
An Efficient Iterative Improvement Technique for VLSI Circuit Partitioning
Using Hybrid Bucket Structures

C. K. Eem and J. W. Chong
Dept. of Electronic Engineering, Hanyang Univ., Seoul, Korea

Abstract
In this paper, we present a fast and efficient Iterative

Improvement Partitioning (IIP) technique for VLSI circuits and
hybrid bucket structures on its implementation. Due to their
time efficiency, IIP algorithms are widely used in VLSI circuit
partition. As the performance of these algorithms depends on
choices of moving cells, various such methods have been
proposed. In particular, the Cluster-Removal algorithm by S.
Dutt[13][14] significantly improved partition quality. We
indicate the weaknesses of previous algorithms using a uniform
method for the choice of cells during improvement. To solve
this problem, we propose a new IIP technique that selects the
method for choice of cells according to improvement status and
presents hybrid bucket structures for easy implementation.

The time complexity of the proposed algorithm is the same
as the FM[3] method, and the experimental results on
ACM/SIGDA benchmark circuits show improvement up to 33-
44%, 45-50% and 10-12% in cutsize over FM[3], LA-3[4] and
CLIP[14] respectively. Also with shorter CPU time, our
thechnique outperforms Paraboli[10] and MELO[11]
represented constructive partition methods by about 12% and
24%, respectively.

1. Introduction
Circuit partitioning is one of the critical issues in VLSI

circuit design. For most applications, the goal is to minimize
interconnections between partitions; this can be accomplished
by various methods. The one such method is a two-way
partition that recursively divides a circuit into two parts until
the desired circuit complexity id reached. The two-way
partition algorithms have been the most widely used in VLSI
CAD and are classified into three types: iterative improvement
partition, constructive partition [7][8][9][10][11] and multilevel
partition [15]. Among others, move-based iterative
improvement partition methods (IIP) have attracted most of the
attention of circuit designers, due to their time efficiency and
performance. In their review of IIP, Kernighan and Lin [1]
proposed a graph partition algorithm known as the KL
algorithm. Based on the algorithm, Schweikert and Kernighan
[2] extended its use to hypergraphs; their algorithm can also be
applied to circuit design. Fiduccia and Mattheyses [3] proposed
the well-known FM algorithm to reduced time complexity. The
FM algorithm uses single-cell movement, which operates by
moving one cell at a time, and bucket structures instead of the
pair-wise exchange of the previous algorithms: hence it can
largely improve time efficiency with the acceptable results.
Krishnamurthy [4] further enhanced the FM algorithm by
adding higher level look-ahead gains, and improved the results
for small circuits. To solve the tie-breaking of the FM based
algorithm, Hagen et al. [12] presented the LIFO scheme, which
somewhat improved the results. In addition to the above
algorithms, numerous methods based on IIP have been
suggested. However, these algorithms add little to the
performance enhancement of FM. Recently, S. Dutt [14]
proposed a new technique, CLIP(CLuster oriented Iterative
improvement Partitioner) for the selection of the best cell by
viewing cell gain as the sum of initial and update gain. In this
algorithm, in order to remove clusters on the cutset in the early
stage of improvement, the best cell is selected by using updated
gain, which refers to the sum of dynamically updated gain
values from the following cell move. Accordingly, the
performance of IIP based algorithms using this technique has

significantly improved. Most recently, J. Cong [16] presented a
method for removing the loose/stable net on a circuit in early
stages, but this algorithm suffers from the shortcoming that this
bucket size may be unacceptably increased by his gain
increasing function. To solve this problem, he propose a
threshold value for gain. Nonetheless, their algorithm still fails
to make up for its weakness; the performance of the algorithm
largely depends on the threshold value.

Dutt’s proposal is based on the observation that relying only
on the updated part of the gain in choosing the next cell
encourages neighboring cells to subsequently move, and thus
establishes the locality. Dutt also note that this locality
promotes closely connected components in the circuit
straddling the cutline to be removed from the cutsets, and thus
establishes cluster removal. As a result, among all the published
IIP algorithms prior to their work, their algorithm achieves the
best cutsize result with linear time complexity. However, their
algorithm is not free from problems. First, relying on updated
gain in choosing the best cell is an efficient way to remove
clusters from the cutset in the early stage of improvement; yet
after the clusters have been removed, relying on total (initial +
updated) gain can occasionally obtain the better results.
Secondly, choosing and moving the cell with the highest
updated gain does not always get the cluster removal effect. To
obtain this effect, we must take two sides into account: one is
updated gain, and the other is the distribution of locked cells in
the cluster. Depending on the distribution, the cluster cannot be
removed from the cutset. Lastly, his algorithm is not free from
frequent tie-breaking situations, though these situations occur
slightly less often. In order to solve the above problem, we
present two kinds of bucket structures. One is kept by total gain,
and the other by updated gain. We also propose a new IIP
technique that selects the method for choice of cells according
to improvement status.

The rest of the paper is organized as follows. Section 2
discusses previous IIP based algorithms, and we indicate their
weaknesses in using a uniform method for cell choice during
improvement. Section 3 proposes a new iterative improvement
technique and hybrid bucket structures, and discusses the
efficiency of the proposed techniques. Section 4 presents our
experimental results on ACM/SIGDA benchmark circuits.
Section 5 concludes with a summary

2. Background and Related Works
2.1 Reviews of IIP algorithms
 First, hyper-graph modeling is briefly introduced in order to
refer to partitions on VLSI. Circuits are configured with cells
and nets, and they may be represented as hyper-graph G = (V,
E), with V as the set of cells and E the set of nets. Generally,
two-way partition on a circuit means that this hyper-graph is
divided into part sets, V1 and V2. At this time, it is limited that
all cells of V must be included in only one part set of V1 or V2.
Cut refers to the net covered between V1 and V2 and a net that
is included in only one part set is called uncut. Cutset denotes
that a net set whose state is cut and the size of this set is cutsize.
The function of partition is to determine V1 and V2 that
minimize cutsize at a state that satisfies the balance criterion of
V1 and V2.

The traditional IIP based partition algorithm consists of two
stages: One is initial partition stage to create a V1 and V2 that
satisfy the balance criterion by a random function or by a
specified method. And the other is an iterative improvement

stage to reduce cutsize by the partition improvement method
with this initial partition. The iterative improvement stage is
attained by repeating a process which is called pass. At the
partition improvement stage, the process is carried out after
making single pass until cutsize is no longer reduced. At this
time, the configuration of one pass is as following Figure 1:

while(there exists free cells)
 c = pick the best cell;
 move and lock cell c;
 for(each net n incident to cell c)

update gain of cells in net n;

 endwhile

 [Figure 1] Structure of One Pass in General Partition
Improvement Algorithm

 The performance of IIP based algorithms depends on the
choice techniques of the best cell as in Figure 1. In the case of
the FM method, the immediately reduced amount of the cutset
obtained by the movement of one cell is defined as the gain of
the cell and the choice of the best cell is decided from the order
of current gain values. Most IIP algorithms based on FM use
the best cell choice technique based on this gain. The gain of a
cell, u is defined as follows:

 Gain g(u) = � c(ni) - � c(nj)
 ni�E(u) nj�I(u)
 E(u) means a net included in the cutset among nets presently
are connected to u now and I(u) refers to a net added in the
cutset after u is moved. C(ni) and C(nj) are assigned the weight
on nets i and j.
 However, in the method suggested in CLIP, the gain on a
cell is divied into initial gain and updated gain. Initial gain is
the immediately reduced amount of cutsize depending on cell
movement just after initial partition; updated gain is the
amount of gain difference of the cell affected by the movement
of neighbor cells. Therefore, this technique could be interpreted
as follows: a cell whose updated gain is high has high potential
to be dragged by a previously moved cell. The CLIP chooses
and moves a cell whose dragged potential - that is, updated
gain - is high, as the best cell. It can be known intuitively that
in this choice technique, the movement of one cell recursively
causes the movement of another cell connected to the cell.
Therefore, if it is assumed that a cell u when improving
partition moves in a cluster, the following effect may be
achieved: cells in the cluster that includes u have priorities in
movement over cells in other clusters. The technique promotes
removal from the cutsets of closely connected components in
the circuit that straddle the cutline, and thus establishes cluster
removal. This new choice technique enhances the performance
of IIP based algorithms.
2.2 Cluster Oriented Iterative Improvement Partitioner
 Dutt’s cell choice technique using the updated gain is quite
effective in removing clusters from the cutset. Relying on
updated gain, choice of the best cell is an efficient way of
clusters removal from the cutset in early stage of improvement.
However, after the clusters has been removed, reliance on the
total (initial + updated) gain can occasionally yield the better
results. Thus, continually using updated gain during the overall
improving stage for partition improvement may cause problems.
Accordingly, the cell choice technique to be applied should
depend on the partition improvement processing status.

For example, assigning of the same updated gain could not
be expected from the cluster-removal effect in the two
situations as following Figure 2: it is needless to select a cell
whose cluster-removal effect is lost by the cell previously
moved as the best cell. As Figure 2, when previously moved
cells (=Locked-cell) exists on both part sets V1 and V2 with a
single net, the cluster removal effects are lost.

In addition, most partition improvement methods, including
FM and CLIP, have a common problem called tie-breaking

when a cell being selected and moved among many cells that
satisfy the best cell condition. There is no solution for this
problem now, the problem can be minimized by varying
selecting conditions. In this paper, we purpose solutions to the
several problems of the CLIP and to reduce the tie-breaking
problem by varying these selection conditions. The proposed
new hybrid bucket structures will be described in Section 3.

[Figure 2] Unreasonable Assigning Example of Updated Gain

3. Iterative Improvement Technique Using Hybrid Bucket
Structures
3.1 Definition of Locked-Net
 Locked-net is defined in order to refer to the partition method
suggested in this paper. A Locked-net is a net having one or
more locked-cell in each part set V1 and V2 divided among the
nets included in a cluster. For reference, locked-cell is a cell
whose movement is prohibited forcefully to other part set.
3.2 Variable Cell Choice Techniques
 To utilize Dutt’s updated gain is necessary for cluster-
removal effect, but it can cause some problems in application
as a whole partition improvement method, as mentioned above.
Therefore, the proposed algorithm uses choice by updated and
total gain in the overall partition improvement stage to
supplement the previous choice technique.
 The principle of this variable cell choice technique is as
follows: when a cell that could obtain cluster-removal effect is
detected during processing partition improvement, it is given a
priority in movement depending on updated gain. Total gain is
also applied to for cells whose cluster-removal effect is lost or
that do not have the cluster-removal effect, so that cell choice
techniques may be applied variably according to the processing
situation during partition improvement. The more detailed
description is as follows: initial and updated gain are
maintained when moving each cell. Cell choice technique by
updated gain is used for cells that are not connected to locked-
net among cells whose updated gains are increased by the cell
previously moved. The total gain technique is used for cells
other than the above.
 In the aspect of implementation, the buckets by updated
gain(Major bucket) and total gain(Minor bucket) are
maintained, and one cell is included in one bucket of both. All
cells should be included in minor bucket immediately after
initial partition, and the best cell is selected by total gain. When
a cell moves and the updated gain of a cell affected by the
movement is calculated, the bucket that will accommodate the
cell is determined. Since cells that can be included in the Major
bucket are limited to cells with the cluster-removal effect, they
are limited to cells that are not connected to locked-net among
those cells whose updated gains are increased. To achieve the
cluster-removal effect, if a cell exists on major bucket, the cell
is selected as the best cell first. The above method could be
described as figure 3:

By using this variable cell choice technique: clearer cluster-
removal effect can be achieved by first maintaining the Major
bucket with priority, and then accommodating cells whose
updated gain is increased on the bucket. Because CLIP also
reflects this reduced amount for a cell whose updated gain is

UpdatedGain=1

V1

Locked-cell Free Cell

V1V2 V2

UpdatedGain=1

decreased, but it is not related to obtain cluster-removal effect.
That is, the cluster-removal effect is obtained when
encouraging cell movement in cluster located on cutset
regardless of total gain. Accordingly, the decrease of updated
gain serves only to limit movement, but have no role in
promoting it. It means that since the cluster-removal effect is
reflected in the increased amount of updated gain, the
decreased amount should not be reflected on cell choice for
removing clusters. The increase in updated gain by locked-nets
does not obtain the cluster-removal effect, so it is excluded
from subject selected with priority.

 while(there exists free cells)
 c = pick cell with maxmum-
 upated gain from Major bucket;
 if(c == NULL)
 c = pick cell with maxmum-
 total gain from Minor bucket;
 move and lock cell c;
 for(each net n incident to cell c)
 update gain of cells in net n
 and move the cell to major bucket
 if (the cell is updated gain > 0 and not in Locked-net);

endwhile

[Figure 3] Structure of the One Pass of the Proposed Algorithm
 With using these methods, it operates as follows. Only when
there is a cluster-removal effect, that is, a cell exists on a Major
bucket, is cell choice technique by updated gain used and since
most cells exist in Minor bucket other than in the former case,
cell selection by general total gain can be used.

Figure 4 shows the Major/Minor bucket structure in applying
the proposed cell choice technique. The Major bucket is 4*pmax

in size, and the Minor bucket is 2*pmax in size; and at that time,
pmax is the maximum of the sum of net weight values connected
to a specific cell in a given circuit. This bucket maintenance is
very effective in decreasing tie-breaking, because the frequency
of tie-breaking can be reduced proportionally to the buckets
area. In case of the Major bucket, if tie-breaking occurs, a cell
can be selected by total gain, and in the case of Minor bucket, it
can be selected by updated gain. In this case, if tie-breaking
occurs, since secondary selecting conditions are proportional
(Major bucket) or inversely proportional(Minor bucket) to the
initial gain, the best cell can be selected without additional
calculation.

 [Figure 4] Structure of Suggested Hybrid Bucket

4. Experimental Results
As shown in Figure 3, the proposed algorithm has the same

complexity as the FM and CLIP. When the updated gain is
calculated, the proposed algorithm needed only a few
additional steps to assign the cell to the bucket according to the
conditions which could be immediately determined. Although

some calculation was necessary to keep the two kinds of
buckets, the calculation hardly affects the performance.

The proposed algorithm was experimented on ACM/SIGDA
21 benchmark circuits. The experimental results using the FM,
LA-3(Look Ahead level 3) and CLIP applied to the FM are
represented in Table 1. They were compared with results using
the proposed algorithm (HYIP) applied to the FM. The
experimental results showed the performance of the each IIP
techniques with the same initial partition. As shown in the
results of experiment, HYIP improves up to 33-44% and 45-
50% respectively in cutsize over the FM and LA-3. In addition,
it reduced cutsize by 10-12% compared with the CLIP
algorithm that achieved the best cutsize result with linear time
complexity among all the previously published IIP algorithms.
In particular, we need to note that lager the circuit sizes yield
better results.

In Table 2, we compare the results of the proposed algorithm
with the results of the Paraboli and MELO represented
constructive methods. We executed the HYIP, FM and CLIP
100 times; despite these numerous executions at faster CPU
times, the HYIP outperforms Paraboli and MELO by about
12% and 24%, respectively.

Finally, the CPU execution times for the experiments above
shown are given in Table 3. The Paraboli method was
performed on a DEC 3000 Model 500 AXP; the MELO and
HYIP were performed on a SUN SPARC 10, and the remainder
on a SUN SPARC Model 85. Although these were executed at
different machines, it is reasonable to assume that these
machines perform similarly. As shown in Table 3, the execution
time for the proposed algorithm is less than in existing
constructive methods, and its speed compares favorably to that
of FM and CLIP of existing IIP based methods.

5. Conclusions
This paper presents a fast and efficient Iterative

Improvement Partitioning (IIP) technique for VLSI circuits and
hybrid bucket structures on its implementation. Although
relying on the updated gain in choosing the best cell efficiently
removes clusters from the cutset in the early stage of the
improvement, after the clusters have been removed, relying on
total gain occasionally achieves the better results. To
supplement the previous choice technique, we propose the
hybrid bucket structures, and varying cell choice techniques
may be applied according to the processing situation of
partition improvement. We also point out that choosing and
moving of cells with the highest updated gain do not always get
the cluster removal effect. To obtain this effect, we must take
into account the two sides: updated gain and the distribution of
locked cells on the clusters. We also discuss that the proposed
hybrid bucket structure is very effective in decreasing tie-
breaking, because such frequency could be reduced
proportionally in the buckets area.

[References]
 [1] B. W. Kernighan and S. Lin, “An Efficient Heuristic

Procedure for Partitioning Graphs”, Bell System Tech.
Journal, vol. 49, Feb. 1970, pp. 291-307.

 [2] D. G. Schweikert and B. W. Kernighan, “A Proper Model
for the Partitioning of Electrical Circuits”, Proc. 9th Design
automation workshop, 1972, pp. 57-62.

 [3] C. M. Fiduccia and R. M. Mattheyses, “A linear-time
heuristic for improving network partitions”, Proc.
ACM/IEEE Design Automation Conf., 1982, pp. 175-181.

 [4] B. Krishnamurthy, “An improved min-cut algorithm for
partitioning VLSI networks”, IEEE Trans. on Comput.,
vol. C-33, May 1984, pp. 438-446.

 [5] Y. C. Wei and C. K. Cheng, “Towards efficient hierarchical
designs by ratio cut partitioning”, Proc. Int’l. Conf.
Computer-Aided Design, 1989, pp. 298-301.

 [6] Y. C. Wei and C. K. Cheng, “An Improved Two-way
Partitioning Algorithm with Stable Performance”, IEEE
Trans. on Computer-Aided Design, 1990, pp. 1502-1511.

������

��������

	

	

	

�

Major Bucket of Delta Gain
(High Priority)

Minor Bucket of Gain
(Low Priority)

IF Delta Gain > 0 && Not in Locked Net

������

��������

	

	

	

�

 [7] L. Hagen and A. B. Kahng, “Fast Spectral Methods for
Ratio Cut Partitioning and Clustering”, Proc. Int’l. Conf.
Computer-Aided Design, 1991, pp. 10-13.

 [8] J. Cong and M. Smith, “A bottom-up clustering algorithm
with applications to circuit partitioning in VLSI designs”,
Proc. ACM/IEEE Design Automation Conf., 1993, pp.
755-760.

 [9] C. J. Alpert and A. B. Kahng, “A General Framework for
Vertex Orderings, With Applications to Netlist Clustering”,
Proc. Int’l. Conf. Computer-Aided Design, 1994, pp. 63-
67.

[10] B. M. Riess, K. Doll and F. M. Johannes, “Partitioning
Very Large Circuits Using Analytical Placement
Techniques”, Proc. ACM/IEEE Design Automation Conf.,
1994, pp. 646-651.

[11] C. J. Alpert and S-Z Yao, “Spectral Partitioning: The More
Eigenvectors, the Better”, Proc. ACM/IEEE Design
Automation Conf., 1995.

[12] L. W. Hagen, D. J. Hwang and A. B. Kahang, “On
implementation choices for iterative improvement
partitioning methods”, Proc. European Design Automation
Conf., Sept. 1995, pp. 144-149

[13] S. Dutt and W. Deng, “A Probability-Based Approach to
VLSI Circuit Partitioning”, Proc. ACM/IEEE Design
Automation Conf., 1996, pp. 100-105.

[14] S. Dutt and W. Deng, “VLSI Circuit Partitioning by
Cluster-Removal Using Iterative Improvement
Techniques”, Proc. Int’l Conf. Computer-Aided Design,
1996, pp. 194-200.

[15] C. J. Alpert, J-H Huang and A. B. Kahng, “Multilevel
Circuit Partitioning”, Proc. ACM/IEEE Design
Automation Conf., 1997, pp. 530-533.

[16] J. Cong, H. P. Li, S. K. Lim, T. Shibuya and D. Xu, “Large
Scale Circuit Partitioning With Loose/Stable Net Removal
And Signal Flow Based Clustering”, Proc. Int’l Conf.
Computer-Aided Design, 1997, pp. 441-446.

[Table 1] Comparison of HYIP and other IIP based algorithms
Minimum Cut Size of 20 Runs Average Cut Size of 20 Runs

Cut Size Improvement(%) Cut Size Improvement(%)Circuit
FM LA-3 CLIP

FM
HYIP
FM

HYIP
(FM)

HYIP
(LA)

HYIP
(CLIP)

FM LA-3 CLIP
FM

HYIP
FM

HYIP
(FM)

HYIP
(LA)

HYIP
(CLIP)

P1
Bm1
t4
t3
t2
t6
struct
t5
19ks
p2
s9324
biomed
s13207
s15850
ind2
ind3
s35932
s38584
avq.sml
s38417
avq.lar

 47
 54
 87
 75
149
 67
 46
127
140
212
 59
 83
 98
109
264
272
 85
100
347
240
350

 52
 53
 82
 80
 126
 70
 44
 99
 130
 149
 43
 90
 85
 87
 422
 504
 168
 85
 608
 284
 398

 52
 49
 56
 57
 89
 60
 37
 75
119
149
 49
 84
 98
 80
260
261
102
 49
223
 78
216

 47
 47
 54
 58
 90
 63
 33
 75
107
143
 45
 84
 70
 85
185
241
 89
 52
187
 75
184

 0.0
13.0
37.9
22.7
40.0
 6.0
28.3
41.0
23.6
32.5
23.7
- 1.2
28.6
22.0
29.9
11.4
- 4.5
48.0
46.1
68.8
47.4

 9.6
11.3
34.2
27.5
28.6
10.0
25.0
24.2
17.7
 4.0
- 4.4
 6.7
17.7
 2.3
56.2
52.2
47.0
38.8
69.2
73.6
53.8

 9.6
 4.1
 3.6
- 1.7
- 1.1
- 4.8
10.8
 0.0
10.1
 4.0
 8.2
 0.0
28.6
- 5.9
28.9
 7.7
12.8
- 5.8
16.1
 3.9
14.8

 74.9
 79.5
129.3
106.8
182.1
 94.2
 58.0
183.6
171.7
273.9
 84.7
117.4
122.6
176.9
627.5
506.0
210.3
299.8
578.6
384.1
755.0

 68.5
 67.5
117.2
106.2
148.1
 84.4
 49.6
165.0
169.0
233.4
 81.1
170.7
118.9
140.4
732.4
758.0
231.4
271.2
815.5
408.2
693.4

 65.8
 65.0
 77.0
 72.3
105.2
 70.1
 45.6
 89.0
150.3
233.2
 89.5
108.4
123.5
140.9
369.6
376.6
127.1
 83.2
335.1
136.7
305.2

 60.6
 58.3
 66.6
 65.4
102.8
 73.3
 41.6
 85.6
128.1
211.6
 66.1
 98.9
101.6
121.0
298.9
338.7
123.6
 88.5
274.2
112.1
272.3

19.1
26.7
48.5
38.8
43.6
22.2
28.3
53.4
25.4
22.8
22.0
15.8
17.1
31.6
52.4
33.1
41.2
70.5
52.6
70.8
63.9

11.5
13.6
43.2
38.4
30.6
13.2
16.1
48.1
24.2
9.3
18.5
42.1
14.6
13.8
59.2
55.3
46.6
67.4
66.4
72.5
60.7

7.9
10.3
13.5
9.5
2.3
-4.4
8.8
3.8
14.8
9.3
26.2
8.8
17.7
14.1
19.1
10.1
2.8
-6.0
18.2
18.0
10.8

Total 3011 3659 2243 2014 33.1 45.0 10.2 5217 5630 3169 2789 46.5 50.4 12.0
Average of % Improvement 26.4 28.8 6.9 38.6 36.4 10.3

[Table 2] Comparison of HYIP and other constructive
algorithms

Cut SizeCircuit

Paraboli MELO FM CLIP
FM

HYIP
FM

P1
bm1
t4
t3
t2
t6
struct
t5
19ks
p2
s9324
biomed
s13207
s15850
ind2
ind3
s35932
s38584
avq.sml
s38417
avq.lar

 53

 40

 146
 74
 135
 91
 91
 193
 267
 62
 55
 224
 49
 139

64
48
61
60

 109
90
38

 102
 119
 169

79
 115
 104

52
 319

 47
49
80
62

 124
 60
 41
 104
 130
 182
 51
 83
 78
 104
 264
 263
 85
 63
 297
 147
 350

 47
 47
 53
 56
 87
 60
 33
 74
 109
 148
 44
 83
 76
 75
 174
 241
 83
 47
 200
 66
 185

 47
 47
 53
 56
 88
 60
 32
 72
 105
 143
 45
 83
 70
 70
 185
 241
 58
 47
 177
 63
 169

Total 1619
1529

2664 1988

1430
1156
1911

Improv
-ement

*
*

11.7(%)
24.4(%)

[Table 3] Comparison of CPU times of various algorithms

CPU Times
Circuit

Paraboli MELO FM
 (x100)

CLIP
FM

(x100)

HYIP
FM

(x100)
p1
bm1
t4
t3
t2
t6
struct
t5
19ks
p2
s9324
biomed
s13207
s15850
ind2
ind3
s35932
s38584
avq.sml
s38417
avq.lar

 18.3

 35.2

 137.4
 490.3
 710.9
2060.4
2730.9
1367.3
 760.7
2626.7
6517.5
4098.9
2041.5
4135.0

 8
 9
 24
 27
 29
 31
 38
 67
 79
 89
 516
 496
 710
 1197
 1855

 0.33
 0.27
 0.58
 0.76
 0.58
 0.57
 0.54
 1.13
 1.59
 1.81
 2.78
 3.89
 4.23
 4.24
 9.10
 11.07
 11.82
 13.70
 18.44
 15.36
 19.49

 0.44
 0.43
 0.90
 0.96
 0.99
 0.88
 0.69
 1.62
 2.23
 2.37
 3.14
 3.34
 5.01
 6.87
 13.17
 16.35
 13.21
 15.73
 20.50
 17.70
 24.07

 0.18
 0.20
 0.50
 0.50
 0.58
 0.52
 0.35
 1.09
 1.03
 1.38
 2.49
 3.97
 5.11
 6.96
 17.02
 19.40
 15.37
 19.37
 23.40
 21.71
 28.00

Total 27731
5175

12228 15060

16471
 4188
16913

	Main Page
	ASPDAC99
	Front Matter
	Table of Contents
	Session Index
	Author Index

