
Symbolic Model Checking of Process Networks
Using Interval Diagram Techniques

Karsten Strehl, Lothar Thiele

Computer Engineering and Networks Lab (TIK)
Swiss Federal Institute of Technology (ETH)
Gloriastrasse 35, 8092 Zurich, Switzerland

eMail: fstrehl,thiele g@tik.ee.ethz.ch
WWW: http://www.tik.ee.ethz.ch

Abstract

In this paper, an approach to symbolic model checking of pro-
cess networks is introduced. It is based oninterval decision dia-
grams(IDDs), a representation of multi-valued functions. Com-
pared to other model checking strategies, IDDs show some impor-
tant properties that enable the verification of process networks more
adequately than with conventional approaches. Additionally, ap-
plications concerning scheduling will be shown. A new form of
transition relation representation calledinterval mapping diagrams
(IMDs)—and their less general versionpredicate action diagrams
(PADs)—is explained together with the corresponding methods.

1 Introduction

Process networkmodels—consisting in general of concurrent pro-
cesses communicating through unidirectional FIFO queues—as
that of Kahn [7, 8] are commonly used, e.g., for specification and
synthesis of distributed systems. They form the basis for appli-
cations such as real-time scheduling and allocation. Many other
models of computation, e.g.,dataflow process networks[11], com-
putation graphs[9], andsynchronous dataflow(SDF) [10], turn out
to be special cases of Kahn’s process networks.

As the SDF model is restricted enough, tasks as determining a
static schedule or the verification of properties are well-investigated
and may be handled efficiently. The situation is similar for compu-
tation graphs. While many dataflow models are sufficiently ana-
lyzable by balance equation methods, they fail for more powerful
descriptions due to their complex internal state.

Typical questions to be answered by formal verification of pro-
cess networks are about the absence of deadlocks, the boundedness
of the required memory, or rather “may processP1 andP2 block
each other?” or “mayP1 andP2 collide while accessing to a shared
resource?”. Especially the memory boundedness is important as
process networks in general may not be scheduled statically. Thus,
dynamic schedulers have to be deployed which cannot always guar-
antee to comply with memory limitations without restricting the
system model [13].

In addition, the process models may be extended to describe
one or several dynamic or hybrid scheduling policies, too, of which

the behavior is verified together with the system model. Thus, com-
mon properties as the correctness of the schedule may be affirmed
or artificial deadlocks [13] may be detected.

A simple example process network from [13] is shown in Fig-
ure 1.A, B, C, andD represent processes, whilea, b, c, d, ande
are unbounded FIFO queues. The network follows a blocking read
semantics, i.e., a process is suspended when attempting to get data
from an empty input channel.

put(0,b);
do {
 put(get(a),b);
} forever;

put(1,e);
do {
 put(get(d),e);
} forever;

do {
 put(get(b),c);
 put(get(e),c);
} forever;

do {
 put(get(c),a);
 put(get(c),d);
} forever;

a

b
c

d

e

A

B

D

C

Figure 1: Simple process network.

Formal verification is able to prove, e.g., that there are never
more than two tokens buffered on any communication channel—
i.e., that the process network isstrictly bounded—or that the net-
work is non-terminating. Both properties are essential during the
development of scheduling policies.

A simple dynamic scheduling example to be modeled in combi-
nation with the network is a plain priority-based scheduling policy
which executes processB only if A is not enabled, otherwiseA is
executed. An important question to be answered now is whetherB
could be blocked forever becauseA may always be enabled.

During the last years, a promising approach namedsymbolic
model checking, see, e.g., [3, 4], was applied to many areas of
system verification and even has been able to enter the area of
industrial applications. It makes use ofbinary decision diagrams
(BDDs) [2] which are an efficient representation of Boolean func-
tions and allow for this very fast manipulation.

Concerning process networks, the traditional BDD-based meth-
od of automated verification suffers from the drawback that a bi-
nary representation of the process network and its state is required.
One severe problem is that the necessary capacity of the queues
in general is unknown before the analysis process. But to per-
form model checking, the queue contents represented by an integer
number have to be coded binary, requiring an upper bound. This

deficiency could be avoided partially usingmulti-valued decision
diagrams(MDDs) [14] with unbounded variable domains instead
of BDDs. But problems occur, e.g., when complementing a finite
set described by an unbounded MDD as this results in an infinite
set taking an infinite number of MDD edges which is not possible.
One strategy to avoid this again is to bound the variable domain to
a finite range such that complementary sets are finite, too.

Another difficulty emerges from the partially very regular be-
havior of network processes that in general consists of consum-
ing or producing one or a few constant numbers of tokens at a
time. Consider a simple dataflow node. Its firing behavior with
respect to an outgoing arc representing a queue consists of adding,
e.g., one token at a time. When representing this behavior us-
ing BDDs or MDDs, a huge part of the transition relation deci-
sion diagram (DD) is necessary to model explicitly all possible
pairs of a queue’s state and its successor state after the firing, e.g.,
f(x; x0)g = f(0; 1); (1; 2); (2; 3); : : : ; (n� 1; n)g.

An approach with aims similar to our’s is the one of Gode-
froid and Long [5]. They verify system models—especially for
lossy communication protocols—based on FIFO queues by coding
the queue contents binary and representing them in form ofqueue
BDDs (QBDDs). QBDDs are an extension of BDDs for dealing
with dynamic data structures and infinite state spaces. They have
to renounce an ordered BDD form as repeated occurrences of vari-
ables along a path are necessary. The DD depth is not static, but
may increase substantially during the computations depending on
the number of elements contained in the queues. Only the enqueu-
ing or dequeuing of single elements is treated. QBDDs are used to
describe sets of system states, but not the transition relation. The
methods applied for this require specialized enqueuing and dequeu-
ing methods of which the possibility to be combined with conven-
tional BDD techniques is not guaranteed.

To overcome the above-mentioned limitations of conventional
symbolic model checking of process networks, we present an ap-
proach that usesinterval decision diagrams(IDDs) combined with
interval mapping diagrams(IMDs)—especially their restricted
form predicate action diagrams(PADs)—and thus is able to rem-
edy the described lacks of traditional approaches. Fundamentally,
it is based on a more reasonable way of describing the above-
mentioned form of transition relations. It affords the possibility
to represent them as the “distance” between a state and its succes-
sor after the transition, which means the difference of the numbers
of included tokens before and after the execution. The major en-
hancements of symbolic model checking with IDDs and IMDs are:

� No state variable bounds due to binary coding or com-
plementation are necessary as with conventional symbolic
model checking.

� The transition relation representation is compact—especially
for models like process networks—as onlystate distancesare
stored instead of combinations of state and successor. Ac-
cordingly, an innovative technique for efficient image com-
putation is introduced.

� Due to the enhanced merging capabilities of IDDs and the
abandonment of binary coding, state set descriptions are
more compact than using BDDs.

We introduce the formalism of interval decision diagrams, an effi-
cient representation of discrete-valued functions, and the methods
and techniques necessary to apply this new form of function de-
scription to symbolic model checking. In this paper, process net-
works are regarded exemplarily without meaning further restric-
tions.

2 Interval Decision Diagrams

2.1 Notation

Let f(x1; x2; : : : ; xn) be a multi-valued function with signature

f : P1 � P2 � : : : � Pn ! Qf ;

wherePi � Z are the domain sets of the variablesxi, andQf is
the discrete and finite range set off .

The termxI represents aliteral of a variablex with respect to
a setI � Z, that is the Boolean function

xI =

�
0 if x =2 I
1 if x 2 I

:

For the sake of brevity, forI = fbg containing only one single
valueb 2 Z, the literal of variablex with respect toI is denoted
xb = xI .

In the following, we will deal with intervals onZ, i.e., inte-
ger intervals. Two intervals are namedneighboredif they may be
joined by union into a larger interval, where overlapping intervals
are called neighbored, too.

The function resulting when some argumentxi of functionf is
replaced by a constant valueb is called arestrictionor cofactorof
f and is denotedf jxi=b or, for the sake of brevity,fxb

i
. That is, for

any argumentsx1; : : : ; xn,

fxb
i
(x1; : : : ; xn) = f(x1; : : : ; xi�1; b; xi+1; : : : ; xn):

If for all possible values ofxi in some intervalI � Pi, f does not
depend onxi, i.e.,

8b; c 2 I : fxb
i
= fxc

i
;

thenf is independentof xi in I, and the cofactor off with respect
to the literalxIi is defined by

fxI
i
(x1; : : : ; xn) = fxb

i
(x1; : : : ; xn) for all b 2 I.

In this case,I is called anindependence intervalof f with respect
toxi. From now on, all domain setsPi are supposed to be intervals.

Definition 2.1 (Interval cover) The setI(Pi) = fI1; I2; : : : ; Ipig
of pi split intervalsIj depicts aninterval coverofPi if eachIj is a
subset ofPi, i.e.,Ij � Pi, andI(Pi) is complete, i.e.,

Pi =
[

I2I(Pi)

I:

Definition 2.2 (Interval partition) A cover isdisjoint if

8j; k with 1 � j; k � pi; j 6= k : Ij \ Ik = ;

holds, i.e., no element ofPi is included in more than one split in-
terval. A disjoint cover is namedinterval partition.

Definition 2.3 (Independence interval partition) An independ-
ence interval partitionis a partition consisting of independence in-
tervals only.

From now on, only functions are considered that are decompos-
able over an interval partition with a finite number of independence
intervals. Their partial functions may be composed by the Boole-
Shannon expansion for a multi-valued function with respect to a
variablexi and an independence interval partitionI(Pi), given by

f =
X

I2I(Pi)

xIi � fxI
i
: (1)

The operations + and� in this equation have a “Boolean-like”
meaning, hence shadowing all but one function value off that cor-
responds to the respective value ofxi.

Definition 2.4 (Reduced interval partition) An independence in-
terval partition is namedminimal if it contains no neighbored split
intervals that may be joined into an independence interval. An in-
terval partitionI(Pi) = fI1; I2; : : : ; Ipig is orderedif the higher
bounds of all split intervals build an increasing sequence with re-
spect to their indices. An independence interval partition which is
minimal and ordered is calledreduced.

Theorem 2.1 A reduced independence interval partition of a do-
mainPi is unique.

The proof is by contradiction.

2.2 Structure

An example interval decision diagram is shown in Figure 2. It rep-
resents a functionf(x1; x2; x3) with the variable domainsPi =
[0;1) and the rangeQf = fa; bg denoted as

f(x1; x2; x3) =

�
a if x[0;3]1 � x

[0;5]
2 _ x

[4;1)
1 � x

[0;7]
3

b otherwise
:

x1

a

x2

x3

b

[4,∞)[0,3]

[0,5]

[0,7]

[8,∞)

[6,∞)

f

Figure 2: Example interval decision diagram.

The IDD edges are labeled with real or integer intervals. In the
scope of this paper, we concentrate on intervals of integer numbers.
Extensions for real numbers can easily be derived [15]. IDDs can
be regarded as a generalization of BDDs, MDDs, and MTBDDs
(multi-terminal BDDs).

2.3 Representation

IDDs are represented by canonicalfunction graphs, similar to those
of [14] and [2].

Definition 2.5 (Function graph) A function graphG is a rooted,
directed acyclic graph with a node setV containing two types
of nodes. Anon-terminalnodev 2 V has as attributes an ar-
gument indexi = index(v), an independence interval partition
part(v) = I(Pi) = fI1; I2; : : : ; Ipig and pi = jpart(v)j chil-
dren childk(v) 2 V; 1 � k � pi. The split intervalsintk(v) =
Ik 2 I(Pi) of the partition are assigned to thecorrespondinggraph
edges

�
v; childk(v)

�
2 E. A terminalnodev has as attribute a

valuevalue(v) 2 Qf .

We define the correspondence between function graphs and
multi-valued functions as follows.

Definition 2.6 The functionfv associated to a nodev 2 V of a
function graphG is defined recursively as:

� If v is a terminal node, thenfv = value(v),

� if v is a non-terminal node withindex(v) = i, thenfv is
the function depicted by the Boole-Shannon expansion as de-
scribed in equation(1), thus

fv =
X

Ij2part(v)

x
Ij
i � fchildj (v): (2)

The function denoted by the graphG is associated to its root node.
A subgraphGv of G inducedby a nodev contains all edges and
nodes reachable fromv.

In the context of decision diagrams, functions are considered to
be equivalent to their associated nodes. Hence, a functionfv as-
sociated to a nodev with variable indexi may be represented by
a (p+1)-tuplefv =

�
xi; (I1; F1); : : : ; (Ip; Fp)

�
, where(Ik; Fk)

denote pairs each consisting of split intervalIk = intk(v) of the
interval partitionpart(v) and the functionFk associated to the
respective corresponding child nodechildk(v). This description
is directly associated to the Boole-Shannon expansion mentioned
above.

Definition 2.7 (Ordered function graph) A function graph isor-
deredif for any adjacent pair of non-terminal nodes

�
v; childk(v)

�
we haveindex(v) < index

�
childk(v)

�
.

The termlayer depicts either all non-terminal nodes having the
same index or all terminal nodes. In the following, only ordered
function graphs are considered.

Definition 2.8 (Reduced function graph) A function graphG is
reducedif

1. each non-terminal nodev has at least two different children,

2. it does not contain two distinct nodesv andv0 such that the
subgraphs rooted byv andv0 are isomorphic(as defined in
[2]), and

3. the independence interval partitionspart(v) of all non-
terminal nodesv are reduced.

Now, one of the major results of this paper is described.

Theorem 2.2 For any describable multi-valued functionf , there
is a unique reduced function graph denotingf . Any other function
graph denotingf with the same variable ordering contains more
nodes.

Proof: The proof proceeds along the same lines as those in [2]
and [14]—by induction on the size of the dependence set—, but is
omitted here for reasons of space [15].

Similar to BDDs and related decision diagrams, several reduc-
tion rules exist to transform any IDD into a reduced form [15]. For
conventional symbolic model checking of the described class of
models of computation, basically Boolean functions over integer
variables are of importance. Hence, from now on, only IDDs are
considered that represent Boolean functions over integer intervals,
i.e., their terminal nodes may have only the values 0 or 1 and thus
are called0- or 1-terminal nodes, respectively. With the use of such
kind of IDDs truth functions and propositions as, e.g.,f(x1; x2) =

(x1 � 7) ^ (x2 = 3) _ (x2 � 6) = x
[0;7]
1 � x

[3;3]
2 _ x

[6;1)
2 are

describable.

2.4 If-Then-Else Operator

The If-Then-Elseoperator (ITE) [2] constructs the graph for the
function obtained by composing two functions.ITE is a ternary
Boolean operation directly derived from the Boole-Shannon expan-
sion and is denoted

ITE(F;G;H) = F �G _ :F �H:

Thus, it means: IfF thenG elseH. ITE can be used to
apply all two-variable Boolean operations on IDDs, within a single
algorithm. LetZ = ITE(F;G;H) and letx be the top variable of
F ,G, andH, i.e., the variable at the common highest layer of their
IDDs and thus with the lowest index. Using the Boole-Shannon
decompositionITE is recursively defined as

ITE(F;G;H) =
�
x;
�
I1; ITE(FxI1 ; GxI1 ; HxI1)

�
;

: : : ;
�
Ip; ITE(F

xIp
; G

xIp
; H

xIp
)
��
;

where the terminal cases of this recursion areITE(1; F;G) =
ITE(0;G; F) = ITE(F;1; 0) = F . The procedure to compute
ITE is described in detail in [15].

3 Interval Mapping Diagrams

Interval mapping diagrams are used to represent transition rela-
tions, e.g., in symbolic model checking. They map a set de-
scribed by a Boolean-valued IDD onto a new set—described by
such IDD, too—by performing operations like, e.g., shifting or as-
signing some or all values of the IDD’s decision variables. For
interval shifting, a simple unbounded interval arithmetic with the
operators+ for additionand� for substraction, each over two in-
tervals, is used.

3.1 Representation

IMDs are represented bymapping graphs, similar to the function
graphs described in Definition 2.5. They containinterval mapping
functionsf : I ! I, mapping intervals onto intervals, whereI
denotes the set of all integer intervals.

Definition 3.1 (Mapping graph) A mapping graphG is a rooted,
directed acyclic graph with a node setV containing two types
of nodes. Anon-terminalnodev 2 V has as attributes an ar-
gument indexi = index(v), a set of interval mapping func-
tions func(v) = ff1; f2; : : : ; fng andn = jfunc(v)j children
childk(v) 2 V; 1 � k � n. The mapping functionsfk(v) are
assigned to thecorrespondinggraph edges

�
v; childk(v)

�
2 E. V

contains exactly oneterminal nodev with value(v) = 1.

Unlike IDDs, IMDs in general have no canonical forms. As,
for instance, no equivalence checkings orITE operations of IMDs
have to be performed in contrast to IDDs, this is no general limita-
tion.

3.2 Interpretation

Informally, the functional behavior of IMDs may be described as
“set flow”, similar to that of data flow. The data consists of sets
represented by unions of intersected intervals of state variable val-
ues, as described in Section 2.1 and represented by an IDD. Begin-
ning at the root node of an IMD, the set data has the possibility to
flow along each path until reaching the terminal node. Each IMD
edge transforms the data according to the respective mapping func-
tion. More precisely, the mapping function maps each interval of

the corresponding state variable included in the actual set descrip-
tion onto a transformed interval. The effect of this may be, e.g., to
shift, shrink, grow, or assign the whole set along exactly one coor-
dinate of the state space. Then the modified set data is transferred
to the next IMD node corresponding to another state variable where
the transformation continues.

If an interval is mapped onto the empty interval, this is a de-
generated case as the set is restricted to an empty set, i.e., the set
data effectively does not reach the end of the computation along
this path. From a global view, the set data flows through the IMD
from its top to the bottom along all paths in parallel and finally is
united in the terminal node to the resulting set. The algorithm to
achieve this behavior will be sketched in Section 4.

3.3 Predicate Action Diagrams

Predicate action diagrams are a restricted form of IMDs dedicated
to describe the transition behavior especially of process networks
and similar models.

Definition 3.2 (Predicate action diagram) A predicate action di-
agram is an interval mapping diagram containing only the follow-
ing mapping functions:

f+(I) =

�
I \ IP + IA if I \ IP 6= ;
[] otherwise

and

f=(I) =

�
IA if I \ IP 6= ;
[] otherwise ;

wheref+ is theshift functionand f= the assign function. IP is
thepredicate intervalandIA theaction interval.

The combination of predicate and action interval parameterizes
the mapping function and completely defines its behavior. The syn-
tax IP= + IA is used for the shift functionf+ andIP = = IA for
the assign functionf=. The shift aboutI = [a; b] in reverse direc-
tion corresponding to interval substraction is achieved by addition
of �I = [�b;�a] = IA and is denoted asIP = � I.

4 Image Computation

4.1 De�nition

Let x = (x1; x2; : : : ; xn) be a vector depicting a system state.
Then a state setS is represented by its characteristic functions(x)
with

s(x) =

�
1 if x 2 S
0 otherwise : (3)

Let x andx0 be system state vectors—x the one before andx0

its successor after a transition—and�(x; x0) a characteristic func-
tion representing the transition relationT , i.e.,

�(x; x0) =

�
1 if (x; x0) 2 T
0 otherwise : (4)

In symbolic model checking,image computationis of impor-
tance. The imageIm(S; T) of a setS of system states with respect
to transition relationT represents the set of all states that may be
reached after exactly one valid transition from a state in setS. The
inverse imagePreIm(S;T) depicts all states that in one transi-
tion can reach a state inS. The formal definitions of the image
operators are given, e.g., in [6].

4.2 Using IDDs and IMDs

Figure 3 shows an example process network with unspecific con-
sumption and production rates represented by intervals. It is similar
to a computation graph [9] where the consumption rate is indepen-
dent of the threshold—depicted as a condition here.

u v w

A
≥2 ≥1

[1,2]
1

[1,3]

≥2
[1,4] 1 2

B

Figure 3: Example process network.

Figure 4 b) shows the corresponding transition relation repre-
sented by the PADT , Figure 4 a) an example state set IDDS.
The latter does not include the 0-terminal node and all its incoming
edges for clearness.

u

v

1

[0,∞)

[0,0]

[0,0] [1,2]

[0,∞)

S

ww

a) b)

u

v

1

–[2,2]

–[1,1] +[1,1]

T

ww

v

[0,∞)/[2,∞)/

+[1,3]

–[1,2] +[1,4]

[1,∞)/ [0,∞)/

[0,∞)/ [2,∞)/

Figure 4: State set IDD and transition relation PAD.

The state set is described ass(u; v; w) = (v = 0) _ (1 � v �
2) ^ (w = 0), the transition relation as�(u; v; w; u0; v0; w0) =
(u � 2)^ (u�u0 2 [1; 2])^ (v � 1)^ (v0 = v� 1)^ (w0�w 2
[1; 3])_(u0�u 2 [1; 4])^(v0 = v+1)^(w � 2)^(w0 = w�2),
for u; v; w; u0; v0; w0 2 [0;1):

4.3 Computation

In this section, we describe how to perform image computation us-
ing IDDs and IMDs. Conventionally, as mentioned in Section 1,
the transition relation is represented as a BDD that explicitly stores
all valid combinations of system state and predecessor state. Image
calculations are performed using Boolean operators as existential
and universal quantifier9 and 8, respectively—which internally
are computed using the If-Then-Else operatorITE, see [12] for
instance. This strategy is possible for IDDs, too.

Another technique is described in the following. First, we intro-
duce a general form of transition relations based on IMDs. Then we
concentrate on further restrictions using PADs which allow for the
efficient representation of state distances combined with the corre-
sponding transition conditions.

Image computation with IDDs and IMDs requires an IDDS
for the characteristic functions(x1; x2; : : : ; xn) of a state set and
an IMD T for the characteristic function of the transition relation.

The final result is a reduced IDDS0 for the characteristic function
s0(x01; x

0

2; : : : ; x
0

n) of the set of successor states.
This image operation is performed recursively by the func-

tion mapForward(v;w) as sketched partially in Table 1—over
an IDD nodev and an IMD nodew. The resulting IDDS0 is con-
structed recursively by traversing depth-first both source graphs and
creating new edges and nodes resulting from the interval mapping
application by maintaining the respective graph structures. The op-
eration is similar to theApply operation described in [2].TN0 and
TN1 are the 0- and 1-terminal node, respectively.

mapForward(v; w) :
if v = TN0

return TN0;
if (v = TN1) ^ (w = TN1)

return TN1;
vres = TN0;
if index(v) < index(w)

[...]
else if index(v) > index(w)

[...]
else

for each Ij 2 part(v)
for each fk 2 func(w)

if (childj(v) 6= TN0)
Ires = fk(Ij);
if Ires 6= []

vc = mapForward
�
childj(v); childk(w)

�
;

if vc 6= TN0

create new node~v with index(v);
add new edge with intervalIres

ending invc to ~v;
complement~v with edges toTN0;
if ~v is obsolete

~v = child1(~v);
vres = vres _ ~v;

return vres;

Table 1: Forward mapping for image computation.

As a memory function, a hash table of already computed results
for pairs ofv andw is maintained—omitted in Table 1—such that
an included result may be returned without further computation.

As described above, the mapping functions are used for for-
ward traversal during image computation withIm(S; T), e.g., for
reachability analysis where time proceeds in forward direction. To
perform CTL model checking using essentiallyPreIm(S; T), the
reverse direction is necessary, thus some kind of inverse mapping
functions has to be used. For IMDs, depending on the structure of
the mapping functions, this inversion is not always possible as an
interval representation is necessary to display the function result.
However, especially PADs have valid inversions [15].

4.4 Image Computation With PADs

Image computation with PADs now will be described briefly. The
state distance between two system statesx andx0 is defined as
�x = x0 � x. Thus, according to equation (4), the transition rela-
tion T may be described as the characteristic function

�̂(x;�x) =

�
1 if (x; x+�x) 2 T
0 otherwise : (5)

In Figure 4 b), only shift functionsf+ are used as mapping
functions. In the case of queue contents limited to non-negative
numbers, the predicate intervals must ensure that the resulting state
variablesx0i after a transition may not become negative, i.e., the
enabling condition has to be satisfied. The action intervals perform
the consumption and production of tokens by shifting intervals of

state set variable values. Hence, the action intervals represent the
state distance�x. The assign functionsf= are dedicated to model
finite state systems.

5 Symbolic Model Checking

Symbolic model checking allows for the verification of certain tem-
poral properties of state transition systems, where the explicit con-
struction of an entire reachability graph is avoided by implicitly de-
picting it using symbolic representations. Often, the propositional
branching-time temporal logic CTL (Computation Tree Logic) is
used to specify the desired system properties [12]. To verify such
CTL formulae,ITE operator and image computation are used.

The most frequently employed form of symbolic representa-
tion are BDDs and their derivatives, e.g., see [4, 12]. The interval
representations as introduced in this paper provide the following
advantages.

� Using IMDs and IDDs for the representation of transition
relation and state sets, respectively, avoids some undesirable
limitations of BDDs and binary coding.

� The introduced image computation is dedicated to process
networks as only state distances are stored.

� The description is more compact as sets of state variable or
state distance values are combined and depicted as one IDD
or IMD node.

5.1 Modeling Process Networks

For symbolic model checking, only the quantitative system behav-
ior is considered, i.e., only the number of tokens in each queue, not
their values. The behavior of Kahn process networks may be re-
produced by decomposing the transition behavior of each process
into atomar transitions, changing the internal state of the process
and consuming and producing tokens in dependence on the inter-
nal state. For this decomposition, the process behavior has to be
describable by a finite state machine. Recursive network structures
are not allowed. Non-blocking read or blocking write semantics
may be represented, too. Even non-determinate models with multi-
reader and multi-writer queues as, e.g., Petri nets are verifiable us-
ing IDDs and IMDs.

Each path in the transition relation PAD describes one possi-
ble state transition. The mapping functions along the path depict
enabling conditions and the corresponding state variable changes.
The transition is enabled if all conditions along the path are sat-
isfied. Analog to computation graphs [9], a threshold different
from the consumption rate may be specified. Non-determinate con-
sumption rates can easily be considered as intervals—introducing
an additional degree of non-determinism. While changes of queue
contents are described using shift functionsf+, assign functions
f= are used for internal state changes. The state variables are of
either infinite domain—representing contents of unbounded FIFO
queues—or of finite domain—describing internal process states or
bounded queues.

5.2 Model Checking

Symbolic model checking of process networks comprises the
whole well-known area of model checking concerning the detec-
tion of errors in specification or implementation. Examples are the
mutual exclusion of processes or the guaranteed acknowledgement
of requests. Properties may be described as CTL formulae and ver-
ified as usual [12].

Apart from this, applications assisting in scheduling are pos-
sible. Boundedness can be determined either by computing the

set of reachable states or by checking CTL formulae on the con-
tent of queues. For termination and deadlocks, respective CTL
formulae may easily be formed. Additionally, the effect of cer-
tain scheduling policies on these measures may be investigated or
improved. Deadlocks in artificially bounded process networks or
inherent bounds may be detected. In this way, optimal schedules
may be confirmed or even developed by determining least bounds
and thus optimal static capacity limits for scheduling, constraining
the necessary memory.

5.3 Experimental Results

Among several diverse system models based on FIFO queues pro-
ducing promising results, the model of a symmetric multiserver
random polling system [1] has been investigated. The set of reach-
able states has been calculated by a series of image computations.
Some results for different initial configurationsm are presented
now, comparing IDDs and PADs to BDDs. In the BDD version,
the coding of the state variable values was direct binary. Our inves-
tigations yielded promising results concerning the number of nodes
and edges as well as the computation time. Figure 5 shows the size
of the diagram representing the set of reachable states for increas-
ing initial configurations.

5 10 15 20 25
m

1000

2000

3000

4000

5000

6000

nodes IDD

nodes BDD

edges IDD

edges BDD

Figure 5: Size of state set diagram.

In Figure 6, the computation time to determine the set of reach-
able states is depicted depending on the initial configuration.

5 10 15 20 25
m

5

10

15

20

25

T

IDD,PAD

BDD

Figure 6: Computation time of reachability analysis.

For both criteria, IDDs and PADs turn out to be superior to
the conventional approach using BDDs. The size of the transition
relation diagram is compared in Table 2. The significant reduction
of the number of nodes in the transition relation PAD and in the
state set IDD is obvious compared to the BDD equivalents. The

PAD size is independent of the initial configuration, while the BDD
size increases heavily with it.

PAD BDD
m = 15 m = 20

layers 6 48 60
nodes 16 403 521
edges 21 802 1038

Table 2: Size of transition relation diagram.

Considering the computation time, BDDs additionally have one
major disadvantage in contrast to IDDs and PADs. As mentioned
in Section 1, using BDDs requires an upper bound for the state
variable values as they are coded binary. But such a priori bound
is not known in general. As using too loose upper bounds causes
substantial computation overhead—Table 3 shows the dependence
of the BDD size on the chosen coding length—, the alternative in
most cases would be to increase the bounds incrementally—i.e., to
add bits to the coding—until they are high enough, but still tight.
Each iteration of this “trial-and-error” method takes time not to be
neglected, while no time is wasted using IDDs and PADs as the first
run yields the final result.

variable domain [0; 15] [0; 31] [0; 63]

layers of T 48 60 72
nodes in T 403 521 639
edges in T 802 1038 1274
layers of S 24 30 36
nodes in S 1143 1486 1789
edges in S 2282 2968 3574

Table 3: BDD size form = 15.

Figure 7 shows the diagram size for another example model
during fixpoint computation, requiring a variable domain of
[0; 8191] and 156 layers for the transition relation BDD. Again,
IDDs require greatly less nodes and edges than BDDs.

200 400 600 800 1000 1200
it.

20000

40000

60000

80000

100000

nodes IDD

edges IDD

nodes BDD

edges BDD

Figure 7: Diagram size during fixpoint computation.

6 Summary

Symbolic model checking tries to avoid the state explosion prob-
lem by implicit construction of the state space. The major limiting
factor is the size of the symbolic representation mostly depicted
by large BDDs. Especially for process networks, traditional ap-
proaches have shown not to be feasible due to the above-mentioned
lacks. A new approach to symbolic model checking of process

networks and related models of computation has been presented.
It is based on a novel, efficient form of representation of multi-
valued functions called interval decision diagram (IDD) and the
corresponding image computation technique using interval map-
ping diagrams (IMDs). Several drawbacks of conventional sym-
bolic model checking of process networks with BDDs are avoided
due to the use of IDDs and IMDs.

References

[1] M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, and
G. Franceschinis. Modelling with Generalized Stochastic
Petri Nets. John Wiley & Sons, 1995.

[2] R. E. Bryant. Graph-based algorithms for boolean func-
tion manipulation. IEEE Transactions on Computers, C-
35(8):667–691, August 1986.

[3] J. R. Burch, E. M. Clarke, D. E. Long, K. L. McMillan, and
D. L. Dill. Symbolic model checking for sequential circuit
verification. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 13(4), 1994.

[4] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and
J. Hwang. Symbolic model checking:1020 states and beyond.
Information and Computation, 98(2):142–170, June 1992.

[5] P. Godefroid and D. E. Long. Symbolic protocol verification
with queue BDDs. InProceedings of the 11th Annual IEEE
Symposium on Logic in Computer Science, 1996.

[6] A. J. Hu and D. L. Dill. Efficient verification with BDDs us-
ing implicitly conjoined invariants. InComputer Aided Ver-
ification, volume 697 ofLecture Notes in Computer Science,
pages 3–14. Springer-Verlag, 1993.

[7] G. Kahn. The semantics of a simple language for parallel pro-
gramming. InProceedings of the IFIP Congress Information
Processing, 1974.

[8] G. Kahn and D. B. MacQueen. Coroutines and networks of
parallel processes. InProceedings of the IFIP Congress In-
formation Processing, 1977.

[9] R. M. Karp and R. E. Miller. Properties of a model for par-
allel computations: Determinacy, termination, and queueing.
SIAM Journal on Applied Mathematics, 14(6):1390–1411,
1966.

[10] E. A. Lee and D. G. Messerschmitt. Static scheduling of
synchronous data flow programs for digital signal processing.
IEEE Transactions on Computers, C-36(1):24–35, 1987.

[11] E. A. Lee and T. M. Parks. Dataflow process networks.Pro-
ceedings of the IEEE, 83(5):773–799, 1995.

[12] K. L. McMillan. Symbolic Model Checking. Kluwer Aca-
demic Publishers, 1993.

[13] T. M. Parks.Bounded Scheduling of Process Networks. PhD
thesis, University of California, Berkeley, 1995.

[14] A. Srinivasan, T. Kam, S. Malik, and R. K. Brayton. Algo-
rithms for discrete function manipulation. InProceedings of
the IEEE International Conference on Computer Aided De-
sign, 1990.

[15] K. Strehl and L. Thiele. Symbolic model checking using in-
terval diagram techniques. Technical Report 40, Computer
Engineering and Networks Lab (TIK), Swiss Federal Insti-
tute of Technology (ETH) Zurich, Gloriastrasse 35, CH-8092
Zurich, February 1998.

	CDROM Home Page
	ICCAD98
	Front Matter
	Table of Contents
	Session Index
	Author Index

