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Abstract

We present waveform relaxation of linear
integral-differential equations which occur in cir-
cuit simulation. We give sufficient conditions for
convergence and numerical experiments to verify
the theoretical results.

1 Introduction

In circuit simulation, if a strict nodal formulation
is used, the circuit equations after linearization are
integral-differential equations of the form:

D/ dT+|: g]z—f(t)-i—[g ﬁ}x(t)
21(0) = 210, t € [0,

(1)
where D € R"™" M,A € Rm*™m B € R™*"z,
C € R»2*™m_ N € R™*"2 gych that M and N are
nonsingular matrices, x(t) = [z1(t), z2(t)]! € R"™ and
f@t) =[fi(#), f2(t)]' € R™ in which z(t), f1(t) € R™
and z2(t), f2(t) € R™ where ny; + ng = n.

The waveform relaxation (WR) method was first
presented in 1982 [1]. Recent results on accelerated
techniques and convergence conditions are reported
in [2 - 5].

2 Waveform Relaxation Algorithm

In this paper, we let M, = { Oq g} and
< A, B
A, = q q]q:l,Q where M = M; — M>,
a {cq N, ( ) Lo
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A= Al—AQ, B = Bl—BQ, C = 01—02, and
N = N;—N5 in which M; and N; are nonsingular ma-
trices. The general form of the waveform relaxation
algorithm with initial iteration #(®)(-) for System (1)
(k=1,2,--+)is

(k)

() + Az® () =

' (k=1)
D, / 25 (7 )dT—{—Mgdwdt (t) @)

+ Az =01 + £(t),  27(0) = 210,

t
Dl/ l’(k)(T)dT-f-Mldm
0

te€[0,T)

where D = D; — D».

Theorem 1 The waveform relaxation solution
of System (1) according to the splitting of (2) will
converge if

p(M{'Ms) <1 and p(N;'Na)<1  (3)

t t
Proof Let y® () = D1/ z®) (7)dr — D2/
0 0

z*=1(7)dr, thus on [0,T] the algorithm (2) can be
writen as (k=1,2,---)

- (k) . . (k—1)
y(k>(t)+M1da;t () + Ayz®(t) = 2dwdt ()
+A2£E(k 1)(t) + () asgk)(O) = T10,

dy )
"= (1) = D1 ® () = =Dz ™V (1), yM(0) =0

If we denote that y® () = [V (#), ¥ (#)]' where
vt e R™ and yP'(t) € R™(k = 0,1,--)
and Dy = [Lq, R;] where L, € R™™ and R, €
R™ " (q = 1,2), and E; = [In,xn,, 0] € R™*"
and Ey = [0, L,,xn,] € R™*" where I xm €
R™*™ represents the identity matrix. On [0, 7], for
any fixed k we can express the above formula with



[5610, O]t as

28 (0), 59 (0)]' =

v L e ][ T
SEREACT
<[ty ]+ [ 22 0] [ty
T a0
wh@ﬂw£8}+Nw9w=Kam
\ {jﬁﬂg§}+Nﬂylkw+fu>

(4)

Based on the form (4), by use of the same approach

in [4 - 5] we can write the algorithm (2) as an iter-

ative process of operator equations with initial itera-
tion w(®(-) in C([0, T); R*") as follows,

wh () = RuED) @) + o), k=12 (5)

where w® (£) = [2F (£),y® (), 2{¥ (1)t for any fixed
k, p(t) € R?® on [0,T] and R : C([0,T];R*"*) ~
C([0,T]; R®") is a bounded linear operator. Further,
the spectrum of the operator R in C([0,T]; R?") is

0(R) = o(M; ' M) U (N, ' N>) (6)

The above relation implies that the iterative algo-
rithm (2) converges to the solution of System (1).
This completes the proof of Theorem 1.

3 Waveform Krylov Subspace Algo-
rithm

From (5), we can similarly write System (1) as an
operator equation in L?([0,T]; R*") as follows,
Z-Rw=¢ (7)
where w(t) = [21(t),y(t),z2(t)]! € R®® in which
t

y(t) = D/ z(r)dr on [0,T].

0
operator R in L?([0,T]; R?") also satisfies the condi-
tion (6).

We discuss the waveform GMRES which is a wave-
form Krylov subspace algorithm. The operator-
function product p(t) = (Z — R)w(t) is computed by:

1. Solve the following system for z(t) =
(@ (8),29 (1)) on [0,T):

t B dl'/\ B t
Dl/ 2 (T)dr + Mlﬁ(t) + A2 (t) = D2/ z(r)dr

0 0
My (0) =

The spectrum of the

- d ~
+M2d—f(t) + Aoz (t), Moz, (0)

2. Set p(t) =
[z (t), y™ (), x5 (¢)]F in which y”(¢
The initial residual of Eq.

w(t) — w(t wheret wht) =

)
) = D/ 2Nr)dr,

0
(7) can be expressed

as rO(t) = (Rw® + ¢)(t) — w®(t) on [0,T]. The
procedure computing r(®(¢) in which w©@(t) =
[x§°>(t),y<0>(t2, 2]t with 2\”(0) = 210 where
y©O(t) =D [ 29(r)dr is given by:
0
1. Solve the following system for z(t) =
[ (t), 22 ()] on [0,T]:
t - dz" N t
Dy [ (e + 5% (@) + Aia () = D2 [ 2 (r)ar
0 0
dz(0)
F My = (1) + A () + £(1), #(0) = 210

2. Set rO(t) = w(t) — wO(t
[ (t), y"(t), x5 (t)]t in which y”

) where w” =

w=p[c
Algorithm - WGMRES
1. Start: Set 79 = ¢ — (T — R)w®, v; = r© /||r©
2. Iterate: For [ = 1,2,..., until satisfied do:
th = <(I — R)Ul,’l}j>, ] = 1,2, .. .,l
Op1 = (Z -R)u — 2321 hjv;
huyip = ([0 |
Vi1 = U1/ Pisay
3. Form the approximate solution:
w® = w® 4+ Vioa,.

In Algorithm, V;, = [v1,v2,...,v;] and a;, € RF
minimizes ||3ef™! — Hyal| over R¥ where a € RF
(namely, minimizes ||r(®) — (Z — R)w|| over Kj =
span{vy,---,v;}) such that e’ = [1,0,...,0]" €
Rt 8 = ||r®] and Hy is a matrix with dimen-
sions (k+1) x k. If (Z —R) has bounded inverse and
one is in the unbounded component of the comple-
ment of o(R), then it will converge to the solution of

Eq. (7) (see [4]).

4 Discrete-time Case

In this section, we only discuss the p-step constant
stepsize BDF method approximating the algorithm

dz(®
(2) [6]. The method consists of replacing %(t)
(I = k,k —1) by the derivative of a polynomial which
interpolates the computed solution at p + 1 times

ZaJny =

- p) are the coefficients of a

tn;tnfla oyt P i k;k - ]-)
where a; (j = 0,1,--

t
BDF method. Further, we replace /x(l) (r)dr by
0



n—1
h ) mg)_] at time point ¢, (I = k,k — 1). Thus, the
7=0

discrete-time form of the algorithm (2) is

hD, ka) + - Za]Mlx() + AyzP) =

n—j
JO

hD, Z CU(k 1) +o Zangmgi—jl) + ApzFY 4 £,

Jj=0

€[0,T], n=p,p+1,---,p

(8)
where f, = [fL, f2]! and for any k > 1 the values
m%k)(: :L“%O)) are known for n = 0,1,---,p—1, and the
values x%k) are unknown for n = p,p+1,---,p’ where

ty =T.
(SN Ty _
Denote —hD k21 :L“;)_k = [¢' 93] and hD, =

q q

321523 gézgzg (¢ = 1,2). Now let &0 =
[gzﬁ;(ol), - -,¢S,)]t and O = [1/}1(01), -,1/J£l,)]t where

O = ¢ pP)t in which ¢ € R™ and v €

R™(l = k,k—1) for n =0,1,---,p'. Let also F; =
p 0 p

[—J; a; Mo\ + high + f1), —];2 aMoL) i+
h(gl + Fpan), - —apM o) +hlgh + 13, 1), high+
f%p)::h(g? +f;’)]t and F> = [(gg +f3)77(gg +
f2)]'. Denote also the Kronecker product of two ma-
trices A and B by A ® B. Now, for any fixed k& we
can compactly write (8) as

-1

ok ] Xlil X112
‘Il(k) X21 X22 (9)
( X2 X3, Pk-1) R )
X5 X% LA Fy

in which X/, = My @M, +hI®(A,+D{,(h))+hL®
DY, (h), X{, = hI ® (By + D{,(h)) + hL ® DY, (h),
X3, =1I®(Cqy+ D3 (h))+ L® DI (h), and X3, =
I ® (Ny + Di,(h)) + L ® Di,(h) (¢ = 1,2) where
I € R**% and L € R**? is a strictly low triangle
matrix such that L;; = 1(i > j) and M, € R**® is a
low triangle matrix where s = p' — p + 1. The proof
of the following theorem is nearly the same as one in
[4]. For brevity, we shall omit it.

Theorem 2 When the condition (3) is satisfied,
the discrete-time waveform relaxation iteration pro-
cess (8) always converges for small enough time-step

h.

5 Numerical Experiments

In this section, we present numerical experiments
based on a linear circuit shown in Figure 1. The sys-

tem of circuit equations has a form as System (1) in
which the algebraic part does not exist (namely, the
matrices B, C, N and the function f(t) are nil). In
this example, the matrices D, M, and A respectively
are

-+t oL 0 0 0
_LLz LLZ 0 0 0
D= 0 0 +4 -4 0
0 0 _L%; L%; 0
0 0 0 0 LLs
and
cac O 0 0 0
0 Cy —Cy 0 0
M = 0 —C2 C2+cC3 0 0
0 0 0 Cq —Cq
0 0 0 —C4 C4+c3
and
Gy 00 0 O
0 0 0 0 O
A= 0 0 0 0 O
0 0 0 0 O
0 0 0 0 G
Further, z(t) = [vi(t ), v5(t)]t with z(0) =
[0,---,0]%, f(t) = [jo(t),0,---,0]", T = 1007 and the
1nput function jo(t) = (1 + 0. 23m(10t))sin(t) +(1+
0.25in(0.1¢))sin(t)(0 < t < 207) and jo(t) = 0(207 <

t < 1007).

This circuit is a band-pass filter with a center fre-
quency of 1 rad/sec and a bandwidth of 0.05 rad/sec.
The input is a pulsed amplitude-modulated signal
(Figure 2). The carrier frequency is 1 rad/sec and
the modulating signals are two sinusoids of freqnecies
0.1 rad/sec and 10 rad/sec. At the output, we see the
effect of narrow band. The output is a series of pulsed
sinusoids with decreasing amplitudes (Figure 3).

In our experiments, we let ¢y = 12.36F, c2 =
0.030902F, c5 = 40F, ¢4 = 0.030902F, c5 = 12.36F,
L, = 0.080906H, L, = 32.36H, L3 = 0.025H, Ly =
32.36H, Ls; = 0.080906H, and G1 = G2 = lmho.
The basic ordinary differential equation code was the
Backward Euler method. The time-step was 0.17.
The error with tolerance 1 x 10~° was defined as the
sum of the squared differences of successive waveforms
taken over all time points.

The known Jacobi waveform relaxation algorithm
[1] of the circuit has a form of (2) in which D;,
M, and A; respectively are the diagonal matrices
of the matrices D, M, and A. In the Jacobi splitting,
p(M, * M) is less than one and the process converges.
Now, if we let My = 10I5«5 and keep D; and A; as
in the Jacobi splitting then p(M; ' M) is large than



one and the process does not converge. The experi-
ment results on these two splittings were presented in
Figure 4.

6 Conclusion

We have presented new theoretical results on the
convergence of the waveform relaxation algorithm
and the waveform Krylov subspace algorithm (WGM-
RES) for systems of linear integral-differential equa-
tions for circuit simulation. The numerical experi-
ments here show that the splitting of matrices is cru-
cial to convergence.
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Figure 1: A linear circuit described by integral-

differential equations.
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Figure 2: Waveform of the input function jo(t) in
Figure 1 on [0, 1007].
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Figure 3: Waveform of the voltage v5(t) in Figure 1
on [0, 1007].

Figure 4: Waveform relaxation for the circuit in Fig-
ure 1. The case of the Jacobi splitting was shown by
the solid line and the second case was shown by the
dashed line.
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