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Abstract
In this paper, two faster and better spectral

algorithms are presented for the multi-way circuit
partitioning problem with the objective of minimizing
the Scaled Cost. As pointed out in [3], the problem can
be approximately transformed into the vector
partitioning problem by mapping each circuit
component to a multi-dimensional vector. The common
key idea of our two algorithms for solving the vector
partitioning problem is to first treat the set of vectors as
a cluster, and then repeatedly select a cluster, which
gives the maximum cost improvement among all the
current clusters, and partition it into two new clusters.
The bipartitioning process is continued until the
number of clusters is equal to the required number of
partitions. The experimental results indicate that the
two algorithms significantly outperform MELO+DP-
RP [3] in both the run time and partitioning result.

1. Introduction
Circuit partition has played an important role at

different levels of VLSI design [9,10]. An often
adopted type of approaches to circuit partitioning
employs the iterative improvement technique in which
the local perturbation of the current solution is done
repeatedly until no further improvement can be
achieved [5,8,11,12]. This type of approaches is
criticized for not being able to fully capture the global
information of the circuit.

Another type of approaches called spectral
partitioning has been recently received a lot of
attention [1,2,3,4,6,7]. The basic idea behind this type
of approaches is to first transform the circuit
partitioning problem into the graph partitioning
problem. After the graph is constructed, spectral
methods for graph partitioning are carried out in the
following two steps. The first step is to geometrically
embed the graph onto the one- or multi-dimensional
real space. The second step is to partition the graph
vertices into the required number of partitions using the
geometric embedding information, such that without
violating any given constraints, the given cost function
is optimized. The experimental results indicate that
spectral methods generate better partitioning results
than iterative improvement methods [1,2,3,4,6].

One of the most recent and important theorems for
spectral graph partitioning states that if in the first step
all the eigenvectors of the Laplacian matrix of the
graph are generated and properly scaled, then the
second step can be reduced to the vector partitioning
problem [3]. However, since any efficient spectral
method cannot afford to generate all the eigenvectors
due to the expensive run time, the method presented in
[3] generates only up to 10 eigenvectors. To solve the
vector partitioning problem, the authors in [3]
developed a heuristic called MELO to arrange the
vectors in a linear ordering, and then applied a dynamic
programming algorithm called DP-RP [2] to split the
ordering and generate the final restricted partitioning
solution. Although MELO also generates the scaled
eigenvectors and constructs an instance of the vector
partitioning problem, to simplify our presentation,
MELO is referred to as only the part that generates a
linear ordering. Hence the method in [3] for solving the
vector partitioning problem is referred to as
MELO+DP-RP in this paper.

In this paper, we present two faster and better
spectral algorithms for the multi-way circuit
partitioning problem with the objective of minimizing
the Scaled Cost (which is a generalization of the two-
way ratio objective [2]). The common key idea of the
two algorithms is to solve the vector partitioning
problem by first treating the set of vectors as a cluster,
and then repeatedly selecting a cluster, which gives the
maximum cost improvement among all the current
clusters, and partitioning it into two new clusters. The
bipartitioning process is continued until the number of
clusters is equal to the required number of partitions.
The experimental results indicate that the two
algorithms generate much better partitioning results in
much less run time than MELO+DP-RP.

2. Preliminaries and Problem Formulation
The netlist of a given circuit is represented by a

hypergraph H which is approximately transformed to a
weighted graph ),( EVG . The set },...,,{ 21 nvvvV =
is the vertex set consisting of n vertices, and the
weighted edge set E is represented by an nn ×
adjacency matrix )( ijaA = , where 0>ija  if the edge



),( ji vv  exists, and 0=ija  otherwise. Let

∑= =
n
j iji av 1)deg(  denote the degree of iv , and let the

nn ×  degree matrix D be given by )( ijdD = , where

)deg( iii vd = , and 0=ijd  if ji ≠ . Let the nn ×

Laplacian matrix Q  of G be defined to be AD − . Let

nλλλ ,,, 21 �  denote the n eigenvalues of Q, and

nµµµ ���

,...,, 21  denote their corresponding n-dimensional

eigenvectors. We assume that nλλλ ≤≤≤= �210 ,

and  nµµµ ���

,...,, 21  are  normalized such that for each

j, where nj ≤≤1 , 1=j
T

j µµ �

. For each d, where

nd ≤≤1 , let )( ijdU µ=  denote the dn ×
eigenvector matrix whose d columns are dµµµ

���

,...,, 21 ,

respectively.    
Given a positive integer k, a k-way partitioning of G

is to divide the set of vertices of G into a collection of k

disjoint partitions, denoted },...,,{ 21 k
k CCCP = ,

where each partition hC , kh ≤≤1 , is a subset of V,

h
k
h CV 1=∪= , and each vertex is in exactly one

partition. For a given kP , the following corresponding
terms are defined. The kn ×  assignment matrix is

)( ihxX = , where 1=ihx  if hi Cv ∈ , and 0=ihx

otherwise. For each h, where kh ≤≤1 , the indicator

vector hX
�

 (corresponding to partition hC ) is the hth

column of X . The kn ×  projection matrix is

)( jhα=Γ , where h
T

jjh X
�

�µα = .

With the above notations and definitions, the k-way

(generalized) ratio-cut problem for G is to find a kP

such that the resulting cost )( kPf , defined to be

∑ =
k
h hh CE1 |)|/( , is as small as possible,

where ∑ ∑= ∈ ∉hi hjCv Cv ijh aE . If we let nH λ≥  be

some constant, then the dn ×  scaled eigenvector
matrix )( ijd vV =  is defined from dU  with

jijij Hv λµ −= . Let d
iy
�

 denote the ith row of dV ,

where ni ≤≤1 .  It is not hard to verify

|)|/)(()( 1 1
2

hj
k
h

n
j jh

k CHPfkH λα −∑ ∑=− = = .

With the scaled eigenvector matrix dV , the

corresponding vector partitioning problem is
formulated as follows. Given the positive integer k, and

the set },...,,{ 21
d
n

dd yyyY
���

= of n d-dimensional vectors,

the k -way vector partitioning problem is to find a

partitioning of Y into a set { }k
k SSSS ,...,, 21=  of k

disjoint subsets such that each d
iy
�

 ( ni ≤≤1 ) is

contained in exactly one hS  ( kh ≤≤1 ) and

∑= =
k
h hh

k SYSg 1
2 |)|/||(||)(

�

 is as large as possible,

where ∑= ∈ hSyh yY �

�
�

, and |||| hY
�

 denotes the length of

hY
�

. By considering each graph vertex iv  as the vector
d
iy
�

, we say that a graph partitioning

},...,,{ 21 k
k CCCP =  corresponds to a vector

partitioning { }k
k SSSS ,...,, 21=  if and only if hi Cv ∈

whenever h
d
i Sy ∈
�

. It has been proved that if kP

corresponds to kS , and nd = , then we have

)()( kk SgPfkH =−  [3]. This statement implies that a

k -way ratio-cut graph partitioning problem can be
transformed to a k -way vector partitioning problem
after generating all the scaled eigenvectors of the
Laplacian matrix of the graph. However, due to the
consideration of the time complexity, the authors in [3]
generated only up to d eigenvectors corresponding to

132 ,...,, +dµµµ
���

, respectively, where 101 ≤≤ d . (Note

that 1µ
�

 can be ignored.)

In this paper, we consider the multi-way circuit
partitioning problem with the Scaled Cost as the
objective. Given a hypergraph H representing the
circuit netlist, and a positive integer k, the problem is to

find a k-way partitioning },...,,{ 21 k
k CCCP =  such

that the resulting Scaled Cost [2], defined to be

∑− =
k
h hh Cekn 1 |)|/()))1(/(1( , is as small as possible,

where he  denotes the number of external nets crossing

the boundary of partition hC .

3. Two New Spectral Algorithms
The multi-way circuit partitioning problem

considered in this paper will be approximately solved
using spectral methods. To simplify the problem, we
assume that the hypergraph H has been transformed to
a graph by using the clique model and adding weight

)2/)22(()))1(/(4( pppp −×−  to each possible edge in

a p-pin net. (This transformation method was also
adopted by MELO+DP-RP.) In addition, the set of d
scaled n-dimensional eigenvectors (corresponding to

132 ,,, +dλλλ � , respectively) is assumed to have been

generated and re-arranged as the set

},...,,{ 21
d
n

dd yyyY
���

= of n d-dimensional vectors, where



d is a user-specified constant.  Now the problem
remained to be solved is transformed into the vector
partitioning problem whose objective is to find a k-way

partitioning { }k
k SSSS ,...,, 21=  of Y such that the

resulting cost ∑− =
k
h hh SYkn 1

2 |)|/||(||)))1(/(1(
�

 is as

large as possible, where ∑= ∈ hSyh yY �

�
�

. The cost

function can be further simplified as

∑ =
k
h hh SY1

2 |)|/||(||
�

 since n and k both are fixed for a

given instance of the problem. Once kS  is obtained,

the corresponding kP  can be generated, and the
corresponding Scaled Cost can be calculated.  

Form now on, we will only focus on the k-way
vector partitioning problem described above, and
present two new algorithms, called Algorithms I and II,
for the problem. Throughout the rest of this paper, the
terms vector and vertex will be used interchangeably,
and the notations n, d, and k will be used to denote the
number of vectors, the number of  dimensions of a
vector, and the required number of partitions,
respectively.

3.1 Algorithm I
Algorithm I first treats all the vectors as a global

cluster, and then repeatedly selects a “best” cluster
from all the current clusters, and uses a bipartitioning
algorithm called SPLIT to partition the cluster into two
new disjoint clusters. The repetition terminates when
the number of clusters is equal to the required number
of partitions. A cluster is said to be best if among all the
current clusters, it gives the maximum cost
improvement after being bipartitioned. Let S denote any
cluster, and )(SD  denote the cost contributed by S.

The )(SD is defined to be ∑ ∈Sy yS �

� 2|||||)|/1( .

Suppose that S is partitioned into two clusters aS  and

bS  each contributing the costs )( aSD  and )( bSD ,

respectively. Then the cost improvement due to the
bipartitioning of S into aS  and bS  is defined to be

)(SD∆ = )()()( SDSDSD ba −+ .

Next, let us describe how S is partitioned into aS

and bS  by the SPLIT algorithm. Let av  be the vector

in S which has the maximum length, and bv  be the

vector in S which produces the minimum resulting
length after adding it to av . Initially, av  is put into

aS , and bv  is put into bS . Then, each remaining

vector in S is considered sequentially (i.e., one by one)
to be put into either aS or bS , but not both. Let y

denote the current vector in consideration, and let
}{1 ySS a ∪=  and }{2 ySS b ∪=  denote the two

resulting clusters after adding y to aS  and bS ,

respectively. If )()()()( 21 ba SDSDSDSD −≥− , then y is

put into aS ; otherwise it is put into bS .   

To speed up Algorithm I, a binary max heap, which
stores all the current clusters and uses )(SD∆  as the

key, is employed to efficiently find a best cluster S for
bipartitioning. For each cluster S, its associated )(SD∆
must be computed before it is inserted into the heap. In
other words, the bipartitioning result of each cluster
needs to be pre-determined exactly once no matter
whether it has a chance to become a best one. (Note
that the pre-determined bipartitioning result of each
cluster will be saved and used for actual bipartitioning
if that happens later.) Therefore, whenever a cluster S is
found to be the currently best one and is actually
partitioned into two clusters aS  and bS , Algorithm 1

will generate the bipartitioning results of aS  and bS ,

and calculate )( aSD∆  and )( bSD∆  before inserting

aS  and bS into the heap.

The time complexity of Algorithm I is analyzed as
follows. We first analyze the time taken by the SPLIT
algorithm for bipartitioning a cluster. Clearly finding

the two seeds av  and bv  can be done in O(dn) time.

Suppose that there is no particular ordering when
considering putting the vectors of a cluster into the two
resulting sub-clusters. Then for each vector, deciding
which sub-cluster to put into can be done in )(dO

time. Totally, bipartitioning a cluster can be done in
O(dn) time.

The whole partitioning hierarchy of Algorithm I can
be represented by a binary tree in which there are k
terminal nodes corresponding to the k clusters
appearing in the final partitioning solution, and there
are 1−k  internal nodes corresponding to the clusters
that are actually partitioned. Each terminal or internal
node needs to be partitioned once before it is inserted
into the heap. Totally, 12)1( −=−+ kkk  clusters need

to be partitioned. Since partitioning a cluster takes
)(ndO  time, and there are 12 −k  clusters required to

be partitioned, the total time spent on partitioning the
12 −k  clusters is )(dknO .

To find and remove a best cluster from the heap for
bipartitioning, and to insert a new cluster into the heap,
both can be done in )(log kO  time. The numbers of

removal and insertion operations executed on the heap
are both )(kO . Hence, the total time spent on heap



operations is )log( kkO .

As a result, the total time complexity of Algorithm I
is )log( dknkkO + , which can be rewritten as )(dknO

since )(nOk = . This complexity is clearly better than

the complexity, i.e., ))(( 2nkdO +  of MELO+DP-RP

since both d and k are much less than n in practice.
    

3.2 Algorithm II
The second algorithm, called Algorithm II, is a

variant of Algorithm I. The only difference between
them is that whenever a cluster is considered for
partitioning by the SPLIT algorithm, Algorithm II
applies MELO to generate a linear ordering for the
vectors in the cluster first. Then Algorithm II
sequentially puts each vector into one of the two sub-
clusters according to the ordering.

4 Experimental Results
Algorithms I and II have been implemented in C

language on a PC consisting of a K6-200 CPU and
128M bytes of RAM. The operating system is FreeBSD
version 2.2.stable. Eleven ACM/SIGDA benchmark
circuits were used as test data. All the parameter
settings were the same as those given in [3]. The results
obtained by both algorithms are given in Tables 1 and 2,
respectively. In each table, the rightmost column
reports the average rum time improvement (excluding
the time spent on generating eigenvectors) over
MELO+DP-RP, and the third column from the right
reports the average Scaled Cost improvement over
MELO+DP-RP. (Note that the Scaled Cost results in
the other columns need to be multiplied by 510− .) Also,
in each table, a negative improvement is preceded by a
“–“ symbol. The Scaled Cost results of MELO+DP-RP
are obtained from [3] and used for comparison, but they
are not shown here due to space limitation. On the
other hand, the run time results of MELO+DP-RP are
observed by ourselves using the same machine
although they are not shown due to space limitation. In
the bottom row of each table, we also list the average
Scaled Cost improvement of each k-way partitioning
( 102 ≤≤ k ) over MELO+DP-RP.

On the average, Algorithm I achieved 34.39%
improvement on the Scaled Cost, and 94.31%
improvement on the run time. On the other hand, for
Algorithm II, the average improvement on the Scaled
Cost increases to 35.74% but the average improvement
on the run time decreases to 75.77%. Besides, for each
k, both the two algorithms also achieve significant
improvements on Scaled Cost. Clearly, the two
algorithms are able to run faster and generate better

partitioning results than MELO+DP-RP.     
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k  = 2 k  = 3 k  = 4 k  = 5 k  = 6 k  = 7 k = 8 k  = 9 k  = 10

19ks 0.47 0.47 1.25 2.05 2.27 2.76 3.65 6.40 7.77 27.09 57.14% 148.39 94.56%

bm1 5.80 7.02 9.42 11.64 14.25 19.56 27.61 38.55 36.19 170.04 -22.71% 14.67 93.54%

p1 12.14 18.56 16.53 21.01 25.33 26.77 34.99 34.92 40.31 230.56 17.54% 13.06 93.57%

p2 2.22 3.06 3.37 3.88 4.27 5.04 4.97 5.80 6.66 39.27 55.53% 169.49 94.19%

t2 1.26 2.15 3.68 4.07 4.90 7.87 8.79 9.65 10.38 52.75 61.49% 51.31 94.27%

t3 1.14 1.97 4.66 5.60 7.32 8.59 8.53 10.19 11.50 59.50 54.33% 47.39 94.28%

t4 0.63 1.81 4.27 6.20 7.42 8.06 8.19 8.64 12.05 57.27 34.85% 41.96 94.34%

t5 1.93 1.94 2.66 3.13 3.29 3.21 3.49 3.81 4.11 27.57 45.59% 124.78 94.51%

t6 0.28 1.77 2.59 3.90 4.59 5.44 8.82 8.89 10.08 46.36 65.54% 56.85 94.31%

balu 3.76 9.64 16.49 18.72 20.99 24.72 32.08 36.05 36.87 199.32 42.19% 11.84 93.68%

struct 7.04 8.83 8.62 10.24 10.74 11.99 12.52 12.42 13.62 96.02 -23.17% 68.85 94.09%

Total 36.67 57.22 73.54 90.44 105.37 124.01 153.64 175.32 189.54 1005.75 748.58

Average 57.02% 47.22% 44.49% 42.54% 40.08% 35.95% 27.16% 22.50% 21.86% 34.39% 94.31%

Average
Improvement

of Scaled Cost

Total
Run
Time

Average
Improvement
of Run Time

Test
Case

Number  of  Partitions Total
Scaled
Cost

Table 1: Results of Algorithm I.

k  = 2 k  = 3 k  = 4 k  = 5 k  = 6 k  = 7 k  = 8 k  = 9 k  = 10

19ks 0.47 0.47 1.25 1.73 2.33 2.44 3.40 3.89 4.16 20.14 68.14% 671.50 75.38%

bm1 6.09 6.33 8.99 14.56 23.64 22.83 31.72 49.23 45.67 209.06 -50.87% 67.41 70.30%

p1 12.29 12.32 14.73 19.66 22.52 27.10 28.69 32.60 34.03 203.94 27.06% 42.71 78.98%

p2 2.21 3.06 3.36 3.88 4.27 5.08 4.94 5.63 6.18 38.61 56.27% 708.78 75.71%

t2 1.25 2.15 3.53 4.07 4.41 6.23 9.71 11.69 11.86 54.90 59.92% 255.47 71.47%

t3 1.14 1.96 4.26 6.38 6.46 7.43 9.33 9.16 9.90 56.02 57.00% 203.61 75.42%

t4 0.63 1.81 4.41 6.29 6.72 7.20 7.43 8.51 8.57 51.57 41.34% 168.58 77.26%

t5 1.93 1.95 2.50 3.01 3.29 3.23 3.42 3.81 4.03 27.17 46.38% 570.17 74.92%

t6 0.28 1.77 2.66 4.06 4.76 4.92 5.22 7.32 11.21 42.20 68.63% 279.21 72.03%

balu 3.76 9.64 15.57 19.69 21.48 27.98 30.28 31.76 35.63 195.79 43.22% 39.23 79.07%

struct 4.82 6.94 8.72 8.87 9.95 10.40 11.30 11.95 12.60 85.55 -9.74% 182.60 84.33%

Total 34.87 48.40 69.98 92.20 109.83 124.84 145.44 175.55 183.84 984.95 3189.27

Average 59.13% 55.36% 47.18% 41.42% 37.55% 35.52% 31.05% 22.40% 24.21% 35.74% 75.77%

Average
Improvement

of Scaled Cost

Total
Run
Time

Average
Improvement
of Run Time

Test
Case

Number  of  Partitions Total
Scaled
Cost

Table 2: Results of Algorithm II.
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