
HOW STANDARDS WILL ENABLE
HARDWARE/SOFTWARE CO-DESIGN

Mark Genoe (Chair – Alcatel); Chris Lennard (Cadence) ; Joachim Kunkel (Synopsys) ;
Brian Bailey (Mentor Graphics); Gjalt de Jong (Alcatel) ; Grant Martin (Cadence);

Kamal Hashmi (Fujitsu – ICL), Shay Ben-Chorin (National); Anssi Haverinnen (Nokia)

Members of the SLD DWG of the VSI Alliance

Context

Reuse of Intellectual Property (IP), or Virtual
Components (VCs), from different internal and
external sources in Systems-on-Chip, allows
companies to focus the R&D to their own core
competencies, and to effectively use other
companies' specialized expertise for other parts.
Such a model can only work if there the
microelectronics system industry worldwide can
establish an unified vision with a set of open
technical standards. This view is quite similar to
design practices at the board level today. However,
the complexities of future systems-on-chips will
largely exceed the ones that we currently know at a
board. Moreover, prototypes require costly silicon
runs, less signals are visible for probing, less
debugging facilities are available, and it will be
much more difficult to analyze possible problems
when combining several components. Therefore,
these virtual components need specific models, to
analyse, compare, debug and validate complete
system chips and all their interfaces before
processing the real silicon, but already starting in
the early design phases. This is what is meant today
with 'Virtual Prototyping'.

Virtual prototyping of complete hardware (HW) -
software (SW) systems is really key, but need to be
raised to much higher levels of abstraction than
today's design practices, which are usually at the
level of synthesizable RTL for custom hardware or
Instruction Set Simulator (ISS) for programmable
core processors. This shift will result in totally new
system level design environments to capture
requirements, to specify functionality and
architectures, to explore different mappings and
schedulings, to select and encapsulate reusable
Virtual Components. To be used at 'system level',
Virtual Components require several abstract

models, expressing e.g. the performance,
functionality or cycle-true behaviour.

It is exactly the goal of the System Level Design
(SLD) Development Working Group (DWG) of the
VSI Alliance to specify standard interfaces,
standard data formats and standard methods that
will help system designers to explore, debug and
verify complex system architectures consisting of
several Virtual Components by virtual prototyping
at multiple levels of abstraction.

Discussion topics

The discussion should be organized around the
main achievements of the SLD DWG of VSIA.
These include following areas in the domain of
HW/SW co-design and Virtual Prototyping:

Standard nomenclature and VC model taxonomy:
Progress to accelerate the encapsulation of Virtual
Components (VC) in co-design has hit roadblocks
because of a wide diversity of model terminology in
use among VC providers, VC integrators,
designers, semiconductor companies, system houses
and EDA companies. First experiences of
integrating third-party components in HW/SW
systems by several system companies have shown
that different terminology has already created a lot
of confusion among the participants. Some
organizations use many common modeling terms
with divergent meanings, while others use different
words to describe the same type of models. While
this confusion persists, and the electronics
community lacks a common language, different
teams will be unable to effectively communicate
and share models. Therefore, the SLD DWG has
undertaken an effort to develop a nomenclature and
modeling taxonomy, which will become a common
language to describe models and their attributes for
the VSI membership and the electronics design
community at large. It contains a classification of



system -, architectural -, hardware - and software
models, and is publicly available as standard
reference document. It basically modified and
augmented previously defined terminology sets,
broadened parochial definitions, distinguished
overlapping definitions, equated close synonyms,
removed inapplicable terms, added new terms,
clarified poorly defined or misunderstood ones, and
suggested new wording as replacements or
synonyms to outdated ones. When appropriate
existing definitions were lacking, the SLD DWG
created them. Further evolution in design practices
for VC integration into System Chips will identify
the critical model types. Minimizing the number of
models will reduce the effort required to produce a
complete design package for a VC.
 
Standard Interface Behaviour Description: The
design methodology promoted by the SLD DWG is
based on a clear separation of the VC functionality
and the VC interface. Therefore, the DWG is
establishing a well-defined hierarchical and multi-
level standard description of VC interfaces,
covering all abstractions from high level
transactions down to detailed timed component
protocols, implemented in hardware and/or
software. A clean separation of interface properties
from VC functionality and behavior, and a clear
linking of interface abstractions at the system level,
is a significant step towards the achievement of
such a goal.  A technique for specifying such
interfaces will improve VC understanding and
utilization. It will reduce the time required to
understand behaviors and interfaces correctly.
Gaining a faster understanding of VC operational
principles allows a system architect to explore many
more options before committing to the design
phase. This faster VC interpretation and model-
integration gives more comfort in the exploration of
non-legacy architectures and so will open co-
designs to the third-party market. Furthermore, a
complete definition of the interface abstraction
hierarchy allows designers, architects and SW
authors to work within their preferred area of
expertise (e.g. embedded-software, RTL, etc.), but
still gives them the ability to effectively
communicate with the different levels (e.g. unified
test-benches/test-results can be applied to any view
of the design.). In addition, the standard Interface
Behavior description will improve VC model
supply and generation, VC integration in HW/SW
co-design, and last but not least, VC protection.
 

Standards for Behavioural Modeling of Virtual
Prototypes: For the descriptions of the VC
functionality itself, the SLD DWG is shooting for a
standard library of data types that are commonly
used in behavioral models for virtual prototyping
(e.g. in C or C++). Today, system companies are
using multiple libraries, even within the same
company. Third party VC vendors are offering
models with specific libraries, not compliant for
other environments. Different syntax and/or
semantics make true exchange of models
impossible. When high-level models used in virtual
prototyping of HW/SW co-design systems can apply
all the same data type libraries, the interoperability
of these models will be largely enhanced, and co-
design will become much more user-friendly.
 
Performance Modeling Standard for HW/SW
systems: This exploration began as part of a
recognition that systems containing VCs require
high level modeling techniques in order to
efficiently evaluate the system performance of
interconnected VCs (microprocessors, DSPs,
memories, caches, buses, RTOS, etc). The specific
intent of this specification is to describe the basic
functional and interface requirements of system-
level performance models for the most common
types of Virtual Components. Performance Models
are often the most abstract models of Virtual
Components that are used during system design.
They describe the system task as well as the
resources together with the abstract and physical
communication channels. Each of these elements
can be modeled in terms of its basic processing and
communication capabilities, such as e.g. the rate of
processing, the latency of operations, etc. In
contrast to functional models, abstract performance
models do not compute the results of the operations.
System-Level Performance models are used to
explore different alternative mappings of the system
tasks on selected resource architectures, and to
perform trade-off analysis among different
hardware and software architectures. It allows the
system designer to obtain a first measurement of the
quality of the design, to check if the proposed
architecture will satisfy the overall performance
requirements and meet the constraints, and to
identify possible bottlenecks or over-sized parts.


	Main Page
	CODES'99
	Front Matter
	Table of Contents
	Session Index
	Author Index


