
Abstract

Complex system specifications are often hierarchically
composed of several subsystems. Each subsystem contains
one or more processes. In order to provide optimization
across different levels of hierarchy, a synchronicity analysis
of the concerned processes has to be performed during high-
level synthesis. The first step is the generation of a con-
densed graph representation of the inter-process communi-
cation. This graph is then utilized to detect inter-process
communication which can be used to represent synchroniza-
tion points between two or more processes. A synchroniza-
tion point represents the starting point of an interval in
which the communicating processes run synchronously. This
interval is limited by unbounded data-dependent loops,
denoted as de-synchronization points. As a result, different
processes can only share resources in such an interval.

1 Introduction

State-of-the-art high-level synthesis systems focus
mainly on the synthesis of single process specifications. Due
to the increasing design complexity, the synthesis of multi-
process specifications is becoming more and more impor-
tant. Moreover, in modern system design, complex systems
can be characterized as a hierarchical composition of con-
currently executing processes. Therefore, each module of a
hierarchical specification contains one or more processes.
Such a hierarchical specified system is illustrated in Figure
1. First efforts have been made in synthesizing hierarchical
as well as multi-process specifications.

Several approaches have been proposed using the term
hierarchical synthesis. The objective of most of the hierar-
chical synthesis approaches is to reuse already synthesized
clusters or modules, during synthesis of the overall system
in order to reduce the synthesis complexity.

Hierarchical synthesis approaches based on clustering
techniques try to collect operations with a high similarity
measure into one cluster, or to use the loop/subroutine hier-

* This work is partially supported by the DFG research program “Rapid
Prototyping of Embedded Systems with Hard Time Constraints” under
Ro1030/4.

archy for clustering. First, each cluster is synthesized sepa-
rately and then the clustered data-flow graph is synthesized.
A lot of different clustering approaches have been presented
so far [1, 2, 3, 4, 5].

Hierarchical synthesis approaches, based on reuse of
already synthesized modules as register-transfer compo-
nents, need an extended library model. Here, the synthesized
RT descriptions of an arbitrary algorithmic module specifi-
cation are kept in the library and can then be reused as a
“black-box” during synthesis of the overall system [6, 7].
However, most high-level synthesis systems do not provide
any optimization across different levels of hierarchy. Espe-
cially resources of different processes can not be shared. A
first approach using a “white-box” module model, that pro-
vides resource sharing across different levels of hierarchy,
has been implemented by the CADDY-II system [8, 9]. The
CADDY-II system considers the VHDL behavioral specifica-
tion, the RT structure, and the schedule of the modules dur-
ing synthesis of the overall system. Therefore, hierarchy can
be considered without applying inline-expansion, so that the
synthesis time can be kept low.

In the past, first efforts have been achieved in modeling,
simulation and synthesis of multi-process descriptions.
Most of the approaches address the system level and provide
process scheduling [10, 11], or performance estimation [12,
13]. This paper is more about synchronicity analysis of
already scheduled processes than process scheduling or per-
formance estimation. Goal of the synchronicity analysis is
to find an interval in which the considered processes run
synchronously. Such an interval is limited by synchroniza-
tion and de-synchronization points. A synchronization point
denotes an inter-process communication, after that the com-
munication process proceed synchronously. A de-synchroni-
zation point denotes an unbounded data-dependent loop.
Hence, an appropriate model is needed representing the
inter-process communication and their dependencies. Until
now, only limited work exists in this area. In [13] a message
dependency graph is formed which represents the inter-pro-
cess communication for each separate basic-block. There-
fore, control structures can not be taken into account. This
approach aims at the simplification of the interface between
concurrent processes. The approach in [12], for determining

Synchronization Detection for Multi-Process Hierarchical Synthesis*

Oliver Bringmann1,2, Wolfgang Rosenstiel1,2, Dirk Reichardt1

1 FZI, Haid-und-Neu-Str. 10-14, 76131 Karlsruhe, Germany
2 Universität Tübingen, Sand 13, 72076 Tübingen, Germany

bringmann@fzi.de, rosen@informatik.uni-tuebingen.de

timing bounds between consecutive communications does
not provide control structures, either. Finally, a very flexible
representation of communication has been presented in [14],
in order to calculate the worst case execution time of a sys-
tem of communicating processes. However, this model is
limited to specifications without unbounded data-dependent
loops.

Our approach allows the synthesis of hierarchical speci-
fication, where each module consists of one or more pro-
cesses (Figure 1). One goal in hierarchical synthesis is to
provide resource sharing across different levels of hierarchy
[8]. Due to the fact that each module contains at least one
process, the resource sharing problem is applied to multi-
process specification, which can be hierarchically struc-
tured. One topic that has to be solved in this context is the
synchronization problem between different processes.

In this paper we describe in more detail how synchroni-
zation points and de-synchronization points can be found, in
order to support resource sharing in hierarchical synthesis.
Section 2 outlines our hierarchical resource sharing
approach and gives some relevant definitions. Section 3
addresses the construction of the communication depen-
dency graph, which represents the communication structure
of a multi-process specification. The determination of the
synchronization and the de-synchronization points is pre-
sented in Section 4. Some examples, including the experi-
mental results, are shown in Section 4. Finally, this paper
concludes with a summary in Section 5. Note that the syn-
chronicity analysis presented in this paper can also be
applied to other topics beyond resource sharing, like mini-
mization of the communication overhead by converting syn-
chronous into asynchronous receive operations.

2 Problem Definition

In this section, we outline our hierarchical resource
sharing approach. Then, the hierarchical schedule is defined
containing all information needed for hierarchical resource
sharing. Based on the schedule, a more compact graph is
derived representing only the information needed for deter-
mining the synchronization and de-synchronization points.

2.1 Resource Sharing in Hierarchical Synthesis

In hierarchical synthesis, the entire system is synthe-
sized in bottom-up traversal of the hierarchy. After each
module is synthesized, the VHDL behavioral description,
the RT structure, and the calculated module schedule are
saved in the component library. During synthesis of the
modules at a higher hierarchical level, the previously syn-
thesized module information can then be used for sharing
common submodules across hierarchical levels. Main data
structure for resource sharing in hierarchical synthesis is the
hierarchical schedule, described in the next subsection. The
hierarchical schedule provides information of an operation
concerning their scheduled start time, their allocated com-
ponents, and their enclosed control structure including the
iteration count. Based on this information it can be calcu-
lated when a submodule is not in use and can be shared. In
order to be able to share resources between different pro-
cesses, first an interval has to be determined, in which the
considered processes run synchronously. Such an interval is
calledsharing interval. Within the sharing interval the influ-
ence of the control structures has to be considered. This can
be done by implicitly enumerating the clock steps of all
states of the concerning processes which are competing for
the demanded resource. If the intersection of the sets of
implicitly enumerated clock steps is empty, then resource
sharing can be performed. Further details can be found in
[8]. In the context of this paper, we want to describe pre-
cisely how the synchronization and de-synchronization
points can be calculated, which define the sharing interval.

2.2 Hierarchical Schedule

The underlying model of a module is not restricted to
specific synthesis limitations. A module may contain one or
more processes. Each process consists of a flowgraph, repre-
senting the algorithmic specification, a hierarchical sched-
ule, the generated RT structure, and the physical module
parameter. Now, the formal definition of a hierarchical
schedule is given.

Definition 1. A hierarchical scheduleof a processP is
denoted by the tupleHS(P) := 〈V, E, t, OP, IC, M〉, where

• V is a set of nodes representing clock steps, conditional
branches, or nested loops, respectively.

• E ⊂ L × V is a set of edges withL := {vl ∈ V : t(vl) =
loop ∨ t(vl) = branch}, where

• the functiont(vl) ∈ {operation, loop, branch} denotes
the type of a nodevl ∈ V.

• The relationOP(vop), ∀ vop ∈ V : t(vop) = operation
refers to the scheduled operations of the clock stepvop.

• The functionIC(vl), ∀ vl ∈ V : t(vl) = loop returns the
minimal iteration counticmin and the maximal iteration

Figure 1. Illustration of a Hierarchical Specification

Module

Process

counticmax, whereiteration count denotes the number of
iterations of a loop, which may depend on outer loop
iterators.

• The function M(op), ∀ op ∈ OP(vop) refers to the
instantiated module or module type of an operationop.

The hierarchical scheduleHS(P) of a process represents
a tree, with the property that only nodes of typeloop or
branch can have descendants. The children of one node rep-
resent the schedule of this loop, or branch path, respectively.
The root node represents the entire process and has an infi-
nite iteration count (icmax = ∞). An unbounded iteration
count, which can not be statically determined, is denoted by
icmax = u. In case of a statically determined iteration count,
icmin andicmax are equal.

2.3 Communication Dependency Graph

In the context of this paper, mainly the dependencies of
different inter-process communications and the number of
clock steps between consecutive communications are of
interest. Such information can compactly be represented as
a communication dependency graph, defined as follows:

Definition 2. A communication dependency graph (CDG)
of a process is denoted byCDG := 〈V, E, t, δ〉, where

• V is a set of nodes representing communication states or
loops with unbounded data-dependent delay.

• E ⊂ V × V is a set of directed edges describing the pre-
cedence dependencies between communication states or
data-dependent loops.

• The functiont(v) ∈ {asynchron, synchron, unbounded}
denotes the type of each nodev ∈ V.

• The edge weights are represented by the functionδ(vi,
vj) with (vi, vj) ∈ E, which returns the number of sched-
uled clock steps between two communications states or
unbounded data-dependent loops of a process.

A communication dependency graph(CDG) is a
directed, cyclic graph which can be constructed from the
hierarchical schedule of each process. In this graph, the con-
trol structure of the hierarchical schedule is flattened. As a
result, theCDG contains no hierarchical structure, so that
the calculation of the synchronization points can be per-
formed efficiently. A small example of twoCDGs con-
structed out of hierarchical schedules is shown in Figure 2.
On the left side the hierarchical schedules of two communi-
cating processesP1 andP2 are shown. For the sake of clarity,
the hierarchical schedules are represented as state-transition
graphs. On the right side the constructedCDGs are given for
each process. A dashed line illustrates a communication
channel between a send and a receive operation and belongs
not to the respective graphs. Three types of nodes can be
distinguished. First, the single encircled nodes represent
asynchronous send or receive operations without wait func-

tionality. Second, the double encircled nodes indicate syn-
chronous receive operations with wait functionality. Finally,
unbounded data-dependent loops are illustrated by double
circles with a grey ring and are denoted with U. More details
regardingCDG construction are shown in the next section.

The communication dependency graph is only used for
determining the synchronizations points. Further investiga-
tions for resource sharing operates on the hierarchical
schedule again.

2.4 Synchronicity Conditions

A synchronicity condition can be formulated based on
the set of communication dependency graphs. This condi-
tion has to be fulfilled for all synchronization points. Each
communication pairvs, vr is a potential candidate for a syn-
chronization point. The principal condition for synchroniza-
tion points is, that the receive node has to be reached before
the corresponding send node. Before the definition of a syn-
chronization point can be given, several helpful functions
are defined. First, the set of all possible acyclic paths
between a start nodev1 and an end nodev2 of the CDG is
denoted byP(v1→v2). Secondly, the sum of the edge
weightsδ of a given pathp ∈ P is given byd(p), represent-
ing the sequential time taken. If p contains an edge with
weight u, thend(p) becomes infinite. Thirdly, the relation
N(p) refers to all nodes which are composing the pathp.
Finally, the set of all synchronization points of a givenCDG
is represented bySP(CDG(v)), whereCDG(v) refers to the
CDG containing nodev. Initially, the setSP contains the
reset stateI of each module.

Now, a test concerning the send node is formulated.
Because the receive node has to be reached before the corre-
sponding send node, it is sufficient to consider only the
shortest paths between the concerned communication nodes.
The shortest path between the nodesv1, v2 is calculated by
Pmin(v1→v2) = {p | d(p)< d(p')∀ p, p'∈ P(v1→v2) ∧ p ≠ p'}.

Based onPmin the pathsPS(vs) from all immediately pre-
ceding synchronization points to the considered send node
vs can then be determined by

Figure 2. CDGs Constructed Out ofHS(P1) andHS(P2)

I

1

R2

S3

R1

3 10

I

S1

1

2

3

S2

R3

2

I

U1

S1

S2

R3

I

S3

R1

R2

1

1

C1

C2

C
3

2

1

1

1

2

u1 12
u1

∞∞

4 3

C3

C 2

C
1

➭

HS(P1) HS(P2) CDG(P1) CDG(P2)

PS(vs) = {Pmin(vsync→vs) | v'sync∉ N(Pmin(vsync→vs))
 ∀ vsync, v'sync ∈ SP(CDG(vs)) ∧ vsync ≠ v'sync}.

Accordingly, the pathsPR concerning the receive node
vr can be formulated by using the longest acyclic pathPmax

instead of the shortest pathPmin. Note that the longest acy-
clic pathPmax is calculated only during one iteration of the
traversed loops. At each backward edge of a complete tra-
versed loop body, the delay of the loop body is multiplied by
the iteration count of the corresponding loop, if statically
known. Otherwise the longest path is marked as infinite. The
backward edges can easily be determined from the hierar-
chical schedule. Since, the traversed subgraph is a directed
acyclic graph with positive weights, the longest path can be
calculated in polynomial time based on the algorithm shown
in [15], modified with respect to the above mentioned exten-
sions. Hence, all pathsPR(vr) from the preceding synchroni-
zation points to the receive nodevr can be calculated by

PR(vr) = {Pmax(vsync→vr) | v'sync∉ N(Pmax(vsync→vr))
 ∀ vsync, v'sync ∈ SP(CDG(vr)) ∧ vsync ≠ v'sync}.

Now we are able to give the definition of a synchroniza-
tion point and a de-synchronization point.

Definition 3. The nodesvs, vr of a communicationC(vs→vr)
are calledsynchronization points, if the relationvr before vs

:= max{d(p) | ∀ p ∈ PR(vr)} ≤ min{d(p) | ∀ p ∈ PS(vs)}
is fulfilled. A nodev with t(v) = unboundedis called ade-
synchronization point.

The definition of a synchronization point strongly influ-
ences the construction as well as the analysis of the commu-
nication dependency graph. However, it gives only a criteria
for verifying synchronization points and not a technique for
determining synchronization points. In Section 4 an algo-
rithm is presented which calculates all synchronization
points with respect to the previous definition.

3 Construction of the CDG

The communication dependency graph has to be con-
structed out of the hierarchical schedule of each process. In
this graph, a sequence of operations is folded into a single
edge. The edge weights represent the respective number of
clock cycles needed to perform the sequence of operations.
The nodes represent send and receive operations of the hier-
archical schedule. In the following, the construction of the
CDG is given, taken several control structures into account.
The construction is performed with respect to definition 3.
Due to the limited space, no detailed algorithm for con-
structing theCDG can be presented.

3.1 Conditional Branches

In contrast to approaches that calculate the worst case
execution path, the synchronization points has to be valid

for all alternative paths. Due to the condition of definition 3,
it is sufficient to consider only the pathsPmin and Pmax.
Hence, only the shortest and the longest alternative paths
have to been constructed in theCDG. In case of a nested
branch or a consecutive branch structure without communi-
cation, the shortest and the longest path, traversing the mul-
tiple branch structures, are chosen. This avoids, that the
number of alternative paths is increasing, exponentially. If
there exists multiple send or receive operations in different
alternative paths, then the send and receive nodes can be col-
lapsed according to Section 3.4.

The result quality is not influenced by such a simplifica-
tion. That is because the calculation of the relationvr before
vs uses the immediately preceding synchronization points
which calculation only bases on the shortest and the longest
paths.

3.2 Bounded Loops

Bounded loops can have a statically determined itera-
tion count with equal boundsicmin and icmax or different
bounds icmin and icmax, where icmax represents the upper
bound andicmin the lower bound.

First, we want to discuss the former loop type in more
detail. If the loop body, including their entire nested loop
hierarchy, does not contain any communication, then the
entire loop is collapsed recursively to a single edge connect-
ing the previous and the next communication nodes. The
edge weight becomes the product of the sequential time
needed for one iteration of the loop and their iteration count
icmax. In the case that the nested control hierarchy of a loop
contains conditional branches, the edge weight has to be cal-
culated for the shortest as well as the longest alternative
path. Note that the edge weight has to be calculated recur-
sively for the entire nested control hierarchy. If the loop
body contains a communication node, then this node is cre-
ated together with an self-referring edge in theCDG. This
edge is labeled by the sequential time needed for one itera-
tion of the loop.

Second, we want to discuss the latter loop type. In this
case, the former technique for transforming a loop is applied
as well, with the upper boundicmax and the lower bound
icmin. As a result, two edges are constructed in theCDG,
similar to the transformation for conditional branches.

3.3 Unbounded Data-Dependent Loops

Loops with unbounded data-dependent iteration count
icmax = u represent the de-synchronization points and
strongly influence the determination of the synchronization
points. Such loops represent the unique feasible node type in
theCDG beyond the communication nodes. This node type
is calledu-node. During construction of theCDG, the u-

nodes can be handled similarly to the communication nodes.
However, some exceptions exist. First, if the body of the
unbounded loop contains at least one communication node
at an arbitrary level of the nested control hierarchy, then the
unbounded loop can be treated similarly to bounded loops,
containing a communication node. That is because we want
to ensure that data is properly communicated between the
processes. That means no further messages are sent before
the previously sent message has been received via the same
communication channel. With this assumption it can be con-
cluded, that both loops, from the send and the receive pro-
cess, are unbounded and have similar loop conditions.
Otherwise, some messages would be lost. If the body of the
unbounded loop contains no communication node at an arbi-
trary level of the nested control hierarchy, then the entire
loop body can be disregarded, expect for the minimal
sequential time needed to perform one iteration. This value
is used as a minimum iteration constraint of a u-node. Sec-
ond, if an u-node is contained within an alternative path of a
conditional branch construct, then this branch construct does
not need the alternative longest path, since this path is
already covered by the u-node.

3.4 Node Collapsing

In order to avoid the exponential growth of alternative
paths, two node collapsing rules are given, which can be
applied to arbitrary nodes. Multiple u-nodes in alternative
paths can be collapsed into a single u-node by applying the
following transformation. The incoming edge becomes the
weightmin{d(Pmin(vif→vu)) | ∀ vu ∈ P(vif→vfi)} and the out-
going edge the weightd(Pmin(vif→vfi)) − min{d(Pmin(vif→vu))
| ∀ vu ∈ P(vif→vfi)}, wherevif andvfi are accessory nodes,
denoting the start and the end of a conditional branch con-
struct and are only used for the sake of clarity. Actually, this
nodes are only contained in the hierarchical schedule. Nev-
ertheless, because the node collapsing are performed during
CDG construction, all necessary information are available.

A similar transformation can be applied to communica-
tion nodes, with the exception that not only the shortest path
but also the longest path has to be considered. The longest
path transformation is defined as follows: the incoming edge
becomes the weightmax{d(Pmax(vif→vc)) | ∀ vc ∈P(vif→vfi)}
and the outgoing edge the weightd(Pmax(vif→vfi)) −
max{d(Pmax(vif→vc)) | ∀ vc ∈ P(vif→vfi)}.

Furthermore, consecutive unbounded loops can be
folded into a single u-node by adding the weights of the
edges connecting all consecutive u-nodes to the outgoing
edge, of the last u-node in the sequence. Note that, commu-
nication nodes are not being allowed in the u-node sequence
to perform the u-node collapsing. All presented graph trans-
formations arePmin andPmaxpath invariant, so that the syn-
chronicity conditionvr before vs is not influenced.

4 Synchronization Point Detection

Main task is the determination of all feasible synchroni-
zation points such that condition of definition 3 holds. Since
the condition bases on an already determined set of synchro-
nization points, a constructive algorithm is needed to find
the synchronization points. Our algorithm is divided into
two phases. In the first phase, initially synchronous commu-
nications are determined, which fulfill the synchronization
condition between the reset state and the treated communi-
cation nodes. The second phase observes the processes after
their initiation is completed. Objective is to determine the
number of wait states of each receive node. If the result is
negative, then the corresponding communication is not a
synchronization point. This can be done by formulating the
synchronization conditions as a system of linear equalities.
Therefore, the functionD(P) is used, which constructs a lin-
ear function, representing the delay of a pathP depending
on each communication node. A path can be represented as
an equality by using a slack variable, describing the wait
states of the receive node. After forming the equality system,
all communication cyclesCCycle are determined and ordered
in decreasing number of contained communication nodes. A
communication cycle represents a closed loop of potential
synchronization points between two communication nodes.
Out of the set CCycle, communication cycles are chosen suc-
cessively which completely cover the communication nodes.
For each chosen cycle, a linear equation system is created.
The linear equation system has a totally unimodular coeffi-
cient matrix, so that each real solution is also an integer
solution. A variable with a negative value denotes a not syn-
chronizing communication. The second phase of the algo-
rithm is shown in the following. The first phase can be
handled similar, but instead of the communication cycles, all
paths beginning at the reset state are considered.

function DetectSyncPoint()
foreach communication Ci(vs→vr) with InitSync mark do

foreach preceding Cj(ns→nr) with P(ns→vs) ∧ P(nr→vr) do
if D(Pmin(ns→vs)) = D(Pmax(nr→vr)) is not false then

create Eq(Ci, Cj) := D(Pmin(ns→vs)) = D(Pmax(nr→vr))
Determine all communication cycles CCycle
Sort CCycle in decreasing order of their number of nodes
repeat

get first cycles FCycle that cover all Ci(vs→vr) with InitSync mark
EqCyc(FCycle) := all equations Eq(Ci, Cj) belonging to FCycle
Evaluate equality system sol := solve(EqCyc(FCycle))
foreach i ∈ variable(sol) with Ci(vs→vr) do

if i < 0 then
mark Ci(vs→vr) with NotSync
foreach successor Cj(ns→nr) with P(vs→ns) ∧ P(vr→nr) do

FCycle := FCycle \ (Ci(vs→vr) → Cj(ns→nr))
else

mark Ci(vs→vr) with Sync
until all Ci(vs→vr) have mark ≠ InitSync or FCycle was not changed

Algorithm 1. Synchronization Point Detection (2nd Phase)

5 Experimental Results

In this section we present the results applied by our
approach to an ethernet controller. We specified the ethernet
controller with respect to the description shown in [14]. In
that approach, the objective is to determine the worst case
execution time of a set of communicating processes. How-
ever, the objective differs from our approach. Here, the eth-
ernet controller is used as an example to detect
synchronization points in a multi-process specification. In
Figure 3 theCDGs are shown for the three processes of the
ethernet controller. The processes are communicating via
the channelsC1, C2, C3, C4, andC'4, where the channelsC4

and C'4 are representing a communication to multiple
receivers. In the first phase all communications are
observed, whether they are initially synchronous. An ini-
tially synchronous communication is a suitable candidate
for a synchronization point. During the main phase the syn-
chronicity condition has to hold for all initially synchronous
communication, as well. The upper shaded box shows the
initialization phase of the algorithm. All communication
nodes are detected as initially synchronous. Note that the
variable u1 becomes the minimal value of all alternative
edge labels, if it belongs to the pathPmin. A further prerequi-
site is that all variables must be non-negative, in order to ful-
fill Definition 3. The lower shaded box describes the linear
system of the main phase of the algorithm. In that system,
the second equality is false, because it can be transformed to
x1 = −3, which contradicts to the non-negativity condition.
Hence, just the communicationC1 is not a synchronization
point, but all the others are.

As a further result, the determined synchronization
points can be used to define the sharing interval. The specifi-
cation contains several add operation. If we combine this
approach with the approach in [8], one adder is sufficient for
implementing the entire ethernet controller, because the
adder can be shared between the processes.

6 Conclusions

This paper presented a new approach for synchroniza-
tion point detection in hierarchical synthesis. Our approach
supports the analysis of multi-process specification with
arbitrary control structures. Especially, loops with
unbounded data-dependent delay are supported. The syn-
chronization point detection is implemented in the high-
level synthesis CADDY-II in order to provide resource shar-
ing across different levels of hierarchy or process bounds,
respectively. Further areas of application are for instance the
minimization of the communication overhead by converting
synchronous receive operations into asynchronous receive
operations.

7 References

[1] M. McFarland, T. Kowalski:Incorporating Bottom-Up Design into
Hardware Synthesis. IEEE Transactions on CAD, vol. 9, pp. 938-
950, 1990.

[2] D. E. Thomas, E. D. Lagnese, R. A. Walker, J. A. Nestor, J. V. Rajan,
R. L. Blackburn:Algorithmic and Register-Transfer Synthesis: The
System Architect’s Workbench.Kluwer, 1990.

[3] D. Sreenivasa Rao, F. Kurdahi:Hierarchical Design Space
Exploration for a Class of Digital Systems. IEEE Transactions on
CAD, vol. 1, pp. 282-295, 1993.

[4] W. Geurts, F. Catthoor, H. De Man:Quadratic Zero-One
Programming-Based Synthesis of Application-Specific Data Paths.
IEEE Transactions on CAD, vol. 14, pp. 1-11, 1995.

[5] T. Ly, D. Knapp, R. Miller, D. MacMillen:Scheduling using
Behavioral Templates. Proceedings of DAC, 1995.

[6] D. C. Ku, G. De Micheli:High-Level Synthesis of ASICs Under
Timing and Synchronization Constraints. Kluwer, 1992.

[7] P. Kission, H. Ding, A. Jerraya:VHDL Based Design Methodology
for Hierarchy and Component Re-Use. Proceedings of EURO-
VHDL, 1995.

[8] O. Bringmann, W. Rosenstiel:Resource Sharing in Hierarchical
Synthesis. Proceedings of ICCAD, 1997.

[9] O. Bringmann, W. Rosenstiel:Cross-Level Hierarchical High-Level
Synthesis. Proceedings of D.A.T.E., 1998.

[10] A. Takach, W. Wolf: Scheduling Constraint Generation for
Communicating Processes. IEEE Transactions on VLSI, vol. 1, no.
2, pp 215-230, 1995.

[11] K. Kuchcinski:Embedded System Synthesis by Timing Constraints
Solving. Proceedings of ISSS, 1997.

[12] T. Amon, H. Hulgaard, S. Burns, G. Borriello:An Algorithm for
Exact Bounds on the Time Separation of Events in Concurrent
Systems. Proceedings of ICCD, 1993.

[13] D. Filo, D. Ku, C. Coelho, G. De Micheli:Interface Optimization
for Concurrent Systems under Timing Constraints. IEEE
Transactions on VLSI, vol. 1, no. 3, pp. 268-281, 1993.

[14] S. Dey, S. Bommu:Performance Analysis of a System of
Communicating Processes.Proceedings of ICCAD, 1997.

[15] Y. Liao, C. Wong:An Algorithm to Compact a VLSI Symbolic
Layout with Mixed Constraints. IEEE Transactions on CAD, vol.
CAD-2, no. 2, pp. 62-69, 1983.

[16] W. Pugh: The Omega Test: a fast and practical integer
programming algorithm for dependence analysis. Proceedings of
Supercomputing, 1991.Figure 3. Synchronization Points of an Ethernet Controller

I1

U1

R1

S3

S2

I2

S4

R3

3

1

1

2

2

3

R4

I3

R'4

S'4

S1

1

2

2

R2

11 2

5
2

2

CDG(P1) CDG(P2) CDG(P3)

7 +x1 + x4 = 4 + x'4
3 + x4 = 3

C1 → C2: 2 = 1 + x2

C2 → C1:

6 + x1 = 2 + x3

C3 → C4:

C4 → C3:

C2 → C4/C'4: 2 + x4 = 2 + x'4

C
2

C
1

C4

C'4

C3

I1,3 → C2:

I1,3 → C1:

I1,2 → C4:

I1,2 → C3:

I2,3 → C'4:

3 + x1 = 5

4 + x1 = 2 + x3

5 + x1 = 6 + x2

7 + x1 + x4 = 5 + x3

5 + x3 = 3 + x'4

✓✗ ✓✓ ✓

✓

✓

✓

✓

✓

⇒ x1=2, x2=1, x3=4, x4=0, x'4=6

u1 1

⇒ Synchronization Points SP = {I1, I2, I3, C2, C3, C4, C'4}

C4/C'4 → C2: 7 + x1 = 3 + x2

Initially Synchronous C

Synchronization Point Detection

⇒ x1=−3, x2=1, x3=1, x4=0, x'4=0

(
(
(

	Main Page
	ISSS98
	Front Matter
	Table of Contents
	Session Index
	Author Index

