. Beforehand we set an upper retiming bound
on the vertex where the conflict occurred such that the non justifi- Table 2: Retiming Results
able backward move is no longer allowed. Name [ #Class #Step [ #EF [ #ALUT | Delay || Riut | Rdelay
Fig. 5 illustrates our approach with an example. The numbers | C1 8 6/106| 48| 115 2911 129 0.90
above the gates denote the retiming values to be applied to the cir{ C2 3 14/63]] 23 70| 245]1.0I] 087
cuit. The first two steps consist of moving the registers across the | C3 4 3/35]] 29 66| 2441138 0.89
NAND gatevs and the invertew,, and local justification produces | C4 11]285/1528]| 342] 1135] 979][096] 061
reset values for the registers inserted on the fanin edges arfid G5 15] 11/149]] 88| 134] 267][096] 0.92
V4 (see Fig. 5a)). The following backward move across the AND | C6 1] 7/1889|[ 1080] 1268] 516]] 100] 0.71
gatev, produces a conflict due to the different reset values on the | €/ 40| 56/728| 337] 534 363 1.02| 0.97
fanout edges. Therefore, the registers are traced back to the original €8 7 2/97]| 102] 140] 346]097] 096
registers and a global justification is performed across gates, c9 6] 15/1017]] 111] 467] 627] 112] 086
andvy, as depicted in Fig. 5b). C10 5| 31/1508|| 219 710| 397 || 0.80 0.83
In the experiments, our approach has shown to be very efficient. [ Total ]| | [[2379] 4639] 4275][ 0.97] 0.78]]

In less than only 1% of all justification steps we had to resort to
global justification step in order to resolve a conflict. More impres- the optimization and mapping. On the other hand, all asynchronous
sively, we never encountered an example where we actually had taet/clear and synchronous load enable inputs are used during map-
compute a new retiming solution due to a non-resolvable conflict. ping. For each circuit, columnsS/AC andEN indicate whether the
This shows that in practice computing equivalent reset states can beircuit contains registers with asynchronous set/clear and synchro-
done in reasonable time using rather simple methods. nous load enable inputs respectively. Colutii is the number of
registers in the circuit. Colum#LUT is the number of lookup ta-
6 Results bles (LUT) in the mapped circuit, ariklay is the minimal period of
the circuit. This delay is the maximal delay over all combinational
We have developed a software package implementing the multiplepaths in the circuit, computedfter place and route using Xilinx
class retiming that we have presented here. As mentioned in Sectiming analyzer [20].
tion 5, this package has been built on top of the efficient basic min- |, order to evaluate the new retiming package, the mapping
imal period and minimal area retiming engine presented in [16]. 5¢yint was modified to include a retiming step. A command “re-
Backward justification has been implemented using BDDs. This jjme” was inserted after the circuit has been completely mapped.

section presents the experimental setup that we have used to evairpe circuit is then seen as a netlist of Xilinx primitives, e.g., LUTS,

uate this new package, and then gives the results that we have oksarry chains, and special buffers. We decided to run retiming at this
tained on real life industrial circuits using this setup. Note that it

. - point because it allows us to compute delays for the combinational
would not make sense to give results on standard benchmark ciryates that are as close as possible to the actual delays in the FPGA.
cuits, like the ISCAS circuits, because they do not contain complex

) X This is particularly important when dealing with carry chains for in-
register and are also not available as RT-level HDL source, fromgiance. The command “retime” is run with the minimal area for best
which we could derive complex registers using an HDL analyzer.

delay objective. A command “remap” was also added to the script
The multiple-class retiming package has been integrated in anto remap the combinational part of the circuit after retiming.
existing state-of-the-art logic synthesis system for FPGAs. Thissys-  Table 2 presents the results obtained with this modified script.
tem provides us with scripts to perform logic synthesis, optimization The first part provides information about the retiming process itself,
and mapping of circuits for minimal area as well as for minimal area while the second part provides information about its effect. Column
for best delay. Both the logic optimization and mapping are archi- #Classis the number of classes in the mc-graph of the circuit. In col-
tecture specific, i.e., they both make use of the specific features ofumn#Stepthe first number is the total number of layers of registers
the target FPGA architecture to produce higher quality results. Forthat have been actually moved in the circuit. The second number
instance, when mapping logic and arithmetic operators on a Xilinx is the total number of all possible valid mc-retiming steps in the
XC4000E [20], it makes use of the hardwired carry chain logic to mc-graph, computed during the maximal backward and forward re-
get the best performance. timing phase. Colum#FF is the number of registers in the retimed
Each circuit used here is an industrial circuit described at the RT-circuit, #LUT its number of LUTs, antelay its maximal combina-
level in VHDL or in Verilog. This source code is first run through tional delay. FinallyRlut andRdelay are the ratio of columngLUT
an HDL analyzer which produces a technology independent gateandDelay, respectively, over the corresponding columns of Table 1.
level netlist. Remarkable elements of this netlist are the registers, First of all, the overall “retime” command finished for all cir-
which can have a synchronous load enable irfpht as well as cuits within 60 seconds of CPU time on a Sun Ultrasparc (333 Mhz),
synchronousSS/SC and asynchronouaS/AC set/clear inputs. showing the efficiency of our retiming approach. On average, about
Table 1 gives the areas and delays of each circuit after optimiza-90% of the time was used by the basic retiming approach, and 7% of
tion, mapping, place and route, onto a Xilinx XC4000E, using the the time was spent in register relocation and reset state computation.
minimal area for best delay script. Since registers on a XC4000EOnly 3% of CPU time was used for building the mc-graph, comput-
do not have synchronous set/clear inputs, all such inputs inferredng the classes and retiming bounds, and modifying the graph for
by the HDL analyzer are decomposed into additional logic before register sharing. This shows that the computational overhead caused



Table 3: Retiming Results without using Load Enable Inputs

Name || #FF | #LUT | Delay || Rlut; | Rdelay; || Rlut, | Rdelay,
C1 35 103| 3021 116 0.93[] 0.90 1.04
C2 23 71| 2481 1.03 0.88[] 1.01 1.01
C3 35 72| 247]] 150 090 1.09 101
Cca 453| 1422 867 1.20 0.54 1.25 0.89
C5 94 173| 301 1.24 1.03 1.29 1.13
C6 1080 1268| 516 1.00 0.71|] 1.00 1.00
C7 363 748| 3731 1.43 099 1.40 1.03
Cc8 119 192 424 1.32 1.17 1.37 1.23
C9 122 477 633 1.15 0.86 1.02 1.01
C10 214 728| 396/ 0.82 0.82[| 1.03 1.00
[Totals[[ 2538 5254] 4307 1.10] 0.79]] L13] 101]

by our extension to retiming is very small.

Note that for all processed designs, the number of register layers (3]
actually moved is much smaller than the number of layers that can
possibly be moved. Also note that over 99% of all needed back-
ward justifications could be performed locally. This means that the
cost of backward retiming is kept as low as possible. Although of
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