
Co-Design Tool Construction Using APICES

Ansgar Bredenfeld
GMD

 Institute for Autonomous Intelligent Systems (AiS)
D-53754 Sankt Augustin, Germany

+49-2241-14-2841

bredenfeld@gmd.de
ABSTRACT
In this paper, we present our approach to automate the
development process of co-design tools. We demonstrate
with a non-trivial real world example how we can accelerate
the tool design process using the software prototyping
environment APICES.

In a very short time we constructed the tool Dual Dynamics
Designer (DDD) which supports a novel methodology in
robot software development. DDD allows to edit a complex
differential equation-based specification of dynamic robot
behavior via an intuitive graphical interface and
automatically generates microcontroller code in C as well as
a simulation model in Java from it.

Speed-up of the tool design process is primarily achieved by
a rigorous top-down tool modeling approach in combination
with a highly configurable tool frame generator.

1. INTRODUCTION
In many cases, co-design tasks can be tackled with design
systems that consists of a set of available hardware and
software tools [2][7][8][12][15]. This holds especially true
for co-design problems that can be partitioned into more or
less independent sub-problems. On the other hand, we face
problems that require highly specialized environments
which are composed of special tools tailored to solve design
problems occurring in small classes of target systems. In
these environments, available tools are at best building
blocks that solve standardized sub-problems, e.g. the
simulation or synthesis of separable sub-systems. The rest
are special tools which have to be designed.

The resulting problem is a significant effort in terms of time
and money needed for the development of tools and
integration environments. Often the development of new

tools is avoided due to high costs and long development
time, although these tools could speed-up steps in a co-
design process. This situation is typical for innovative
development departments and research institutes.

In this paper, we present a solution approach to automate the
design of specialized niche tools. We demonstrate that the
UML-based software prototyping environment
APICES [3][4] allows to design co-design tools within a
very short time.

As example, we construct an editor/generator tool for robot
software. The tool is based on Dual Dynamics [9] - a novel,
mathematical design scheme for complex robot control
systems. Such robot control systems typically consist of
many (hundreds) differential equations, which are
approximated on digital robot hardware by difference
equations. The Dual Dynamics design scheme provides a
set of mathematical constraints which help the designer to
define a transparently structured ensemble of differential
equations. However, the language of Dual Dynamics is
primarily mathematical. In order to put this approach into
practice, we needed a new tool which translates the
mathematical constraints into practical, concrete design
rules, and which supports the generation of executable C
code from mathematical formulae.

We developed a tool called Dual Dynamics Designer
(DDD). It is used for design, monitoring and test of an
autonomous robot platform [11] which is supplied with
various sensors (camera, gyro, IR-distance sensors,
bumpers, laser scanner) and actuators (motors, camera
servo, distance sensor servo). We have to develop the tool in
a very short time, since we intend to participate in the
international RoboCup contest [10] in summer 1999. We
consider this project setting typical for many other time
critical co-design tool developments.

This paper is structured as follows. Section 2 gives an
introduction to the tool we have to construct in order to
solve our design problem. Section 3 sketches the software
prototyping environment APICES. Section 4 describes the
design of the DDD tool with APICES. Section 5
summarizes some details on the design process and the
DDD tool. Section 6 briefly compares our work to related
work before we end the paper with conclusions and an
outlook to next steps.

ol
ain

rate
et

the
nd

ms
 of
of
es
is
le
re
d
is

 tool

to
f a
.

its
this

ool.

be
lass
ol

me
 A
a
ss
].
ct
2. DUAL DYNAMICS DESIGNER (DDD)
Dual Dynamics Designer (DDD) is a specialized tool to
generate robot control software from a mathematical
specification of robot behaviors. In this section, we give a
brief overview of the principles behind Dual Dynamics in
order to elucidate the functionality of the tool.

In Dual Dynamics, a robot behavior control system is
specified through a considerable number of ordinary
differential equations (ODE’s). They fall into two major
categories, namely, sensor pre-processing and behavior
control. Within each of these categories, further structuring
constraints prescribe a grouping of ODE’s into subsystems
with specific interaction mechanisms between them.
Figure 1 sketches the overall architecture of the control
system.

Sensor pre-processing is organized as a network of sensor
filters. Each sensor filter may process raw sensor outputs or
intermediate sensor variables produced by other sensor
filters. Importantly, cyclic connections are admissible.

Behavior control is organized in terms of a hierarchy of so-
called “behaviors”. In the mobile robotics community,
behaviors [6] are the central building block of robot control
systems. They can range from short-term, stereotyped
“reflexes” like “kick ball” to long-term, flexible activity
patterns like “defend”. In the Dual Dynamics scheme, the
hierarchy of behaviors is sorted according to time scale: the
more long-term and comprehensive a behavior, the higher
its position in the hierarchy. Only behaviors at the lowest,
“elementary” level have access to actuators.

Each behavior has an activation variable, which is regulated
through (many of) the behavior’s ODE’s. Interactions
between behaviors within a single level occur by various
types of cross-influences between activations (e.g., mutual
inhibition, sequencing). Inter-level interactions are of a

quite special sort: higher-level activations work as contr
parameters on the lower-level subsystems, inducing cert
bifurcations in them.

Elementary behaviors are special in that they also gene
target trajectories for the robot’s actuators. The targ
trajectories of all elementary behaviors are weighted by
generating behavior’s activations, linearly combined a
finally passed to the actuators.

This architecture allows to design behavior control syste
that are mathematically transparent. The main source
mathematical transparency is the fact that bifurcations
individual subsystems are constrained to certain typ
(details in [9]). However, mathematical transparency
necessary, but not sufficient for an efficient and scalab
practical design. The mathematical constraints which a
implicit in the kind of ODE’s admitted, must be rendere
explicitly manipulable for the concrete design process. Th
is where the robotics engineer needs a special co-design
which “embodies” the Dual Dynamics formalism.

3. APICES
The software prototyping environment APICES allows
generate tool skeletons from an object-oriented model o
tool. This tool model is based on a UML [1] class diagram
One of the specific strengths of our environment is
support of graph-based tool structures. We reported on
feature in previous work [3][4]. In this paper, we
concentrate on the development process of a co-design t

APICES comprises a generic tool template which can
tailored by parameters supplied as annotations of the c
diagram. The implementation architecture of the to
template is sketched in the right part of figure 2.

The code generators of APICES allow to generate a fra
of a tool (tool frame) as an instance of a tool template.
tool frame is an application skeleton consisting of
generated C++ class library (implementing the cla
diagram) embedded into the scripting language Tcl [13
The embedded C++ library offers methods to constru
complex object nets in Tcl.

Figure 1. A Dual Dynamics control architecture. Boxes
correspond to subsystems made from one to many ODE’s.

Figure 2. APICES

graphical user
interface (Tk)

Tcl with embedded
C++ methods

C++-
class library

OODB
(optional)

tool model
editor

code
generators

APICES

tool template

generates

HTML
documentation

tool
documentation

l

g
p
l

n
sor
ia
ery
be
tic
el
The tool frame is supplemented with a canvas based GUI
which is configured by annotations added to classes of the
tool model. The GUI allows to create, modify and edit
objects and object relationships via context sensitive menus.

The implementation effort to construct a specialized tool on
the basis of a generated tool frame is reduced to adding
application specific functionality to the tool frame. We call
these extensions tool code in the sequel of this paper.
Writing tool code is done either on scripting level by
programming in Tcl using generated embedded methods or
on C++ level by adding new C++ methods to the class
library. Note, that these new methods result in new Tcl
commands.

4. DESIGNING DDD WITH APICES
Tool design with APICES is done in three steps in an
iterative loop:
(1) capture the object-oriented UML class diagram and the
GUI specification in a tool model,
(2) generate the tool frame and the tool GUI from it, and
(3) customize and extend the tool frame with tool code.

4.1 Tool Modeling
In a first design step we captured the notions of Dual
Dynamics in a UML class diagram. Since APICES provides
a documentation editor as integral part of the model editor,
we are able to generate frame-based HTML documentation

from the tool model. Figure 3 shows a screen shot of
APICES with the DDD tool model.

4.2 Tool Frame Generation
From this tool model we generate a tool frame for the DDD
tool. The frame is an instance of the tool template
parameterized and tailored by the tool model. The tool
frame comes with prefabricated functionality, e.g., for
saving and loading object nets, in our case Dual Dynamics
models, using a generated file exchange format.

Up to this time, no line of code has to be written manually.
All “implementation” was graphical modeling and mode
parameterization.

4.3 Tool Code
The generated tool frame with the tool GUI is the startin
point for adding application specific functionality. We grou
the tool code required for the DDD tool into two functiona
parts, an editor and several code generators.

The editor allows to enter a Dual Dynamics specificatio
using graphical elements for sensors, actuators, sen
filters, higher-level behaviors and lower-level behaviors v
the generated GUI. Figure 4 gives a screen shot of a v
simple Dual Dynamics specification. The editor code to
written comprises assistance functions for automa
incremental layout and check of layered higher-lev
Figure 3. DDD tool model in APICES (left part showing the GUI model)

behaviors and the sensor filter network. The latter allows to
highlight variable cycles (figure 4) which give important
hints to the behavior designer.

In addition, we construct a differential equation editor
allowing to enter the functional description of sensor filters,
higher-level behaviors and elementary behaviors.
Differential equations and all other equations are stored as
parse tree in the internal data structure of the tool. This
allows to perform several syntax checks (well-formedness,
variable scopes, parenthesis errors, etc.) on the fly during
editing the equations of a Dual Dynamics system.

The code generators convert differential equations to
difference equations and produce code for three different
targets:
- C code for the three 80C167 micro-controllers used in our
robot platform [11] (This code implements the Dual
Dynamics system on the robot),
- HTML documentation of the Dual Dynamics system under
design, and
- a Java behavior simulation model of the Dual Dynamics
system which is plugged into our behavior simulator.

At present, the following extensions are under construction:
- automatic conversion of floating point arithmetic to
integer arithmetic for improved micro-controller
performance, and
- a model generator for Matlab/Simulink for precise
simulation of partial behaviors.

5. RESULTS
We have documented the development process of the DDD
tool in order to discover bottlenecks and starting points for
future extensions of APICES. Therefore, we can give some
figures on the kind of effort spent during the design of DDD
(Table 1) and some figures concerning tool code size and
implementation time (Table 2).

In the first phase of the project, we captured the object-
oriented tool model needed for Dual Dynamics. This
required a knowledge transfer from the Dual Dynamics
expert to the tool designer. The HTML documentation
generated from the tool model by APICES turned out to be
well-suited to understand and communicate the notions and
principles of Dual Dynamics and to explore the
relationships between them.

The effort for tool code implementation is detailed in
Table 2. It shows the kind of Tcl code written for each sub-
system of the tool, either program (P) or configuration data
(D). The code generators use a common parse tree traverser
which performs three different file export actions for micro-
controller C code, for behavior simulation models in Java
and for HTML documentation. The total tool code size of
DDD currently comprises 1050 lines of Tcl only.

The DDD tool design is recent work in our RoboCup
project. Very first user experiences show that the automated
Dual Dynamics design process with its convenient behavior
editor and the code generators for Java behavior simulation
models and the micro-controller C code significantly ease
and accelerate robot behavior exploration as well as
implementation.

Figure 4. DDD screen shot with ODE editor menu and a
variable cycle between sensor variable S3 and sensor filter F2

Kind of design effort
Time
effort

Share of
effort

knowledge acquisition and tool modeling 15 h 15 %
tool code implementation 45 h 40 %
tool test and bug-fix 20 h 20 %
tool documentation 25 h 25 %

Table 1. Tool design effort

DDD
sub-system Tool functionality

Data
Prog.

Lines
of Tcl

Time
effort

Editor GUI customization D 100 2 h
ODE processor P 260 10 h
DD model export (XML) P 70 5 h
ODE Editing Assistant P 80 9 h
DD File Save/Load D 30 2 h

Code
Generators

C code generator P 500 17 h
HTML code generator P
Java model generator P

Table 2. Implementation effort

s-

-

-

a

-

6. RELATED WORK
Commercially available UML-based modeling tools, e.g.
Rational Rose [14], or off-the-shelf software development
environments, e.g. Visual C/C++, are too general to allow
very rapid co-design tool development. For example, they
do not offer support for scripting language embedding and
automated GUI design. We consider both features combined
with a model-based approach essential for rapid tool
development.

Nevertheless, modeling tools like Rational Rose are
candidates for an alternative frontend of the APICES
environment. In this context, we presented work on the
integration of APICES with Rational Rose and the source
code engineering environment SNiFF+ [5].

7. CONCLUSIONS
In this paper, we show that UML-based tool development
with APICES allows to reduce the effort for the
specification and construction of highly specialized co-
design tools. We have demonstrated this by elaborating on
the design of the tool DDD which generates robot control
software from a differential equation system.

The DDD tool as described in this paper has been
constructed from scratch by generating a tool frame from an
object-oriented tool model and extending it with 1050 lines
of Tcl. The total effort of the tool design process was three
weeks.

The key features of our design process being responsible for
this efficiency are:
- rigorous object-oriented top-down modeling,
- re-use of generic tool templates,
- generation of a model-specific tool frame (including GUI)
as implementation of the tool model, and
- programming in a scripting language using generated tool
model specific language extensions.

8. FUTURE WORK
Our future work on the specialized DDD tool will
concentrate on adding an abstraction layer above
differential equations which would allow to describe and
not construct differential equations. We then will extend the
DDD tool in order to assist automatic generation of Dual
Dynamics systems from these high-level behavior
descriptions.

Our future work on APICES will focus on the abstraction of
additional tool sub-systems in order to provide them as re-
usable, configurable building blocks in our design tool
prototyping environment.

9. ACKNOWLEDGEMENTS
I thank my colleague Herbert Jaeger for offering his
expertise in Dual Dynamics.

10. REFERENCES
[1] Alhir, S.S. UML in a Nutshell. O’Reilly, 1998

[2] Balarin, F. et. al. Formal Verification of Embedded Sy
tems Based on CFSM Network. in Proceedings of the
33rd ACM/IEEE Design Automation Conference
(DAC’96), 1996, pp. 568-571

[3] Bredenfeld, A. APICES - Rapid Application Develop-
ment with Graph Pattern. in Proceedings of the 9th
IEEE International Workshop on Rapid System Proto
typing (RSP’98), Leuven, Belgium, pp. 25-30, 1998

[4] Bredenfeld, A., and Camposano, R. Tool Integration
and Construction Using Generated Graph-Based
Design Representations. in Proceedings of the 32nd
ACM/IEEE Design Automation Conference (DAC’95),
pp. 94-99, 1995

[5] Bredenfeld, A., and Ihler, E. RoseSNiFF - Forward
Engineering using Rational Rose and SNiFF+. in 3rd
European SNiFF+ Users Conference, January 1999

[6] Brooks, R.A. Intelligence without reason. A. I. Memo
1293, MIT AI Lab, 1991

[7] Buck, T.T., Ha, S., Lee, E.A., and Messerschmitt, D.G.
Ptolemy: A Framework for Simulating and Prototyping
Heterogeneous Systems. in Int. Journal of Computer
Simulation, special issue on “Simulation Software
Development“, vol. 4, pp. 155-182, April, 1994.

[8] Chou, P., Ortega, R.B., and Borriello, G. The Chinook
Hardware/Software Co-Synthesis System. in Proceed-
ings of the Eight International Symposium on System
Synthesis, 1995, pp. 22-27

[9] Jaeger, H. and Christaller, T. Dual Dynamics: Design
ing Behavior Systems for Autonomous Robots. in Arti-
ficial Life and Robotics (to appear)

[10]Kitano, H. Research Program of RoboCup, Applied
Artificial Intelligence. Vol. 2, No. 2-3, pp. 117-126,
May 1998

[11] Kuth A., et al. Team Description of the GMD
RoboCup-Team. in Proceedings of the 2nd RoboCup
Workshop. Edited by M. Asada, Paris, pp. 439-450,
July 1998

[12]Madsen, J., et. al. LYCOS: the Lyngby Co-Synthesis
System. Design Automation of Embedded Systems.
Vol. 2, No. 2, March 1997

[13]Ousterhout, J.K. Tcl and the Tk Toolkit. Addison-Wes-
ley, Reading, MA, 1994

[14]Rational Rose98/C++. Rational Software Corp., Sant
Clara, CA, 1998

[15]Valderrama, C. A., et. al. A Unified Model for Co-Sim
ulation and Co-Synthesis of Mixed Hardware / Soft-
ware Systems. in Proceedings of the European Design
and Test Conference, 1995, pp. 180-184

	Main Page
	CODES'99
	Front Matter
	Table of Contents
	Session Index
	Author Index

