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Abstract

We present waveform relaxation of linear

integral-di�erential equations which occur in cir-

cuit simulation. We give su�cient conditions for

convergence and numerical experiments to verify

the theoretical results.

1 Introduction

In circuit simulation, if a strict nodal formulation

is used, the circuit equations after linearization are

integral-di�erential equations of the form:

D

Z t

0

x(�)d� +

�
M 0

0 0

�
dx

dt
(t) +

�
A B

C N

�
x(t)

= f(t); x1(0) = x10; t 2 [0; T ]

(1)

where D 2 Rn�n, M;A 2 Rn1�n1 , B 2 Rn1�n2 ,

C 2 Rn2�n1 , N 2 Rn2�n2 such that M and N are

nonsingular matrices, x(t) = [x1(t); x2(t)]
t 2 Rn and

f(t) = [f1(t); f2(t)]
t 2 Rn in which x1(t); f1(t) 2 R

n1

and x2(t); f2(t) 2 R
n2 where n1 + n2 = n.

The waveform relaxation (WR) method was �rst

presented in 1982 [1]. Recent results on accelerated

techniques and convergence conditions are reported

in [2 - 5].

2 Waveform Relaxation Algorithm

In this paper, we let ~Mq =

�
Mq 0

0 0

�
and

~Aq =

�
Aq Bq

Cq Nq

�
(q = 1; 2) where M = M1 �M2,
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A = A1 � A2, B = B1 � B2, C = C1 � C2, and

N = N1�N2 in whichM1 andN1 are nonsingular ma-

trices. The general form of the waveform relaxation

algorithm with initial iteration x(0)(�) for System (1)

(k = 1; 2; � � �) is

D1

Z t

0

x
(k)(�)d� + ~M1

dx
(k)

dt
(t) + ~A1x

(k)(t) =

D2

Z t

0

x
(k�1)(�)d� + ~M2

dx
(k�1)

dt
(t)

+ ~A2x
(k�1)(t) + f(t); x

(k)
1 (0) = x10; t 2 [0; T ]

(2)

where D = D1 �D2.

Theorem 1 The waveform relaxation solution

of System (1) according to the splitting of (2) will

converge if

�(M�1
1 M2) < 1 and �(N�1

1 N2) < 1 (3)

Proof Let y
(k)(t) = D1

Z t

0

x
(k)(�)d� � D2

Z t

0

x
(k�1)(�)d� , thus on [0; T ] the algorithm (2) can be

writen as (k = 1; 2; � � �)

8>>>><
>>>>:

y
(k)(t) + ~M1

dx
(k)

dt
(t) + ~A1x

(k)(t) = ~M2

dx
(k�1)

dt
(t)

+ ~A2x
(k�1)(t) + f(t); x

(k)
1 (0) = x10;

dy
(k)

dt
(t)�D1x

(k)(t) = �D2x
(k�1)(t); y

(k)(0) = 0

If we denote that y(k)(t) = [y
(k)
1 (t); y

(k)
2 (t)]t where

y
(k)
1 (t) 2 Rn1 and y

(k)
2 (t) 2 Rn2(k = 0; 1; � � �)

and Dq = [Lq; Rq] where Lq 2 Rn�n1 and Rq 2

Rn�n2(q = 1; 2), and E1 = [In1�n1 ; 0] 2 Rn1�n

and E2 = [0; In2�n2 ] 2 Rn2�n where Im�m 2

Rm�m represents the identity matrix. On [0; T ], for

any �xed k we can express the above formula with
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as8>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>:

�
M1 0

0 In�n

�
d

dt

�
x
(k)
1 (t)

y
(k)(t)

�
+

�
A1 E1

�L1 0

�

�

�
x
(k)
1 (t)

y
(k)(t)

�
+

�
B1

�R1

�
x
(k)
2 (t) =

�
M2 0

0 0

�

�
d

dt

�
x
(k�1)
1 (t)

y
(k�1)(t)

�
+

�
A2 0

�L2 0

� �
x
(k�1)
1 (t)

y
(k�1)(t)

�

+

�
B2

�R2

�
x
(k�1)
2 (t) +

�
f1(t)

0

�
;

[C1; E2]

�
x
(k)
1 (t)

y
(k)(t)

�
+N1x

(k)
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x
(k�1)
1 (t)

y
(k�1)(t)

�
+N2x

(k�1)
2 (t) + f2(t)

(4)

Based on the form (4), by use of the same approach

in [4 - 5] we can write the algorithm (2) as an iter-

ative process of operator equations with initial itera-

tion w(0)(�) in C([0; T ];R2n) as follows,

w
(k)(t) = (Rw(k�1))(t) + '(t); k = 1; 2; � � � (5)

where w(k)(t) = [x
(k)
1 (t); y(k)(t); x

(k)
2 (t)]t for any �xed

k, '(t) 2 R2n on [0; T ] and R : C([0; T ];R2n) 7!

C([0; T ];R2n) is a bounded linear operator. Further,

the spectrum of the operator R in C([0; T ];R2n) is

�(R) = �(M�1
1 M2) [ �(N

�1
1 N2) (6)

The above relation implies that the iterative algo-

rithm (2) converges to the solution of System (1).

This completes the proof of Theorem 1.

3 Waveform Krylov Subspace Algo-

rithm

From (5), we can similarly write System (1) as an

operator equation in L2([0; T ];R2n) as follows,

(I �R)w = ' (7)

where w(t) = [x1(t); y(t); x2(t)]
t 2 R2n in which

y(t) = D

Z t

0

x(�)d� on [0; T ]. The spectrum of the

operator R in L2([0; T ];R2n) also satis�es the condi-

tion (6).

We discuss the waveform GMRES which is a wave-

form Krylov subspace algorithm. The operator-

function product p(t) = (I �R)w(t) is computed by:

1. Solve the following system for x
^(t) =

[x^1 (t); x
^

2 (t)]
t on [0; T ]:

D1

Z t

0

x
^(�)d� + ~M1

dx
^

dt
(t) + ~A1x

^(t) = D2

Z t

0

x(�)d�

+ ~M2

dx

dt
(t) + ~A2x(t); M1x

^

1 (0) =M2x1(0)

2. Set p(t) = w(t) � w
^(t) where w

^(t) =

[x^1 (t); y
^(t); x^2 (t)]

t in which y^(t) = D

Z t

0

x
^(�)d� .

The initial residual of Eq. (7) can be expressed

as r(0)(t) = (Rw(0) + ')(t) � w
(0)(t) on [0; T ]. The

procedure computing r
(0)(t) in which w

(0)(t) =

[x
(0)
1 (t); y(0)(t), x

(0)
2 (t)]t with x

(0)
1 (0) = x10 where

y
(0)(t) = D

Z t

0

x
(0)(�)d� is given by:

1. Solve the following system for x
^(t) =

[x^1 (t); x
^

2 (t)]
t on [0; T ]:

D1

Z t

0

x
^(�)d� + ~M1

dx
^

dt
(t) + ~A1x

^(t) = D2

Z t

0

x
(0)(�)d�

+ ~M2

dx
(0)

dt
(t) + ~A2x

(0)(t) + f(t); x
^

1 (0) = x10

2. Set r(0)(t) = w
^(t) � w

(0)(t) where w^(t) =

[x^1 (t); y
^(t); x^2 (t)]

t in which y^(t) = D

Z t

0

x
^(�)d� .

Algorithm { WGMRES

1. Start: Set r(0) = '� (I �R)w(0), v1 = r
(0)
=kr(0)k

2. Iterate: For l = 1; 2; : : :, until satis�ed do:

hj;l = h(I �R)vl; vji, j = 1; 2; : : : ; l

v̂l+1 = (I �R)vl �
Pl

j=1 hj;lvj

hl+1;l = kv̂l+1k

vl+1 = v̂l+1=hl+1;l

3. Form the approximate solution:

w
(k) = w

(0) + Vkak.

In Algorithm, Vk = [v1; v2; : : : ; vk] and ak 2 Rk

minimizes k�ek+11 � Hkak over Rk where a 2 Rk

(namely, minimizes kr(0) � (I � R)wk over Kk =

spanfv1; � � � ; vkg) such that ek+11 = [1; 0; : : : ; 0]t 2

Rk+1, � = kr(0)k and Hk is a matrix with dimen-

sions (k+1)� k. If (I �R) has bounded inverse and

one is in the unbounded component of the comple-

ment of �(R), then it will converge to the solution of

Eq. (7) (see [4]).

4 Discrete-time Case

In this section, we only discuss the p-step constant

stepsize BDF method approximating the algorithm

(2) [6]. The method consists of replacing
dx

(l)

dt
(t)

(l = k; k� 1) by the derivative of a polynomial which

interpolates the computed solution at p + 1 times

tn; tn�1; � � � ; tn�p, i.e.,
1

h

pX
j=0

�jx
(l)
n�j(l = k; k � 1)

where �j (j = 0; 1; � � � ; p) are the coe�cients of a

BDF method. Further, we replace

Z t

0

x
(l)(�)d� by



h

n�1P
j=0

x
(l)
n�j at time point tn (l = k; k � 1). Thus, the

discrete-time form of the algorithm (2) is8>>>>>><
>>>>>>:

hD1

n�1P
j=0

x
(k)
n�j +

1

h

pX
j=0

�j
~M1x

(k)
n�j +

~A1x
(k)
n =

hD2

n�1P
j=0

x
(k�1)

n�j +
1

h

pX
j=0

�j
~M2x

(k�1)

n�j + ~A2x
(k�1)
n + fn;

t 2 [0; T ]; n = p; p+ 1; � � � ; p0

(8)

where fn = [f1n; f
2
n]

t and for any k � 1 the values

x
(k)
n (= x

(0)
n ) are known for n = 0; 1; � � � ; p�1, and the

values x
(k)
n are unknown for n = p; p+1; � � � ; p0 where

tp0 = T .

Denote �hD
p�1P
k=1

x
(0)

p�k = [gh1 ; g
h
2 ]

t and hDq =�
D

q
11(h) D

q
12(h)

D
q
21(h) D

q
22(h)

�
(q = 1; 2). Now let �(l) =

[�
(l)
p ; � � � ; �

(l)

p0 ]t and 	(l) = [ 
(l)
p ; � � � ;  

(l)

p0 ]t where

x
(l)
n = [�

(l)
n ;  

(l)
n ]t in which �

(l)
n 2 Rn1 and  

(l)
n 2

Rn2(l = k; k � 1) for n = 0; 1; � � � ; p0. Let also F1 =

[�
pP

j=1

�jM�
(0)
p�j + h(gh1 + f

1
p ); �

pP
j=2

�jM�
(0)
p+1�j +

h(gh1 +f
1
p+1); � � � ; ��pM�

(0)
p�1+h(g

h
1 +f

1
2p�1); h(g

h
1 +

f
1
2p); � � � ; h(g

h
1 + f

1
p0)]t and F2 = [(gh2 + f

2
p ); � � � ; (g

h
2 +

f
2
p0)]t. Denote also the Kronecker product of two ma-

trices A and B by A 
 B. Now, for any �xed k we

can compactly write (8) as�
�(k)

	(k)

�
=

�
X

1
11 X

1
12

X
1
21 X

1
22

��1

(

�
X

2
11 X

2
12

X
2
21 X

2
22

��
�(k�1)

	(k�1)

�
+

�
F1

F2

�
)

(9)

in which X
q
11 =M�
Mq+hI
(Aq+D

q
11(h))+hL


D
q
11(h), X

q
12 = hI 
 (Bq + D

q
12(h)) + hL 
 D

q
12(h),

X
q
21 = I 
 (Cq + D

q
21(h)) + L 
 D

q
21(h), and X

q
22 =

I 
 (Nq + D
q
22(h)) + L 
 D

q
22(h) (q = 1; 2) where

I 2 Rs�s and L 2 Rs�s is a strictly low triangle

matrix such that Lij = 1(i > j) and M� 2 R
s�s is a

low triangle matrix where s = p
0 � p + 1. The proof

of the following theorem is nearly the same as one in

[4]. For brevity, we shall omit it.

Theorem 2 When the condition (3) is satis�ed,

the discrete-time waveform relaxation iteration pro-

cess (8) always converges for small enough time-step

h.

5 Numerical Experiments

In this section, we present numerical experiments

based on a linear circuit shown in Figure 1. The sys-

tem of circuit equations has a form as System (1) in

which the algebraic part does not exist (namely, the

matrices B, C, N and the function f2(t) are nil). In

this example, the matrices D, M , and A respectively

are

D =

2
66664

1
L1

+ 1
L2

� 1
L2

0 0 0

� 1
L2

1
L2

0 0 0

0 0 1
L3

+ 1
L4

� 1
L4

0

0 0 � 1
L4

1
L4

0

0 0 0 0 1
L5

3
77775

and

M =

2
66664

c1 0 0 0 0

0 c2 �c2 0 0

0 �c2 c2 + c3 0 0

0 0 0 c4 �c4
0 0 0 �c4 c4 + c5

3
77775

and

A =

2
66664

G1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 G2

3
77775

Further, x(t) = [v1(t); � � � ; v5(t)]
t with x(0) =

[0; � � � ; 0]t, f(t) = [j0(t); 0; � � � ; 0]
t, T = 100� and the

input function j0(t) = (1 + 0:2sin(10t))sin(t) + (1 +

0:2sin(0:1t))sin(t)(0 � t < 20�) and j0(t) = 0(20� �

t � 100�).

This circuit is a band-pass �lter with a center fre-

quency of 1 rad/sec and a bandwidth of 0.05 rad/sec.

The input is a pulsed amplitude-modulated signal

(Figure 2). The carrier frequency is 1 rad/sec and

the modulating signals are two sinusoids of freqnecies

0.1 rad/sec and 10 rad/sec. At the output, we see the

e�ect of narrow band. The output is a series of pulsed

sinusoids with decreasing amplitudes (Figure 3).

In our experiments, we let c1 = 12:36F , c2 =

0:030902F , c3 = 40F , c4 = 0:030902F , c5 = 12:36F ,

L1 = 0:080906H , L2 = 32:36H , L3 = 0:025H , L4 =

32:36H , L5 = 0:080906H , and G1 = G2 = 1mho.

The basic ordinary di�erential equation code was the

Backward Euler method. The time-step was 0:1�.

The error with tolerance 1� 10�5 was de�ned as the

sum of the squared di�erences of successive waveforms

taken over all time points.

The known Jacobi waveform relaxation algorithm

[1] of the circuit has a form of (2) in which D1,

M1, and A1 respectively are the diagonal matrices

of the matrices D, M , and A. In the Jacobi splitting,

�(M�1
1 M2) is less than one and the process converges.

Now, if we let M1 = 10I5�5 and keep D1 and A1 as

in the Jacobi splitting then �(M�1
1 M2) is large than



one and the process does not converge. The experi-

ment results on these two splittings were presented in

Figure 4.

6 Conclusion

We have presented new theoretical results on the

convergence of the waveform relaxation algorithm

and the waveform Krylov subspace algorithm (WGM-

RES) for systems of linear integral-di�erential equa-

tions for circuit simulation. The numerical experi-

ments here show that the splitting of matrices is cru-

cial to convergence.
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Figure 1: A linear circuit described by integral-

di�erential equations.
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Figure 2: Waveform of the input function j0(t) in

Figure 1 on [0; 100�].
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Figure 3: Waveform of the voltage v5(t) in Figure 1

on [0; 100�].
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Figure 4: Waveform relaxation for the circuit in Fig-

ure 1. The case of the Jacobi splitting was shown by

the solid line and the second case was shown by the

dashed line.
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