
On the Optimization Power of Retiming and Resynthesis
Transformations

Rajeev K. Ranjan Vigyan Singhal Fabio Somenzi Robert K. Brayton
rajeevr@synopsys.com vigyan@cadence.com fabio@duke.colorado.edu brayton@eecs.berkeley.edu

Synopsys Inc. Cadence Berkeley Labs University of Colorado University of California
Mountain View, CA Berkeley, CA Boulder, CO Berkeley, CA

Abstract

Retiming and resynthesis transformations can be used for op-
timizing the area, power, and delay of sequential circuits.
Even though this technique has been known for more than a
decade, its exact optimization capability has not been for-
mally established. We show that retiming and resynthe-
sis can exactly implement1-step equivalentstate transition
graph transformations. This result is the strongest to date.
We also show how the notions of retiming and resynthe-
sis can be moderately extended to achieve more powerful
state transition graph transformations. Our work will provide
theoretical foundation for practical retiming and resynthesis
based optimization and verification.

1 Introduction

In combinational synthesis [1, 8], the positions of the latches
are fixed and the logic is optimized for area, delay, or power.
In retiming [5], the latches are moved across combinational
gates. Retiming can change the number of latches (and hence
the area) and the minimum cycle time (i.e., the clock rate).
Retiming can also change the interaction between different
combinational logic blocks, so retiming followed by combi-
national synthesis allows logic optimization not possible by
combinational optimization alone. Moreover, combinational
synthesis can generate new latch locations, perhaps leading
to further optimization. A sequence of retiming and com-
binational resynthesis steps can provide a powerful way to
optimize a sequential circuit [2, 7]. Iyeret al. [3] used a
“retiming-reencoding” method that transforms a circuit with
a given encoding into a circuit with arbitrary encoding and

code length, and an equivalent, but not necessarily identical
state transition graph.

Even though retiming and synthesis techniques have ex-
isted for over a decade, the optimization capability of a com-
bination of these transformations has not been formally es-
tablished. Given a circuit, the transformations brought in by
retiming and resynthesis operations can be analyzed at the
structural level. However, structural analysis gives only a
local view of the transformation. A more global approach
is to analyze the related STG transformations since there
could be many circuit implementations of a given STG. Ma-
lik [6] characterizes the optimization capability of retiming
and resynthesis by relating them to STG transformations. In
particular, he states a certain subset of STG transformations
(“non-CP”) can be implemented using retiming and resyn-
thesis. We prove the above classification result to be in-
correct by two examples. We show that the mistake in the
proof reduces to the notion of equivalent states which can
be merged, split, or switched in STG transformations. Our
first contribution is to correct the above result and towards
that we establish that iterative retiming and resynthesis can
implement a different subset (“1-step equivalent”) of STG
transformations. A more significant contribution of our work
is proving the converse of this result, i.e., we show that the
STGs of the original circuit and of the transformed circuit
are1-step equivalent. To our knowledge this is the first result
which gives a complete and tight bound on the optimization
capability of retiming and resynthesis transformations. Here
it is worth mentioning that in this work we are concerning
ourselves only with theoretical bounds on the optimization
potential and not with actual algorithm which could achieve
the optimization.

The rest of the paper is organized as follows. We present
preliminary material and establish our terminology in Sec-
tion 2. In Section 3 we present the exposition on the op-
timization power as given in [6]. Section 4 forms the core
of the paper. We indicate the mistake in the exposition us-
ing counter-examples. We also correct and extend the results
on the relationship between retiming and resynthesis steps
and related STG transformations. In Section 5, we discuss
simple extensions to traditional notions of combinational op-
timization and retiming which can improve their optimiza-

tion capability without a significant increase in the algorithm
complexity.

2 Preliminaries

In this section, we establish our circuit model and make our
notions of retiming and combinational synthesis precise.

Circuit model: A sequential circuit is an interconnection
of combinational gates (no combinational cycles) and
memory elements along with input and output ports.
Typically various notions of sequential circuits differ in
the definition of the memory elements. We focus on
sequential circuits where all the memory elements are
edge-triggered latches driven by the same clock.

Combinational synthesis: In this optimization only combi-
national part of the circuit is changed. Any logic opti-
mization which preserves the I/O functionality between
the combinational outputs (primary outputs and latch
inputs) and the combinational inputs (primary inputs
and latch outputs) falls under combinational synthesis.

Retiming: Retiming is the operation of assigning lag val-
ues to each combinational gate which corresponds to
the number of latches moved from the outputs to the in-
puts of the gate (a negative lag value indicates the latch
movement from the inputs to the outputs) [5].

State transition graph(STG): An STG is a labeled di-
rected graphG(V; ~E), where each vertexv 2 V corre-
sponds to a states, defined by the values of the latches,
of the circuit. An edgeeij 2 ~E with labela connects
vi to vj if the circuit transitions from statesi to sj on
primary inputa.

3 Malik’s Results

In this section we present the results given by Malik [6]1.
The two theorems presented here consider the cases of iden-
tical and distinct STGs.

The following theorem asserts the state encoding power of
retiming and resynthesis operations.

Theorem 3.1 (Encoding power of retiming and resynthesis)
Given a machine implementationM1, corresponding to a
state transition graphG, with a state assignmentS1, it is
always possible to derive a machineM2 corresponding to
the same state transition graphG, and a state assignment
S2 by applying only a series of resynthesis and retiming
operations onM1.

The proof of the theorem made use of one-to-one mapping
between the states ofM1 andM2, thereby transforming one
state assignment to another using appropriate logic.

1These results partially appeared in [7] as well.

Malik also discussed the case where the STGs ofM1 and
M2 are different. It is asserted that under restricted state-
transformations of the STG, the final circuit can be obtained
from the initial circuit using retiming and resynthesis opera-
tions. The following basic transformations are introduced to-
wards establishing the result. SupposeG1 andG2 are STGs
corresponding toM1 andM2 respectively.G1 may be mod-
ified to obtainG2 through a series of three basic transfor-
mations. These transformations may create states that are
equivalent to existing states, merge states that are equiva-
lent to each other, and modify state transitions to go to states
equivalent to the original destinations. The definitions of ba-
sic transformations are given below:

2-way split A states1 in G1 is split to two equivalent states
in G2 (Figure 1a).

2-way merge Two equivalent statess11 ands12 in G1 are
merged to a single states1 in G2 (Figure 1a).

Switch A transition inG1 to a states11 is modified to go to
an equivalent states12 in G2 (Figure 1b).

The 2-way split and 2-way merge constituteprimitive
transformations, a 2-way switch, multi-way splits and
merges can be accomplished by a sequence of 2-way splits
and merges (Figure 1c).

Definition 1 A labeled cycle of equivalent statesin an
STG is a directed cycle such that all state vertices in the
cycle are equivalent and all transition predicate vectors on
the edges in the cycle have the same label.

Definition 2 A cycle preserving (CP) transformation does
not create or destroy a labeled cycle of equivalent states.

A non cycle preserving transformation(NON-CP) creates
or destroys a labeled cycle of equivalent states.

Theorem 3.2 LetM1 be an implementation corresponding
to the state assignmentS1 and STGG1 andM2 be an im-
plementation corresponding to the state assignmentS2 and
STGG2. If G2 is obtained fromG1 using onlyCP trans-
formations thenM2 can be obtained fromM1 using only a
sequence of retiming and resynthesis operations.

The proof consideredG2 to contain a CP 2-way split of some
states1 in G1. A transition tos1 inG1 corresponds to a tran-
sition to eithers11 or s12 in M2 depending on the primary
input vector. It was stated that the primary input vector and
states1 uniquely determine which ofs11 or s12 is the desti-
nation state inM2. Thus, the one-to-many mapping between
the state codes forM1 and the state codes forM2 is actu-
ally a one-to-one mapping between theM1 state codes plus
the primary input andM2 state codes. This can be accom-
plished through a combinational circuitC. Circuit C 0 per-
forms many-to-one mapping fromM2’s state codes toM1’s
state codes. The proof was illustrated with a figure that is re-

s

G1

s11

s12

i1

i2

i3

G2

s12

s11
s

i3

i1

i2

i2

i1

s1

i2

i1

i3

s1

s i1

s11

s12

s

i3

i2

G1

s
s11

s12

i2

i1

i3

G1 (b)

2-way
Split

Merge
2-way

Switch

2-way

(a)

(c)
G2

2-way split2-way merge

G2

s12

s11

i2

i1

Figure 1: State-graph transformations (a) 2-way split and 2-way merge (b) switch (c) switch using 2-way split and merge.

M1’s code

M1’s code

M1’s code

M2’s code

M1’s code

M2’s code

M1’s code

Out

In

M

(a) Machine M1

M

C

C’

Out

(b) Resynthesize (c) Retime to get M2

Out

C

M

C’

In In

Figure 2: Obtaining equivalent FSM implementations (proof
for Theorem 3.2).

produced in Figure 2. The figure shows how the circuit may
be retimed resulting in a circuit that corresponds toG2. This
may be further resynthesized to any circuitM2 that corre-
sponds to state assignmentS2.

4 Our Contribution

In this section we develop our result which establishes the
relationship between retiming and resynthesis steps and the
STG transformations. In Section 4.1, we establish the class
of STG transformations which can be implemented by re-
timing and resynthesis and in Section 4.2 we prove the STG
transformations resulting from retiming and resynthesis op-
erations.

4.1 STG Transformations and Retiming–
Resynthesis

We begin with indicating the errors in Malik’s theorem (The-
orem 3.2) using some counter-examples. After identifying

k

G2

s0
s11

s4

s3
s12

s2
i

j

i

G1

i,k

i,j s4

s3

s1

s0

s2
Merge

Split

Figure 3: Counter-example to the proof of the Theorem 3.2.
The next state inG2 cannot be determined solely by the next
state inG1 and the input vector.

the sources of these errors, we provide our modifications to
the proof and the theorem and establish the result.

4.1.1 Errors in Malik’s Exposition

Below we give two counter-examples to the Theorem 3.2.

The proof of the Theorem 3.2 assumes that given the des-
tination states1 in M1 and primary input vector which leads
to the transition, destination state inM2 (one ofs11 or s12)
can be uniquely determined. This is not correct. Consider
the splitting ofs1 in G1 as shown in the Figure 3. Giveni
ands1, we cannot determine which ofs11 or s12 is the next
state inG2.

The other counter-example is shown in Figure 4 [10]. The
original circuit with the associated state transition graphG1

is shown on the left. A sequentially equivalent circuit is
shown on the right with the corresponding state transition
graphG2. It can be proven that neither the latches can be
retimed nor can the logic be optimized indicating that a se-
quence of retiming and resynthesis moves cannot make this
circuit transformation [10]. However, Figure 5 shows a se-
quence of CP transformations which transformG1 into G2

contradicting Theorem 3.2.

Next
State (M2)

Next
State (M1)

Present
State (M1)

Present
State (M2)

Next
State (M2)

(a) (b) (c) (d)

M1

C

C’

M1 C’

C

M1
Next
State (M2)

Present
State (M2)

M2

In In

Out

In

Out

In

Out

Out

Figure 6: Illustration of STG transformation (splitting of states) which can be implemented by retiming and combinational
optimization: (a) Original machineM1 (b) Generation of next state bits for the new machine (c) Retiming to generate next state
bits (d) Combinational optimization to obtain new machineM2.

out
L1 L1’

out
L2

(a) (b)

1010
0

10
00 01 11 10 1

Figure 4: Counterexample to the Theorem 3.2: Original cir-
cuit in (a) cannot be transformed to the final circuit in (b)
using retiming and resynthesis. The outputs are shown in
boxes.

1 1 1

G1 G2

00 01 11 10 AB

Merge 01, 10
Merge 00, 11

Relabel

0 1

0 1 0 0 0

Figure 5: Using CP transformations to obtain the final STG
from initial STG.

4.1.2 Implementing Splitting of a State

We modify the transformations given in the proof for The-
orem 3.2, to handle the problem shown in Figure 3. The
modified transformation is shown in Figure 6. The main dif-
ference between this and the transformations shown in Fig-
ure 2 is that we also make use of previous state information
of M1 in evaluating the state codes forM2. By using in-
formation about previous state inM1, next state inM1, and
the input, we can uniquely determine the next state forM2.
The combinational logicC 0 performs many-to-one mapping
fromM2’s state codes toM1’s state codes.

4.1.3 What STG Transformations can be Imple-
mented by Retiming and Resynthesis?

Upon investigation we found that the problem with Theo-
rem 3.2 lay in the notion of equivalence of states and the
related permissible transformations. Below, we give the ap-
propriate modifications and extensions.

Definition 3 For a givenSTG two statess1 and s2 are 1-
step equivalent, if they have the same output and if for all
inputsi, the next state ofs1 on i is the same as the next state
of s2 on i and vice versa.

Note that this notion of state equivalence is very local. In
particular computing this equivalence does not require any
fix-point computation, e.g., reachability analysis.

Based on the notion of 1-step equivalence, we modify the
meanings of 2-way transformations (as given in Section 3),
in the following way:

2-way split A states1 in G1 is split into two 1-step equiva-
lent states inG2. This also includes the splitting a state
with a self-loop into two 1-step equivalent states.

2-way merge Two 1-step equivalent statess11 and s12 in
G1 are merged to a single states1 in G2.

Switch A transition inG1 to a states11 is modified to go to
a 1-step equivalent states12 in G2.

The 2-way split and 2-way merge constituteprimitive trans-
formations, a 2-way switch, multi-way splits and merges can
be accomplished by a sequence of 2-way splits and merges.

Definition 4 A transformation of anSTGG1 into another
STGG2 is a 1-step equivalent transformation if G2 has
been obtained fromG1 by either splitting a state into 1-step
equivalent states, or merging two 1-step equivalent states, or
switching between two states that are 1-step equivalent.

Theorem 4.1 LetM1 be an implementation corresponding
to state assignmentS1 and STGG1 andM2 be an imple-
mentation corresponding to state assignmentS2 and STG
G2 such thatG2 is obtained fromG1 by a1-STEPEQUIVA -
LENT TRANSFORMATION. ThenM2 can be obtained from
M1 using a sequence of retiming and resynthesis operations.

Proof:
The proof goes along the lines of Theorem 3.2. Suppose
G2 is obtained fromG1 by splitting of some state into 1-
step equivalent states. Figure 6 illustrates how splitting of
1-step equivalent states can be implemented using retiming
and resynthesis. HenceM2 can be implemented fromM1

using retiming and resynthesis operations.
Since each step in the transformation in Figure 6 is re-

versible,M1 can be obtained formM2 using retiming and
resynthesis operations. This amounts to merging of 1-step
equivalent states inG2 to giveG1.

Switching between two 1-step equivalent states can be im-
plemented by a combination of merging the two states and
splitting as shown in Figure 1.

Definition 5 Two STGs G1 andG2 are 1-STEP EQUIVA -
LENT if one can be obtained from other by a sequence of
1-step equivalent transformations.

Note that retiming sometimes results in transient states. In
the presence of such states we use the notion ofsufficiently
old configuration[5] or delayed designs[9] and ignore them
for the purpose of analysis.

The following theorem follows by applying induction on
Theorem 4.1.

Theorem 4.2 LetM1 be an implementation corresponding
to state assignmentS1 and STGG1 andM2 be an imple-
mentation corresponding to state assignmentS2 and STG
G2 such thatG2 is 1-STEPEQUIVALENT to G1. ThenM2

can be obtained fromM1 using only a sequence of retiming
and resynthesis operations.

4.2 What STG transformations are Gener-
ated by Retiming and Resynthesis

In this section, we show retiming and resynthesis opera-
tionsonly result in STG transformations which are 1-STEP

Forward (i) Forward (iii)

Backward (ii) Backward (iv)

Figure 7: Primitive retiming operations. All general retiming
operations can be built from a sequence of these.

1101

00 10
10

00

11

10

01

01 11

01

(a)

11

00

0

0-,-0

11

1

11

(b)

0-,-0

Figure 8: STG transformation when the latches are moved
from the inputs (a) to the output of a NAND gate (b). Only
partial STG is shown in a. The outputs are shown in boxes.

EQUIVALENT. Towards that direction, we make use of the
following lemmas.

Lemma 4.1 A general retiming operation as defined in Sec-
tion 2, can be constructed as the sequence of retiming moves
across primitive elements as shown in Figure 7.

Proof:
The proof follows from the fact that for any circuit with com-
plex combinational gates, there is a finite equivalent repre-
sentation using NAND gates and the fanout junctions. Hence
retiming across a gate is equivalent to sequence of retiming
moves across the primitive elements constituting the gate.

Note that this notion is similar to the atomic retiming
moves considered by Singhalet al. [9] (NAND and fanout
gate being equivalent to “justifiable” and “non-justifiable”
element respectively).

Lemma 4.2 The basic retiming operations as shown in Fig-
ure 7 result inSTGtransformations that are1-STEPEQUIV-
ALENT.

Proof:

0

0

1

10

1

(a)

11

00

01

10

1

10

1

0

0

1

0

(b)

Figure 9: STG transformation when the latches are moved
from the input (a) to the outputs of a fanout gate (b).

Consider the forward and backward retiming operations
across the NAND gate. The corresponding STG transfor-
mations are shown in Figure 8. For clarity’s sake, only a par-
tial set of edges are shown in this figure. States(00; 10; 01)
are pairwise 1-STEP EQUIVALENT. The STG on the right
can be obtained by merging these three states into a single
one. Hence retiming across a NAND gate results in 1-STEP

EQUIVALENT STG transformations.
Now consider the forward and backward retiming opera-

tions across the fanout gate. Moving latches to the output of
the fanout gate results in two transient states as shown in Fig-
ure 9. Ignoring these transient states, the STGs in Figure 9
are isomorphic (see the discussion for Definition 5).

Lemma 4.3 SupposeSTGs G1 andG2 are 1-step equiva-
lent, thenG1 �G is 1-step equivalent toG2 �G for all G,
where� represents the composition operation.

Proof:
SupposeG2 is obtained by splitting of a state inG1. Sup-
poses1 in G1 splits into two statess11 and s12. Now
for every statefs1; sg in G � G1, there will be two states
fs11; sg andfs12; sg inG�G2. Sinces1; s11; ands12 are 1-
STEP EQUIVALENT, all of them go to the identical next state
for the same input, i.e.,8i; (fs1; sg; i) = (fs11; sg; i) =
(fs12; sg; i). Hence,fs1; sg is 1-STEP EQUIVALENT with
fs11; sg and fs12; sg. The merge transformation follows
since,G1 is obtained fromG2 by merge of two 1-STEP

EQUIVALENT states.

Lemma 4.4 Given a circuitC consisting ofNAND gates,
fanout gates, and latches. SupposeC 0 is the new circuit ob-
tained by performing one of the primitive retiming opera-
tions shown in Figure 7. IfG andG0 are theSTGs ofC and
C 0 respectively, thenG0 is 1-STEP EQUIVALENT toG.

Proof:
SupposeX is primitive gate (NAND or fanout) involved in
the retiming operation. Think of the original circuit as com-
position of gateX with the rest of the circuit. SupposeGCX

is the STG for the primitive gate andG �CX
is the STG for the

rest of the circuit, soG = GCX �G �CX
. If G �CX

is the STG
for the primitive gate after retiming, thenG0 = G �CX

�G �CX
.

Now from Lemma 4.2,GCX andG �CX
are 1-STEP EQUIV-

ALENT. Hence from Lemma 4.3,GCX � G �CX
is 1-STEP

EQUIVALENT to G �CX
� G �CX

, implying thatG andG0 are
1-STEP EQUIVALENT.

Theorem 4.3 SupposeG1 and G2 are STGs associated
with circuitsM1 andM2 respectively such thatM2 is ob-
tained fromM1 using a sequence of retiming and resynthesis
operations. ThenG1 areG2 are 1-STEPEQUIVALENT .

Proof:
Combinational synthesis does not modify the STG. From
Lemma 4.1, retiming corresponds to a sequence of retiming

steps across primitive elements. An iterative general retim-
ing results in concatenation of sequences consisting of re-
timing steps across primitive elements. From Lemma 4.4, at
each step the resulting transformation is 1-STEP EQUIVA -
LENT. HenceG1 andG2 are 1-STEP EQUIVALENT.

Theorem 4.4 LetM1 be an implementation corresponding
to state assignmentS1 and STGG1 andM2 be an imple-
mentation corresponding to state assignmentS2 and STG
G2. M2 can be obtained fromM1 using only a sequence of
retiming and resynthesis operations if and only ifG1 areG2

are 1-STEPEQUIVALENT .

Proof: Directly follows from Theorems 4.2 and 4.3.
In view of this theorem, we make following observations.

� The counter-example described in Section 4.1.1 can be
explained in the following way. The transformation in
Figure 5 involves merging the state “01” with “10” and
state “00” with “11”. However, since these states are
not 1-step equivalent, the STG transformation cannot
be implemented with retiming and resynthesis transfor-
mations.

� Since 1-STEP EQUIVALENCE is a local notion, in-
tuitively 1-STEP EQUIVALENT TRANSFORMATIONS

cover only a small subset of all valid STG transfor-
mations. For example, Figure 10 shows two circuits
along with their STGs (only partial STG is shown for
the circuit a). The circuits in Figures 10a and b are se-
quentially equivalent, but one cannot be obtained from
the other using retiming and synthesis transformations.
This is because all three equivalent states(00; 10; 01)
have self-loops with predicate(--0) , implying they
are not 1-STEP EQUIVALENT. Hence their merger can-
not be implemented using only retiming and resynthesis
transformations.

� We do not need the condition of CP preserving trans-
formations. The counterexample is shown in Figure 11.
In STG G1, the self-loop ons1 is a labeled cycle of
equivalent states(there is just one state in the cycle).
However, in STGG2, due to the self-loops ons11 and
s12, we have two labeled cycles of equivalent states,
i.e., this STG transformation is non-CP. However, as
shown in Figure 6 we can implement splitting of states
using retiming and resynthesis.

Next consider Malik’s examples of non-CP [6] shown
in Figure 12. The merger of statess11 ands12 in Fig-
ure 12a is not a valid 2-way merge because statess11
ands12 are not 1-step equivalent. In Figure 12b, the
transformation involves a switch. Notice that states
s11 ands12 are 1-step equivalent. However, after the
switch, statess11 ands12 are no longer 1-step equiva-
lent, making the switch transformation invalid.

0

0-1

0
111

0--

--0,
-0-,

1

11-
-01, --0,

1

--0
00-,

00 10
--0
10-,

11--0
01-, 01 --0

11-,

111

101

011

0 0

0 1

(b)

e

o
x

y

o

x
e

e
y

(a)

Figure 10: Original circuit in (a) cannot be transformed to
the final circuit in (b) using retiming and resynthesis. For
clarity purposes only partial set of edges is shown for circuit
a. The outputs are shown in boxes. The order of input labels
on edges is(x; y; e).

s12

b

s2

s3

a, b

(a)

G1

s1

d

s2c

s3

self-loop

splitting

(b)

G2

a

b a

cs11

c

d

d

Figure 11: STG transformations involving splitting a state
with a self-loop.

s12

s11

ii

G2

s12

s11

ii

G2

s12

s1

G1

(a) (b)

s11

G1

i

ii

2-way

2-way

Split

Merge

switch

Figure 12: Non-CP transformations.

0 1 0 1
10110100

Re-encoding Eliminate floating latch (L2’)

(a) (b) (c)

L1 L2 out
L1’ out

1

0 1

0

out

L1’ L2’

0 1 0 1
11100100

Figure 13: Circuit transformation using floating latch elimi-
nation.

5 Extending Notions of Retiming
and Synthesis

The examples given in the previous section illustrate the lim-
itations of retiming and combinational transformations. In
this section we show how to increase the optimization capa-
bility of these transformations by extending the notions of
conventional retiming and combinational optimization.

5.1 Eliminating Floating Latches

The current combinational optimization techniques do lit-
tle manipulation of latches (e.g., latch removal via constant
propagation). While gates that do not transitively fanout to
any primary output are eliminated during combinational op-
timization, latches are treated as pseudo primary inputs and
outputs and hence are not eliminated even if they do not tran-
sitively fanout to any primary output. Such latches also are
not eliminated during a retiming operation either. We can ex-
tend the notion of combinational optimization to one which
trivially gets rid of such latches before proceeding to reg-
ular combinational optimization. The process of removing
latches that do not fanout to any primary output is termed as
floating latch elimination. It does not add to the complex-
ity of the synthesis algorithm. With this extended notion of
synthesis, the circuit transformation shown in Figure 4 can
be obtained. The transformation process is shown in Fig-
ure 13. Essentially, the first transformation re-encodes the
circuit, which can be implemented by retiming and resynthe-
sis as explained in Theorem 3.1. This is followed by floating
latch elimination.

In general, this transformation will allow us to implement
STG transformations, where a circuit is properly reencoded
to expose redundant state bits that can be eliminated.

5.2 Retiming Latches with Latch Enable
Signal

The direct feedback path to the latch in the circuit of Fig-
ure 10 can be thought of as an enabled latch as shown in the
Figure 14. In [4], a retiming technique is proposed to handle

d
e

out outd
e

Figure 14: A latch with a feedback path can be modeled as
an enabled latch.

e
e e

Forward

Backward

Figure 15: Retiming enabled-latch across gates.

circuits containing edge-triggered latches with different en-
able signals and different clocks. The retiming problem for
multiple-class sequential circuits was reduced to an equiv-
alent retiming for single class sequential circuits, thereby
exploiting performance enhancements made in that domain.
In particular, their technique would allow the retiming move
as shown in Figure 15. With this extension to the retiming
move, we can obtain the transformation shown in Figure 10.

This extension to the notion of retiming enables us to
merge states which are 1-STEP EQUIVALENT except for the
identical predicate on the self-loop, i.e., the state holds its
value for a particular input combination.

6 Conclusion

Retiming and resynthesis are powerful tools to optimize a
sequential circuit. In this work, we have formally character-
ized the optimization capability of retiming and resynthesis
steps in terms of the transformations on the respective STGs
of the circuits. We have shown that retiming and resynthe-
sis steps are exactly the1-step equivalenttransformations on
STGs. To our knowledge this is the first result which gives
a complete and tight bound on the optimization capability of
retiming and resynthesis transformations.

We have demonstrated that by simple extensions to tradi-
tional notions of retiming and combinational optimization,
we can achieve more complex STG transformations. These
extensions do not result in increased algorithmic complex-
ity of optimization steps. It will be an interesting exercise
to obtain establish similar tight bounds on the optimization
capability of these extended notions.

References

[1] R. K. Brayton, R. Rudell, A. L. Sangiovanni-
Vincentelli, and A. R. Wang. MIS: A Multiple-Level
Logic Optimization System. IEEE Trans. Comput.-
Aided Design Integrated Circuits, CAD-6(6):1062–81,
Nov. 1987.

[2] S. Hassoun and C. Ebling. Sequential Circuit Opti-
mization Using Precomputation. InProc. IEEE/ACM
Intl. Workshop on Logic Synthesis, May 1997.

[3] B. Iyer and M. Ciesielski. Metamorphosis: State As-
signment by Retiming and Re-encoding. InProc.
IEEE/ACM International Conference on Computer-
Aided Design, pages 614–7, 1996.

[4] C. Legl, P. Vanbekbergen, and A. Wang. Retiming
of Edge-Triggered Circuits with Mulitple Clocks and
Load Enables. InProc. IEEE/ACM Intl. Workshop on
Logic Synthesis, 1997.

[5] C. E. Leiserson and J. B. Saxe. Optimizing Syn-
chronous Systems.Journal of VLSI and Computer Sys-
tems, 1(1):41–67, Spring 1983.

[6] S. Malik. Combinational Logic Optimization Tech-
niques in Sequential Logic Synthesis. PhD thesis, Uni-
versity of California Berkeley, Nov. 1990. Memoran-
dum No. UCB/ERL M90/115.

[7] S. Malik, E. M. Sentovich, R. K. Brayton, and A. L.
Sangiovanni-Vincentelli. Retiming and Resynthesis:
Optimization of Sequential Networks with Combina-
tional Techniques.IEEE Trans. Comput.-Aided Design
Integrated Circuits, 10(1):74–84, Jan. 1991.

[8] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon,
R. Murgai, A. Saldanha, H. Savoj, P. R. Stephan, R. K.
Brayton, and A. L. Sangiovanni-Vincentelli. SIS: A
System for Sequential Circuit Synthesis. Technical
Report UCB/ERL M92/41, Electronics Research Lab,
Univ. of California, Berkeley, CA 94720, May 1992.

[9] V. Singhal, C. Pixley, R. L. Rudell, and R. K. Bray-
ton. The Validity of Retiming Sequential Circuits.
In Proc. of the IEEE/ACM Design Automation Conf.,
pages 316–21, June 1995.

[10] H. Zhou, V. Singhal, and A. Aziz. How Powerful is Re-
timing? InProc. IEEE/ACM Intl. Workshop on Logic
Synthesis, May 1998.

	CDROM Home Page
	ICCAD98
	Front Matter
	Table of Contents
	Session Index
	Author Index

