
Using Codesign Techniques to support Analog
Functionality

Francis G. Wolff Michael J. Knieser Dan J. Weyer Chris A. Papachristou
Computer Engineering and Science Department

Case Western Reserve University
Cleveland, OH 44106

{wolff, knieser, weyer, cap}@alpha.ces.cwru.edu

ABSTRACT
With the growth of System on a Chip (SoC), the functionality of
analog components must also be considered in the design process.
This paper describes some of the design implementation
partitioning issues and experiences using analog and digital
techniques for embedded systems. To achieve a quick turn around
for new embedded system development, a design methodology
was extended for analog codesign based on the specify-explore-
refine paradigm and system-level design methodology [3]. Many
system-level issues were addressed including hardware/software
codesign trade-offs.

Keywords
Hardware/Software Codesign, Analog, Design Methodologies.

1. INTRODUCTION
The promise of placing “Systems on a Chip” (SoC), Sematech,
predicts state of the art ICs will exceed 12 million gates, operating
at 600MHZ by the year 2001 [7] causes one to look for or extend
a new methodology in order to handle this ever increasing level of
integration complexity. The integration of analog with digital on a
SoC will become more common, especially for industrial and
automotive applications. Older methodologies are too inefficient
to generate this type of design.

The embedded systems developed for the industrial automation as
well as automotive markets have long product life spans, legacy
IP interfaces and operate in an industrial environment that
requires operation at 60°C with no forced air-cooling. They also
possess a common but an important characteristic, in that they
heavily interface with the real world through analog input and
output ports. Interfacing with the real world will never disappear.
The analog circuits needed to interface between the digital and the
real world are also being integrated on the SoC for the same

reasons of cost and performance but it is not clear how much of
that interface should be done by analog or the embedded digital
processor.

The hardware/software codesign techniques developed recently,
allow a designer to decide how to partition the functional
behavior between hardware and software in an embedded system.
The question rises as how hardware/software codesign techniques
could include analog. The hardware/software codesign
techniques have been applied successfully on digital designs.
With system on a PCB, this has been done in a very ad-hoc
manner if at all, but with the advent of SoCs, this codesign
technique is more appealing. The current design paradigm is to
minimize analog and maximize on digital signal processing. The
growth of digitally compensated analog circuits has made analog
more and more acceptable and overcome many on its inherent
weaknesses.

The application domain consists of where the real world interface
transition between analog and digital should be. The analog and
digital functionality is described at the behavioral level. This
allows for a higher level exploration of the analog and digital
codomains in the design before components are implemented. The
exploration of where this transition lies is based on cost and
performance metrics.

This paper first discusses briefly the current design methodologies
and in particular the specify-explore-refine paradigm. Presented
here is our methodology of the system-level methodology based
on the specify-explore-refine paradigm [1]. A analog/digital
embedded subsystem application was designed using this
methodology. System design and component implementation
tradeoffs and IP issues related to our design are then discussed.
The conclusion will present comments related to our prototype
and future direction.

2. BACKGROUND
The goal of each CAD methodology is to increase the productivity
of the design engineer. Each methodology raises the level of
abstraction of the design details of the system being designed,
allowing for larger design sizes. In recent years the methodology
of capture-and-simulate has given way to the describe-and-
synthesize methodology [3]. Tools such as Synopsys Behavioral
and Design Compiler have supported this methodology. The
advantage of this describe-and-synthesize methodology is that the
embedded system may be described in a behavioral form. This

technique is successful for 1M gate designs and the designer
productivity was about 6K gates per design per engineer/month.

The specify-explore-refine paradigm differs from the other
methodologies by the fact that the specification is an executable
specification, which allows for automatic exploration of alternate
design options. The refinement results in another executable
specification for the next level of the design [9].

Gajski, et al. [3-4] have proposed a methodology targeted at the
higher level. This is a formalized System-level design
methodology based on the specify-explore-refine paradigm. The
key components are the Specification Capture, System Design and
Component Implementation. The Specification Capture is
performed by specifying the desired system functionality and is
described by functional objects, which can be of one three types:
variables, behaviors and channels. Design alternatives are
explored via estimators that best satisfy the cost and performance
constraints of the Functional Specification. The exploration
process consists of three tasks, which are applied to each
functional object class [4]: allocation, partitioning and refinement.
This particular ordering of tasks was suggested, as a good choice
but is not a requirement. This refined specification results in a set
of interconnected system-component blocks. The component
implementation process then further explores the new refinement
specification into RTL and software.

This system-level methodology is strong in hardware/software
codesign, cost and performance techniques. Additional citations
of design methodologies on hardware/software codesign are in
[1,2,5,6,11]. However, none of these consider analog as part of
the design methodology or the ability to identify cores in
particular analog cores in the system design exploration process.

3. APPLICATION DOMAIN
A typical class of embedded systems has a host, which
communicates with distributed embedded subsystems. Each of
these embedded systems interfaces with the real world and consist
of a cascade of analog to digital and digital to analog interfaces.
The application domain for this methodology includes analog to
digital interfaces on the particular embedded system. An
embedded system may have analog input only, analog output
only, or both. The analog input typically requires filtering, or
signal conditioning before passed onto the host. The analog
output is treated in the same way. The concern here is how much
of this signal processing or other data processing should be done
by the analog and how should be done by the digital as shown in
Figure 1.

Real World
interface

Analog processing Digital processing

Digital
interface

Real World
interface

Figure 1. The Analog and Digital Codomains of a digital
subsystem.

A less intuitive design exploration is the alternation of analog to
digital as shown in Figure 2. For example, should the enclosed
circle be all digital or a mixture of analog and digital. The
interface cost of moving between analog and digital codomain is
high but this cost may not be the determining factor in the cost
and performance metrics.

Analog Digital Analog Digital Analog

Figure 2. Exploration of analog and digital.

4. PROPOSED DESIGN METHODOLOGY
The proposed design methodology is shown in Figure 2. The
function specification embodies the digital as well as the analog
objects. These objects may be specified as existing encapsulated
IP components as well as abstract components [10]. Since,
industrial automation products have long live spans, legacy bus
protocols and specialized analog interfaces. This often results in
either soft cores or more commonly, firm and hard cores that are
part of the specification. The specify-explore-refine paradigm is
applied in system design step and also in the component
implementation step. Each design step creates an executable
specification to allow further exploration. Since, a refined
specification is also executable this makes verification easier with
automated tools, hence specify-explore-refine-verify paradigm
may be more appropriate. The system design exploration deals
with deciding how much of the input signal to digital should be
analog and visa versa how much of output signal path should be
digital.

RRTTLL bblloocckkss && ssooffttwwaarree

Explore

Refine

SSyysstteemm BBlloocckkss

AAnnaalloogg FFuunncc
SSppeeccss..

DDiiggiittaall FFuunncc..
SSppeeccss..

SSyysstteemm DDeessiiggnn

FFuunnccttiioonn SSppeecciiffiiccaattiioonn

DDiiggiittaall HH//SS CCoorreessAAnnaalloogg CCoorreess

CCoommppoonneenntt
IImmpplleemmeennttaattiioonn

Refine

Explore
CCoommppoonneenntt

IImmpplleemmeennttaattiioonn

Specify

Specify

AApppplliiccaattiioonn

SSppeecciiffiiccaattiioonn CCrreeaattiioonn

PPaappeerr DDooccuummeenntt

Figure 3. Proposed Design Methodology.

The system design exploration must consider what must be placed
in analog and digital. After this has been allocated, partitioned,
and refined, the component implementation exploration of the
analog and the digital can now proceed separately. Certainly for
verification they are simulated together. This early partitioning of
analog and digital, rather than in the component implementation
which is typical of describe –and-synthesize methodology
supports the need of a higher system design abstraction as
originally proposed by [3-4].

The allocation and partition, which are guided by the design
metric estimators, must now consider analog estimators. In many
ways, analog estimation may be easier, especially when using IP
analog cores. Two key issues characterizing analog estimators are
quality and sensitivity. Quality is the accuracy of the signal in
terms of number of bits. Sensitivity is how much the component
will deviate from the ideal component. This could be noise,
interference, degradation, temperature drift, etc.

Analog presents a problem whether allocation should proceed
partitioning. For example, It is not simply mapping functional
behaviors to analog. Certainly analog can be viewed as a non-
programmable hardware processor. Variables and channels are no
longer strictly in the digital domain. Since the ordering of tasks is
not fixed [4], the proposed methodology chose to partition,
allocate and then refine. Partitioning the analog can be
approached several ways as shown in Figure 4.

2-level A/(H/S)

A D

H S

H S

A D

H SA

2-level (H/S)/A 1-level A/H/S

Figure 4. Analog-digital partitioning approaches.

The most intuitive and common method is the 2-level A/(H/S)
partitioning. Here the analog is first partitioned from the digital.
The Digital is then partitioned into hardware/software.

A less intuitive method is the 2-level (H/S)/A partitioning. Here,
the hardware/software codesign proceeds in the traditional way.
In next level, the analog is treated as a type of hardware. The
hardware is then partitioned into analog and digital. This method
allows the first level to be the upper bound in area constraints.
Analog IP cores lend themselves well with the two level
partitioning as opposed to the single level partitioning since the
granularity is large.

The last approach is a single level A/H/S partitioning which
requires more computational effort on the partitioning algorithms,
since it must simultaneously consider all cases. The ability to
explore alternative designs quickly is a critical issue. The 2-level
methods lend themselves well with 0-1 integer-programming
algorithms. The single level method is usually practical when the
interface costs between domains is low, which is not the case
here. Whether this method has any merit is a subject of future
research.

The exploration and refinement was achieved by having a rules
list, which allowed the mapping of certain functional objects to
generic components with estimators. For example, common
differential equations can be mapped to well-known analog and
digital designs. High level signal processing functions such as
filters can be mapped to analog or digital system blocks.

The executable functional specifications for the design were
MATLAB Models, C++ Models, and VHDL Models. Observe
that these languages range from very abstract to software-
abstraction to hardware abstraction. . The latter are well suited for
specifying existing encapsulated IP components [5]. We feel that
no one language can efficiency suite all functional specifications.
Figure 3 shows our modification to the system design portion of
system-level methodology [3]. Matlab provides the mathematical
analysis tools, functions and modeling for the analog or signal
functional objects and components within the system. C++
provides the software modeling and synthesis language for
sequential algorithm constructs. VHDL provides the hardware
modeling and synthesis language for some sequential algorithms
and concurrent algorithms.

4.1 DESIGN MODELS AND TOOLS
The initial functional specification for the embedded system uses
all three languages. The functional behavior specification is
written in the language that best fits the particular specification.
If in the exploration, it is required to move from one language to
the next, software bridges are provided. These bridges allow
execution of all languages as a single specification. A subroutine
stub was written in each language, which provided input/output
file data between the languages. For example, the analog filtering

algorithm was described with Matlab. The analog to digital
interfaces and serial interface was described in VHDL. The serial
host communication protocol was described with C.

Explore

Refine

SSyysstteemm BBlloocckkss

VVHHDDLL--MMooddeellss CC++++--MMooddeellss

FFuunnccttiioonn SSppeecciiffiiccaattiioonn

VVHHDDLL--MMooddeellss CC++++--MMooddeellss

MMaattllaabb--MMooddeellss

VVeerriiffyy
CCOOMMEETT TTooooll MMooddeellssiimm TTooooll

MMaattllaabb TTooooll

SSyysstteemm DDeessiiggnn

Figure 5. Design models and tools.

Given the Functional Specification, The Math Works Inc. Matlab
program, COMET [6] program and Mentor Graphics Modelsim
program were used as the system design exploration and
refinement tools to generate the system blocks. Matlab allows
functional behaviors to be described in many ways, such as
algorithms or differential equations, which can be solved
numerically or symbolically. This favors an analog description of
functional behaviors. Matlab models can explore the
analog/digital codesign issues. The COMET tools/framework was
used to explore hardware/software codesign issues within the
embedded system and refine the C++ Models and VHDL Models.
The ModelSim allowed VHDL exploration.

Verification was achieved by several methods. Test benches were
created for the complete system, which was transformed into
VHDL code. This was done using Mentor Graphics VHDL
simulator, Modelsim. The analog model portions were translated
into VHDL as behavioral. Writing test benches in VHDL was a
good choice, in that it exploited the property that VHDL is used
in the later component implementation step. The Synopsys Design
Compiler after synthesis can also output a VHDL gate-level file.
Hence, the system design test bench can be applied again at the
component implementation for further verification. Furthermore,
the AVANT! Floorplan manager via software bridge can back
annotate actual timing data from the embedded system routing for
an additional reuse of the same digital system design test bench
which now does timing violation verification. Thus, the system
design test bench first verifies functional specifications,
component implementation specifications, and finally gates level
timing violations.

Analog verification was handled via bi-directional software
bridges from VHDL to Matlab and SPICE. The Matlab tool
provides a rich set of analysis and functions to allow for easy
verification of analog signals. Test analog signals were generated
in Matlab converted to VHDL format, simulated in VHDL and
transformed back to Matlab for frequency/bode plot analysis.

4.2 Functional Models
The Matlab tools allow for frequency analysis based on a C like
programming language interface. The tools have signal
processing and control system library functions to easily model
systems. Initially Matlab was used in the functional specification
design phase. Models of blocks were generated, simulated and
analyzed. As the blocks migrated into a system design and
eventually into a component hardware implementation, Matlab
was used to both analyze the results as well as to generate the test
benches.

For example, analog data values were chosen within Matlab to
meet the application. A system model was created using the
Matlab functions to show the functionality of the desired
application. This functional specification had many
implementations. A microprocessor could implement the model.
A hard-wired datapath with a state-machine could implement the
model. To explore the above possible system designs, the Matlab
Model was convert to another Matlab model that implemented the
build-in Matlab function given parameters like 16-bit word
widths. Then this architecture model was explored to generate the
system design. Re-use of the Verification test-bench for these
system blocks aided the exploration process. The Matlab test
generation and analysis were re-used to test the component
implementation models and synthesis hardware for the
application.

VHDL is a simulation language of which certain sequential
constructs and concurrent constructs can be simulated. As well a
restricted subset of the sequential and concurrent constructs can
be synthesize into hardware. VHDL also allowed for certain
timing critical aspects of the design to be behaviorally described.
For example, the test bench signals to test the implementation of
the application could be toggled at precise time instances
described easily within a VHDL test bench.

For our application the analog data sources were behaviorally
modeled in VHDL. A VHDL test-bench was generated to
encapsulate this portion of the application of which Matlab
generated data was used as the stimulus. Since there were eight
individual analog data sources, the applications interface could
share a common datapath by multiplexing the incoming data or
have a unique datapath for each data source for the system design.

COMET is a hardware/software codesign tool whose input
consists of C, VHDL and a text-based rules file [8]. The tool was
applied to determine the viability of using a microprocessor for
the analog filtering or using other state-machine based hardware
formatting implementation. The COMET tool allows for
determination of whether the block is better implemented in
hardware versus software running on a microprocessor. This tool
explores the area and timing characteristic of the C and VHDL
functions for a given set of microprocessors. For our application
we used the COMET tools to explore hardware/software tradeoffs
given either an ARM or a 386SX microprocessor.

4.3 Results
An embedded subsystem consisting of several analog inputs and a
serial host interface was designed. Exploration consisted of how
much to allocate to analog and to digital. The cost metric of
reducing chip area and time-to-market was the most important. In
this design, analog to digital codesign tradeoff was the number of
bits to process the signal with the required accuracy. The more

signal bits that were required, resulted in increasing the digital
area much more than the analog. This is due to the size of the
multipliers, serial or parallel.

The digital filter design trade-off was how to perform a
multiplication. A parallel multiply-accumulator or a serial
multiply-accumulator could be created. Since we needed
multiplication for the data processing of each data source this
implied that we needed either a fast multiplier to handle each data
source in series or multiple slow multipliers for parallel
multiplication. The data widths were 16 bits. Therefore a 16 by
16 multiplier would be required of which only the upper 16 bits
was of interest for the result of the multiplication. Exploration
revealed that serial ALU best met the area and time constraint.

The exploration suggested more analog, but due to difficulty of
mixing analog and digital simulation, interfacing between
analog/digital tools and a factor of ten of analog simulation over
digital, a decision was made towards using digital filtering in
order to reach the design schedule deadlines.

The hardware/software codesign trade-off was to utilize a
microprocessor to perform the digital task or have a state-machine
digital approach. The design challenge was to handle many
channels of digital data. The benefit of a microprocessor would
be a single datapath with minimum utilization of RAM. However,
the challenge is data bandwidth. The microprocessor would have
to either employ multiple data processing paths or a high enough
clock rate to handle the multiple data channels. The result was
too much power, due to high microprocessor clock rate, area and
the complexity for a microprocessor architecture indicated that a
digital state-machine design was desirable.

The embedded systems host digital interface design trade-off was
whether to utilize a vendor’s asynchronous serial IP block. Given
Synopsys scripts, layout area and architectural design were
compared and contrasted with a custom asynchronous serial IP.
The application’s serial interface required a host to connect either
synchronously or asynchronously. A vendor supplied IP UARTs
proved to be difficult to meet the application specifications. The
design required a synchronous design, and it appeared easier to
design a custom IP UART.

In industrial environments, it is a goal practice to reduce the
power. Component exploration resulted in running at a very slow
clock frequency of 24 Mhz as to minimize the CMOS power
consumption. Also, to prevent digital noise from interfering with
the analog to digital conversion, digital activity was minimized
whenever an analog to digital sample was taken.

5. STATUS OF WORK
Although we have implemented an embedded system, the original
design methodology proceeded in mixed formal and ad-hoc
fashion to a completely formal system. At this point, we are

currently working on automating the system design exploration.
Some of the authors are in collaboration with industry, but due to
the proprietary nature of industrial embedded system, many
details where left out.

6. CONCLUSION
By using the proposed design methodology using Matlab, C++
and VHDL as conceptual models, we were able to specify a
system-level design for an actual industrial application. This was
explored and refined first into analog/digital codomains and then
proceeded hardware/software codomains. Future work, will
investigate into alternative partitioning approaches between
analog and digital.

7. REFERENCES
[1] Adams, J.K. and Thomas, Donald E. “The Design of Mixed

Hardware/Software Systems,” in Proc. 33th DAC, 1995

[2] Ernst, R., Henkel, J., and Benner, T., “Hardware-Software
Cosynthesis for Microcontrollers,” IEEE Design & Test of
Computers, vol. 10, no 4, pp. 64-75, 1993.

[3] Gajski, D. D., Vahid, F., Narayan, S., Gong, J., Specification
and Design of Embedded Systems, Prentice Hall, 1994.

[4] Gajski, D. D., Vahid, F., and Narayan, S., Gong, A System-
Design Methodology: Executable-Specification Refinement,
EDAC, 1994.

[5] Gupta, R. K. and De Micheli, G., “Hardware-Software
Cosynthesis for Digital Systems,” IEEE Design & Test of
Computers, vol. 10, no. 3, pp. 29-41, 1993.

[6] Kalavade, A. and Lee, E. A. “Hardware/Software Codesign
Methodology for DSP Applications,” IEEE Design & Test of
Computers, vol 10, no 3, pp. 16-28, 1993.

[7] Keating M., Bricaud P., Reuse Methodology Manual For
System-on-a-Chip Design, Kluwer Academic Publishers,
1998.

[8] Knieser, M. J., Papachristou, C., A., “COMET: A Hardware-
Software Codesign Methodology,” European Design
Automation Conference, September 1996, pp. 178-183.

[9] Vahid, Frank, Hardware/Software Codesign of Embedded
Systems, APCHDL’97, Hsinchu, Taiwan, August 18-20,
1997.

[10] Vahid, Frank, and Givargis, Incorporating Cores into
System-Level Specification, International Symposium on
System Synthesis, December, 1998.

[11] Yen T.-Y., and Wolf, W., “Sensitivity-Driven Co-Synthesis
of Distributed Embedded Systems,” in Proc. 8th Int.
Symposium on System Synthesis, 1995.

	Main Page
	CODES'99
	Front Matter
	Table of Contents
	Session Index
	Author Index

