
the
ir-
vi-

the
cir-
ea

nts
e. A
ial
-
f
lt
’s
ge-

u-
a-
is
our
on-
or
he

on
in

d

ing
d.

ces
.e.
nd
it
n
a-
by

on
all
to
to
e-
nt

ive
e
r-
e

Abstract
This paper presents a novel concurrent fault simulator (called
CONCERT) for nonlinear analog circuits. Three primary tech-
niques in CONCERT, including fault ordering, state prediction,
and reduced-order fault matrix computation, greatly simplify fault
simulation by making use of the residual similarities between the
faulty and fault-free circuits. Between successive time steps, all cir-
cuits in the fault list are simulated concurrently before the simula-
tor proceeds to the next time step. CONCERT also generates
accurate fault coverage statistics that are tied to the circuit specifi-
cations. Up to two orders of magnitudes speedup are obtained for
complete fault simulation, without any loss of accuracy. More
speedup is achieved by CONCERT for evaluating the fault cover-
age of a test, using fault ordering and fault dropping technique.

1    Introduction
The fault simulation problem for nonlinear analog circuits is
largely unsolved due to the complexity of analog simulation and
the difficulties of simulating many analog faults simultaneously. In
the digital world, concurrent fault simulation methods are well
entrenched as the effects of multiple digital single-stuck-at faults
can be propagated simultaneously from one gate to the next using
only local information around the circuit nodes to which the fault
effects have propagated. In contrast, analog faults typically affect
voltage and current values acrossall the circuit nodes and
branches, respectively, thereby making concurrent analog fault
simulation very difficult. Currently, serial simulation of analog
faults is the prevalent analog fault simulation methodology used in
industry. As a consequence, comprehensive fault simulation of
large mixed-signal circuits is almost impossible with today’s tools.

In the digital domain, fault simulation algorithms are based on par-
allel fault simulation [12] and concurrent fault simulation [14]
methods. In the analog domain, no fast fault simulation techniques
have been reported for nonlinear circuits under general transient
stimulus. Frequency domain (AC small signal) fault simulation of
analog circuits linearized around the DC bias points for parameter

tolerances is discussed in [13]. This approach is based on
assumption that the DC bias points of the faulty and fault-free c
cuits are the same, hence, disallowing large circuit parameter de
ations under fault. Householder’s formula [5] is used to assess
impact of the component tolerances on the AC response of the
cuit under test (CUT). In [17], the authors have discussed the id
of concurrency which avoids re-evaluation of those compone
that have the same internal node values as in the fault-free cas
fault simulator called DRAFTS [9] has been developed for ser
fault simulation of linear analog circuits. FLYER [15] reports sig
nificant improvement upon DRAFTS for fast fault simulation o
linear analog circuits. A fast fault simulation method using fau
ordering and circuit partitioning is reported in [16]. Householder
formula has also been applied to analyze multiparameter lar
change sensitivity in linear networks [7].

In this paper, we present a fast and accurate concurrent fault sim
lator CONCERT for nonlinear analog circuits. The paper is org
nized as follows. An overview of our fault simulation approach
discussed in Section 2. Section 3 provides the background for
fault simulation methodology. Section 4 presents the proposed c
current fault simulation algorithm. Various techniques used f
concurrent fault simulation are detailed in Sections 5, 6, and 7. T
overall fault processing is discussed in Section 8. Simulati
results are given in Section 9. This is followed by conclusions
Section 10.

2    Fault Simulation Methodology
The fault simulation methodology on which CONCERT is base
on are as follows:

1. A set of training circuit instances, each instance correspond
to a set of different circuit parameter values, is first generate
This is performed using statistical methods so that the instan
lie across and near the circuit specification boundaries, i
some of the circuit instances correspond to “good” circuits a
some correspond to “bad” circuits. This set of training circu
instance is inserted into a fault list. The fault list is the
expanded to include a fault universe which may include par
metric faults and catastrophic short and open faults specified
the user.

2. For the specified transient stimulus, concurrent fault simulati
is performed as follows: (a) between successive time steps
the circuits in the fault list are simulated before proceeding
the next time step; (b) if the circuit time step corresponds
one in which the CUT output(s) is sampled (the sampling fr
quency is an input to the simulator), then the measureme
threshold for that time step is selected in such a way as to g
unity yield coverage (this means that no “good” circuit instanc
is classified as “bad” by choice of the threshold); and (c) all ci
cuit instances in the fault list that are “detected” due to th
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choice of the measurement thresholds are dropped and simula-
tion is continued.

3. Fault coverage statistics that are tied to the circuit specifica-
tions are generated.

Note that here we differ from digital fault simulation in that: (i) the
analog fault simulator need to select the measurement thresholds
based on the specifications which may not given in the time
domain; (ii) the “fault list” contains some “good” circuits as well as
“bad” for the purpose of measurement threshold selection. In the
above, if desired, fault dropping (2(c)) is not performed if the tran-
sient response of the CUT over the entire simulation interval for
every fault is of interest, say, for diagnosis purposes.

The fault simulation methodology is illustrated in Figure 1. The

key contributions of CONCERT are in step 2 described above. The
simulator simulates all the entries in the fault list at every time step
before proceeding to the next. This concurrent process allows
CONCERT tomaximize the sharing of simulation effort for all cir-
cuit instances in the fault list. The goal is to use as much informa-
tion as possible from the simulation of every circuit instance in the
fault list to simplify the simulation of the next. Three primary tech-
niques is used to accomplish the concurrent fault simulation:

1. Fault Ordering: Based on the states of the circuit instances, all
the circuit instances in the fault list are ordered at every time
step. The dynamic ordering is done in such a way as to maxi-
mize the similarity between consecutive faults.

2. State Prediction: Given the order specified in the fault list, the
state of thei-th circuit instance in the fault list is predicted from
the state of thei-1-th simulated circuit instance in the fault list
at every time step. The predicted state greatly reduces the num-
ber of Newton Raphson (NR) iterations for solving the system
of nonlinear equations.

3. Reduced-order Fault Matrix (RFM) Computation: Based on the
residual similarity between the nodal admittance matrices of
the faulty and fault-free circuits, the system of faulty circuit
equations is transformed into a reduced-order system of equa-
tions and solved with much less computational effort. House-
holder’s formula [5] and sparse matrix technique [6] are used
for the transformations.

The concurrent fault simulation techniques in CONCERT apply to
DC, AC, and transient fault simulation of general linear and non-

linear analog circuits. For reasons of brevity, this paper will focu
on DC and transient fault simulation algorithms.

3    Analog Circuit Simulation Basics
Our concurrent fault simulation approach is based on conventio
modified nodal analysis (MNA) and numerical integration metho
[4]. In the following, we first discuss the MNA formulation for cir-
cuit simulation. We will then show that most of the entries in th
MNA matrix are invariant under fault and this greatly reduces th
computations involved in solving the linearized system of equ
tions.

In this paper, we use the term “fault” to denote a circuit instance in
the fault list. The subscriptf is used to denote afault, the subscript
n denotes the time steptn in transient analysis, and the superscrip

k denotes thek-th iteration in the NR equation solving procedur
corresponding to timetn.

In general, the system of circuit equations is written as:

, , (1)

whereY is the modified nodal admittance matrix of the circuit,U is
the vector ofunknown node voltages and branch currents, andI is
the RHS contributed bythe known current and voltage sources.

Consider the example nonlinear circuit in Figure 2, the lineariz
system of equations for DC analysis is:

(2)

wheregd
k is the dynamic conductance andid

k is the current of the

diode, both evaluated at the diode’s terminal voltagev1
k - v2

k.

Starting with a DC inpute(0) and aninitial guess v1
0, v2

0, andi3
0,

the system of equations is solved forv1
k+1, v2

k+1, andi3
k+1 itera-

tively for k=0, 1, ..., until the solution converges.

Transient analysis is based on stiffly stable integration metho
with companion models for memory components [4]. For the c
cuit in Figure 2, the linearized equations at timetn are:

(3)

whereyn is the companion conductance andjn is the companion

current source of the capacitor corresponding to timetn. Only after

Figure 1 Fault Simulation Methodology of CONCERT
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the NR iterations converge at timetn, can the simulation be

advanced to the next time step in transient simulation.

In general, this can be formally stated as solving a system of non-
linear circuit equations (at timetn):

(4)

using Newton-Raphson (NR) iteration method:

(5)

hereJ(Un
k) is the Jacobian matrix off(Un) evaluated atUn

k, and

Un
k+1 is thek-th iterative solution. In each NR iteration, the nonlin-

ear components need to be re-evaluated, i.e. the system of equa-
tions is re-linearized. The iterative solution is assumed to converge

to the solution point when vectorsUn
k andUn

k+1 are significantly

close. The number of NR iterations and its convergence heavily

depend on theinitial guess Un
0. The cost of linearizing and solving

the system of circuit equations dominate the computational cost of
circuit simulation.

4    Concurrent Fault Simulation Algorithm
For transient fault simulation, all the faulty circuits along with the
fault-free circuit are simulated concurrently at timetn before simu-

lation proceeds to the next time step. The same time step is used for
all fault simulations and is determined by fault-free simulation.

Figure 3 shows the algorithm of concurrent fault simulation at time
tn. The fault-free circuit is first simulated in functionnormal-

CircuitSimulation () which uses the conventional circuit
simulation method [11]. All the faults is ordered in the fault list in
functionorderFaults () , which will be described in Section 7.
Every fault is simulated using NR method as shown in thedo-until
loop. FunctionsprecomputeRFM () prepares the common data
for solveRFM () , which implements the RFM procedure for
reducing the computational cost in solving the system of linearized
equations. FunctionpredictState () implement the state pre-
diction method which reduce the number of NR iterations. The
RFM procedure is explained in Section 5 and the state prediction
method is explained in section 6. FunctionisConverge ()
checks if the NR iteration converges.

This general algorithm also applies to DC fault simulation, which
is considered as a special case withtn being 0. For transient fault

simulation, the same procedure will be called at every time step
the entire test stimulus interval.

5    Reduced-order Fault Matrix Computation
When the circuit is faulty, the circuit equations are changed. B
certain similarity between the faulty and fault-free circuit equation
still exists. The difference in the circuit matrix can be captured b
extracting the differences of the component conductances un
that fault. Since the state of a nonlinear circuit is affected und
fault, some nonlinear components in the circuit may also have d
ferent behavior than in the fault-free case.

It is important to point out that not all the nonlinear component
dynamic behaviors are affected by the fault at all times, especia
in large mixed signal circuits. In the nonlinear circuit in Figure 2
only during a small period of time, the diode exhibits significantl
different conductances in faulty and fault-free case. During majo
ity part of its rectifier operation, the diode is “on” or “off”, as illus-
trated in Figure 4 . During that period of transient simulation, th

diode gives the same dynamic conductance as in the fault free c

We define a component to bevisible if the difference between its
dynamic conductances in faulty and fault-free circuits is large
than certain numerical threshold. Otherwise, it isinvisible.

A faulty component in a circuit is thus alwaysvisibleaccording to
this definition. The total number ofvisiblecomponents is equal to
the number of faulty components plus the number ofvisiblenonlin-
ear components in the circuit. Thevisibility of a nonlinear compo-
nent may change between NR iterations.

5.1  RFM Computation
Consider a faulty circuit withl visiblecomponents atk-th iteration,
and the conductance differences between the fault-free and fa

case are ,i=1, ... l, respectively. The difference matrix betwee
the faulty and fault-free circuits can be expressed as:

(6)

where, , , ,

f Un( ) 0=

J Un
k( ) Un

k 1+⋅ f Un
k( )– J Un

k( ) Un
k⋅+=

Figure 3 Concurrent fault simulation algorithm

Algorithm concurrentFaultSimulation ( tn)
01 normalCircuitSimulation ( tn,  fault_free_circuit);
02 orderFaults ( tn, {fault_list} );
03 precomputeRFM ( tn,  fault_free_circuit);
04 for each f∈ {fault_list} do
05        Uf

0 := predictState ( f) ;
06    k := 0;
07    do //Newton-Raphson (NR) iterations
08    Uf

k+1 := solveRFM ( tn,  f) ;
09    k := k + 1;
10             untilisConverge ( tn,  f)
11      end for

Figure 4 Similar responses and states of faulty and
fault-free circuits in Figure 1
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, and Y is the nodal admittance matrix of the
fault-free circuit at its solution point. Thei-th visiblecomponent is
connected from noderi to si, and controlled by the terminal voltage

between nodepi and qi. For the special case of a resistor, nodes

(ri,si) are the same as nodes (pi,qi).

The linearized faulty circuit equations can now be written as:

(7)

By applying Householder’s formula, we get:

(8)

Since the LU factors ofY are known from fault-free simulation, it
just takes one forward and backward substitution (FBS) to get an

intermediate results of . And vector can be
easily filled up based on the simple matrix structure ofQf

We define the Reduced-order Faulty Matrix (RFM) as

. If we know that the inverse ofY is Z, we

can precompute part of the RFM:

(9)

Now, the faulty system of equations in (7) isforward transformed
into a system of equations with reduced-orderl:

, , (10)

Once we solve forHf
k in (10), we need tobackward transformthe

result to the original faulty system of equations (7), for which we
need to find the matrix product:

(11)

There are two ways to compute this matrix product. One is based
on the inverse matrixZ of Y, and the product comes from the matrix

multiplication. Another way to findGf
k is based on the observation

that the column vector can be easily obtained from the

simple matrix structure ofPf. Therefore, the system of equations in

(11) can be solved using another FBS based on the LU factors ofY.

Finally, the solution of thek-th NR iteration is

. (12)

5.2  RFM Procedure and Its Complexity
This RFM computation is implemented in the procedure ofsolv-
eRFM() in Figure 3. The procedure is illustrated in Figure 5. The
decision of whether the RFM computation should be performed
depends onl, the number ofvisible components. An important
issue in circuit simulation is that the circuit matrix be sparse using
sparse matrix techniques [10], and the complexity of solving equa-

tions (7) is practicallyO(m1.5), wherem is the order of the equa-

tions [10]. Since the RFM matrix is filled from the inverse ofY, it is

not sparse. Hence the complexity of solving (10) isO(l3). Hence,
we choose the decision function in Figure 5 asT(m)= . If l
exceeds , the RFM approach is bypassed.

Similar decision needs to make in backward transformation, sin

the computational complexity of FBS is aroundO(m1.1) using
sparse matrix techniques.

When there is only onevisible component, which is the single
faulty component, the faulty circuit behaves as a “linear circui
during this iteration with respect to the fault-free circuit, since a
the nonlinear components areinvisible. Then, solving (10) needs
just one division, and the backward transformation can also be s

plified to just filling the vectorGf
k from Z.

The RFM procedure thus speeds up fault simulation in the follo
ing ways:

1. Only visiblenonlinear components are evaluated at each ite
tion based on the differences in their terminal voltages.

2. Instead of the MNA matrix, a much smaller RFM is filled an
factorized.

3. The cost of forward transformation may be shared betwe
consecutive faults in the fault list, if they have very close circu
states, which result in the same RHS in equations (7).

It is important to note that all the entries in part of the RFM matr
in equations (9) are fault-independent and only depend on theZ
matrix and the topological structure of the visible components. W
can precompute this matrix fromZ according to all the nonlinear
and faulty components in the circuit. So the RFM matrix can b
directly filled up based on the visible components at thek-th itera-
tion. This pre-computation is performed in functionprecomput-
eRFM() in Figure 3. Since the LU factors ofY are readily
available from the fault-free circuit simulation, invertingY needs
about two times more computations compared to one LU factoriz
tion. This computational overhead is well paid off when fault simu
lation for hundreds of faults are performed concurrently.

Experiments show that the RFM procedure is stable numerically
can be shown that the RFM is not singular as long as the origi
MNA matrix is not singular.

Pf Qf, ℜm l×∈
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6    State Prediction
While the RFM approach reduces the computational complexity
within an NR iteration during fault simulation,state prediction
method computes an initial guess close to the final state and
reduces the number of NR iterations significantly. In this method,
the similarities in response between two consecutive faults in the
fault list under the same stimulus is exploited to compute thebest
initial guessfor the NR iterations. Since the states of two consecu-
tive faults are the closest according to fault ordering criteria, the
state of the preceding faults in the fault list should be a goodinitial
guessfor the NR iterations in the simulation of the next fault. Since
NR iterations converge quadratically near its solution point, a good
initial guess will greatly reduce the number of NR iterations.

An intuitive method in state prediction for DC fault simulation of
the next faultf2 is to take the state of the preceding faultf1 as the

initial guess. That is:

(13)

This simple heuristic method works extremely well for DC fault
simulation and results in much less number of NR iterations than
other initial guesses based solely on the circuit structure. Further,
since the initial guess is close to the final solution, the NR itera-
tions for faulty circuits are now more likely to converge.

In the case of transient analysis, circuit simulators have used the
state at the previous time step as an initial guess for NR iteration at
the present timetn. An i-th order polynomial using previousi+1

time step states is proposed for an initial guess [1]. In practice,
most circuit simulators use a first order polynomial, since high-
order polynomial interpolation offers about the same speedup.

Our state prediction approach for transient fault simulation is based
on the similarity between the local response waveforms of two
consecutive faults. To illustrate our approach, consider Figure 6

which shows the state prediction at timetn for a fault f2 using the

simulation data from the preceding faultf1. A second order polyno-

mial functionF1(t) is first built for the faultf1, using the states,un-

2, un-1, andun. This polynomial function is then used to build the

prediction function for the next faultf2:

(14)

which is also a 2nd order polynomial. To determine the constanα
and β, two previous states  and of faultf2 are used.

In the case that a fixed time step is used for this examp
with , the value of the prediction function at
time tn can be derived as:

(15)

which will be used as the initial guess for solving in NR itera

tion for fault simulation. As we can see that the overhead of sta
prediction in fault simulation is very small.

7    Fault Ordering
Fault ordering is a key issue in predicting the state of the next fa
accurately. The response of one fault may be more similar to
response of another fault rather than to that of the fault-free circu
Therefore, more accurate state prediction can be achieved by u
one fault response to predict the state of the next fault.

For precise DC fault simulation, all the faults in the fault list ar
ordered in terms of their parameter deviations, which are the o
information accessible before DC simulation. A precise DC sol
tion is necessary for transient fault simulation.

In transient fault simulation, all the faults in the fault list are
ordered in terms of their previous transient responses as show
Figure 7. When fault simulation proceeds to a new time steptn+1,

all the faults are ordered using the simulation data from the pre
ous time steps. Then, fault simulation are performed attn+1. In par-

ticular, a weighted sum of the previous time output responses
used as a keyλ for fault ordering, that is:

(16)

Our experiments indicate that , provides a goo
choice for this key function, which gives a fault ordering with be
ter state prediction. Fault ordering is implemented in the procedu
orderFaults ()  in Figure 3.

Compared to the complexity of solving a set of linear equation
the computational overhead of fault ordering and state prediction
negligible. At every time step, faults in the fault list are ordered, b
few of the faults need to change their position with respect to t
previous time ordering.

U f 2

0
U f 1

=

u n-1
final result

u n-2

u n
u n

un-2
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Figure 6 State prediction with reference to
the preceeding fault
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8 Fault Processing and Fault Coverage Analysis
In test generation applications, fault simulation is primarily used to
estimate the fault or yield coverages of a test. For speeding up fault
simulation, our approach employs early fault dropping to those
faults that are detected at early steps of test stimulus application.
Our approach also estimates thresholds to separate “good” and
“bad” circuits.

8.1  Test Measurement Threshold
Thresholds on circuit specifications are often specified by circuit
designer. For test other than specification tests (alternate tests),
these thresholds have to be determined from simulation data.

In this paper, we propose concurrent Monte-Carlo simulation to
compute thresholds for transient tests. The simulator first generates
a large numberL of training circuits with independent normal dis-
tributions of certain tolerance for the component parameters. Each
training circuit is simulated to obtain its specifications. If the cir-
cuit satisfies all the circuit specifications, it is marked as “good”,
otherwise it is marked as “bad”. After the specification simulation,
we have a set of “good” circuits and a set of “bad” circuits. All lie
across and near the circuit specification boundaries. Therefore, the
transient test fault detection thresholds can be computed by simu-
lating all theL circuits under the test stimulus, as shown in Figure
8. Assume that the test requires 100% yield coverage. Then, the

threshold at a sampling point is the difference between the highest
and the lowest responses of all the “good” circuits.

Figure 9 shows the algorithm of fault processing. The function

specsSimulation () performs the specification simulation for
all the training circuits and marks the “good” and “bad” circuits, as

described before. These training circuits are then inserted in
fault list. Thereafter, all the circuit instances in the fault list ar
simulated inconcurrentFaultSimulation () described in
Figure 3. If the current simulation timetn is a sampling time for

fault detection, the measurement threshold is computed
getThreshold () shown in Figure 8. All the faulty responses
are checked against the threshold and those detected faults
dropped from the fault list. The algorithm ends up with a set
undetectable faults under this test stimulus. Therefore the fault c
erage can be evaluated.

8.2  Early Fault Dropping
A typical transient test is illustrated in Figure 10. The response to
transient test for a CUT are sampled at certain time points. On

the response of a fault deviates from the expected fault-fr
response by a certain threshold at a sampling time, this fault
marked as detected. Therefore, this fault need not be simulated
the following sampling time points. In our concurrent fault simula
tion algorithm, we propose early fault dropping scheme to speed
the overall fault simulation. As the fault simulation proceeds to
new sampling time point, those faults which are detected a
dropped from the fault list.

The fault simulation procedure obtains speedup through early fa
dropping due to two reasons:

1. Since many faults are dropped during early sampling poin
fewer faults need to be simulated per time step on an averag

2. Those faults which give larger response deviations at ea
sampling point are more expensive to simulate during lat
time steps, since large change in faulty states is harder to p
dict and takes more number of NR iterations during concurre
fault simulation. By dropping those faults, the average numb
of NR iterations for each faults is greatly reduced.

9    Experimental Results
The concurrent fault simulation algorithm has been implemented
a prototype simulation program called CONCERT. It uses SPIC
level-1 models for devices like BJT, MOSFET, and diode etc. F
solving the linearized circuit equations, CONCERT use the spa
matrix package developed in U.C. Berkeley [6].

For accuracy and speedup, we compare the performance of CO
CERT with Spectre, an analog circuit simulator from Caden
Design Systems. Table 1 gives the various characteristics of
experimental circuits for evaluation. Among them, Biquad is a se
ond-order low pass filter; Amp2 is a two-stage BJT amplifier; Sle
is a slew rate filter; Front is a circuit constructed by combinin
Amp2 with Slew. U741 is the 741 opamp form CircuitSim90
benchmarks [18]. The opamps in Biquad, Slew, and Front a

Figure 8 Calculation of measurement hreshold
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Figure 9 Fault processing and coverage analysis

Algorithm Fault processing and coverage analysis
00 Input: {netlist} , {fault_list}, {stimulus}, { sampling_times};
01 {training_circuits} := L statistical experiment circuits;
02 specsSimulation ( {training_circuits} );
04 Insert  {training_circuits} into {fault_list} ;
03 for each time step tn do
09 concurrentFaultSimulation ( tn);
10 if tn ⊂ {sampling_times} do //fault dropping
11     THD := getThreshold ( tn, {training_circuits} );
12 for each fe ∈ {fault_list} do
13     if response ( tn,fe) > THD
14 {fault_list} := {fault_list} - fe;
15              end if
16          end for
17      end if
18  end for
19 reture {fault_list}  // the set of faults undetectable

Figure 10 Transient test measurement thresholds
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described in macromodel which includes input and output voltage
limiting diodes linearized atvd>0.7volt.

Each faulty circuit in the fault list is generated by injecting single
catastrophic or parametric fault associated with a linear component
in the circuit. Two catastrophic faults (short and open) and 8 para-
metric faults (with 5%, 15%, 50%, 80%, 120%, 150%, 200%, and
1000% of the nominal value, respectively) are generated corre-
sponding to each linear component.

Table 2 Compares the DC and transient (TR) fault simulation CPU
time for the example circuits using Spectre and CONCERT on a
Sun Ultra1. The data for Spectre is the intrinsic simulation time
reported by Spectre accumulated for all faults. The actual CPU
time for Spectre is even longer due to the overhead involved in set-
ting up MNA. In transient fault simulation of the Biquad filter, two
order of magnitudes speedup was obtained using CONCERT. Even
for U741 with precise device modeling for its 23 BJTs, we still get
2.5 times speedup. For all other circuits, CONCERT was 6-12
times faster than Spectre. In DC fault simulation, higher speedups
are obtained than in transient fault simulation. This is due to the
fact that DC fault effects are much more localized, and that the
state prediction method are far more better than random initial
guess which is the case in DC circuit simulation.

We also collected some statistical data during fault simulation to
show how speedup is achieved in CONCERT and why different
speed up are obtained for various types of circuits. Table 3 gives
the average number of NR iterations per time step per fault, with
and without using the fault state prediction technique. It can be
seen that the number of iterations is reduced by 50-165% in CON-
CERT using state prediction for transient fault simulation, and
much more for DC case.

Further speedup is obtained by using the RFM technique, which
gives quite different speedup for different type of circuits. Table 4

shows the average order of the RFM for all the faulty circuit sim
lations performed concurrently in DC and TR fault simulation. Th
order of RFM is equal to the number ofvisiblecomponents at any
simulation time, since onlyvisible components will contribute to
the RFM. The order of RFM for the Biquad filter is unity at ever
time step. This is due to the fact that the circuit is operating in
linear range under the test stimulus and CONCERT is very efficie
when it detects that the order of RFM is one. For the other circui
the order of RFM is higher. Among the nonlinear circuits, the fau
simulation for the slew rate filter gets the largest speedup beca
most of its nonlinear components are voltage limiting diodes a
the average number of visible components is very small. Therefo
the speedup obtained by CONCERT is mainly related to the av
age number of visible components in fault simulation. Circui
described in marcomodels or behavioral models gets more spee
in fault simulation because of the less number of visible comp
nents.

The output waveforms generated from CONCERT were found
match with that from Spectre simulation, with less than 5% max
mum error which is mainly due to the slight difference in tim
steps and device modeling. Figure 11 shows the simulation outp
from CONCERT and Spectre for the slew rate filter, with a te
stimulus of16sin(20πt). About 100 time steps are simulated bot
in CONCERT and Spectre.

Circuit
name

# of faulty
circuits

# of
nodes

# of com-
ponests

Test stimulus

signal stop time

Biquad 170 20 58 Pulse(Tw=5ms) 10ms

Amp2 150 11 19 50e-3sin(2e4πt) 0.2ms

Slew 200 10 37 16sin(20πt) 140ms

Front 360 24 55 Pulse(Tw=0.1ms) 0.2ms

U741 120 25 38 0.1sin(2e4πt) 0.4ms

Table 1 Example circuit characteristic

Circuit
name

# of
faults

DC fault simulation TR fault simulation

Spectre
(sec)

Concert
(sec)

Speed
up

Spectre
(sec)

Concert
(sec)

Speed
up

Biquad 170 1.7 0.01 170 57.8 0.46 125

Amp2 150 3 0.03 100 15.0 2.63 5.7

Slew 200 2 0.01 200 38.0 3.04 12.5

Front 360 10 0.12 90 115 12.8 9.0

U741 120 6 0.26 23 25.4 10.2 2.5

Table 2 Speedup of Concert over Spectre in simulation for
the fault-free and all the faulty circuits

Circuit
name

DC fault simulation TR fault simulation

without state
prediction

 with state
prediction

without state
prediction

 with state
prediction

Biquad 5 1 2 1

Amp2 21 3.58 2.87 1.91

Slew 11 1 3.93 1.48

Front 24 1.8 3.23 1.89

U741 55 6.2 4.23 2.31

Table 3 Average number of NR iterations

Circuit name # of nodes DC RFM TR RFM

Biquad 20 1 1

Amp2 11 3.73 4.11

Slew 10 1 2.35

Front 24 2.27 4.64

U741 25 14.5 15.9

Table 4 Average order of RFM

Figure 11 Simulation output of one fault-free and ten faulty
circuits due to the capacitor C2 in the slew rate filter

(a) CONCERT outputs (b) Spectre outputs
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To demonstrate the fault processing capabilities of CONCERT, we
use the stimuli given in Table 1. We consider five measurements
made on the transient response of the circuit excited by these stim-
uli. The sampling are distributed evenly on the time axis. The
results of training set simulation is given in Table 5. The training
set consists of 100 circuits with multiple parametric faults. This
shows that CONCERT can perform fault simulation of multiple
faults efficiently. The supporting simulation statistics are also
shown in the table. The simulation time in Table 5 are the CPU
time for Spectre and Concert, both include the overhead of setting
up the MNA in simulation.

The fault coverage of the transient measurements was estimated
using the fault list given in Table 1. The results are summarized in
Table 6. The simulation time for Spectre are copied form Table 2.
We can see that CONCERT achieves considerable speedup for the
purpose of fault coverage evaluation.

10    Conclusions
We present novel concurrent fault simulation algorithms for non-
linear analog circuits. We believe that CONCERT is the first of its
kind of concurrent fault simulator for nonlinear analog circuits.
Significant fault simulation speedup is obtained for highly nonlin-
ear circuits with pure analog signals, without any loss of accuracy.
Higher relative speedup are obtained for circuits described in mac-
romodels, which are more attractive for dealing with complex
mixed-signal circuits.

Future investigation includes how to achieve further speedup at the
expense of accuracy. For example, how to reduce the number of
visiblecomponents by reducing the visibility threshold. Other tech-
niques for speeding up circuit simulation, such as multi-rate simu-
lation, event driven circuit simulation and use of piecewise linear
models, can be used in conjunction with our concurrent simulation
approach to further speedup fault simulation for various types of
electronic circuits.
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Circuit
name

# of training
circuit

Spectre
(sec)

Concert
(sec)

Speed
up

ave. # of
iteration

Biquad 100 65.0 13.4 4.85 1

Amp2 100 27.0 4.42 6.11 1.39

Slew 100 37.0 5.57 6.64 1.21

Front 100 50.0 13.7 3.65 1.48

U741 100 40.0 7.55 5.30 1.57

Table 5 Speedup of Concert over Spectre in fault
simulation for training circuits

Circuit
name

Spectre
(sec)

Concert
(sec)

Speed
up

ave. # of
iteration

ave. order
of RFM

fault
coverage

Biquad 57.8 0.27 214 1 1 81%

Amp2 15.0 1.18 12.7 1.29 3.51 87%

Slew 38.0 1.49 25.5 1.25 1.70 75%

Front 115 8.27 13.9 1.45 3.79 64%

U741 25.4 2.87 8.9 1.43 12.6 84%

Table 6 Speedup of Concert over Spectre in fault
simulation for fault coverage evaluation of the test
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